Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 108: 154528, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36343549

RESUMEN

BACKGROUND: Anaplastic thyroid cancer (ATC) is one of the fatal cancers and has not effective treatments. Alantolactone (ATL), a terpenoid extracted from traditional Chinese medicinal herb Inula helenium L., confers significant anti-inflammatory, antibacterial and antitumor activity. However, the activity and mechanisms of ATL in ATC remain unclear. PURPOSE: To investigate the potential anti-ATC effects in vitro and in vivo and the mechanisms involved. METHODS: The anti-proliferative activity of Alantolactone (ATL) against ATC cells was analyzed through CCK-8 and colony formation assays. Flow cytometry assay was performed to assess the cell cycle, cell apoptosis, ROS, and mitochondrial membrane potential (ΔΨm), whereas the cellular localization of cytochrome c and calreticulin were determined using cellular immunofluorescence assays. The lactate dehydrogenase (LDH) enzyme activity in the cell culture medium was measured using a commercial LDH kit, whereas ELISA was conducted to assess the secretory function of IL-1ß. Western blot assays were conducted to determine the expression or regulation of proteins associated with apoptosis and pyroptosis. Subcutaneous tumor model of nude mice was established to evaluate the anticancer activity of ATL in vivo. The expression of Ki67, cyclin B1, cleaved-PARP, cleaved-caspase 3, and IL-1ß in the animal tumor tissues was profiled using immunohistochemistry analyses. RESULTS: Our data showed that ATL significantly inhibited the proliferation and colony formation activity of ATC cells. ATL induced ATC cell cycle arrest at G2/M phase, and downregulated the expression of cyclin B1 and CDC2. Furthermore, ATL induced concurrent apoptosis and pyroptosis in the ATC cells, and the cleavage of PARP and GSDME. It also significantly increased the release of LDH and IL-1ß. Mechanically, ATL-mediated increase in ROS suppressed the Bcl-2/Bax ratio, downregulated the mitochondrial membrane potential and increased the release of cytochrome c, leading to caspase 9 and caspase 3 cleavage. We also found that ATL induced the translocation of an immunogenic cell death marker (calreticulin) to the cell membrane. In addition, it inhibited the growth of the ATC subcutaneous xenograft model, and activated proteins associated with apoptosis and pyroptosis, with a high safety profile. CONCLUSION: Taken together, these results firstly demonstrated that ATL exerted an anti-ATC activity by inducing concurrent apoptosis and GSDME-dependent pyroptosis through ROS-mediated mitochondria-dependent caspase activation. Meanwhile, these cell deaths exhibited obvious characteristics of immunogenic cell death, which may synergistically increase the potential of cancer immunotherapy in ATC. Further studies are needed to explore deeper mechanisms for the anti- ATC activity of ATL.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Ratones , Animales , Humanos , Caspasa 3/metabolismo , Piroptosis , Caspasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ciclina B1/metabolismo , Calreticulina/metabolismo , Calreticulina/farmacología , Citocromos c/metabolismo , Ratones Desnudos , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Apoptosis , Mitocondrias , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/metabolismo , Línea Celular Tumoral
2.
Cell Cycle ; 20(22): 2402-2412, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34606419

RESUMEN

Multiple myeloma (MM) remains an incurable hematological malignancy characterized by proliferation and accumulation of plasma cells in the bone marrow. Innovative and effective therapeutic approaches that are able to improve the outcome and the survival of MM sufferers, especially the identification of novel natural compounds and investigation of their anti-MM mechanisms, are needed. Here, we investigated the effects and the potential mechanisms against MM of forskolin, a diterpene derived from the medicinal plant Coleus forskohlii, in MM cell line MM.1S. CCK-8 assay showed that forskolin significantly inhibited MM.1S cells viability in a time- and dose-dependent manner. Furthermore, we demonstrated that forskolin induced G2/M phase arrest with a remarkable increase of p-cdc25c, p-cdc2, and a decrease of cyclin B1, indicating the suppression of cdc25C/cdc2/cyclin B pathway. Moreover, we found that forskolin induced mitochondrion-dependent apoptosis which was accompanied by the increase of pro-apoptotic proteins Bax, Bad, Bim and Bid, the decrease of anti-apoptotic proteins Bcl-2 and Bcl-xl, the changes of the mitochondrial membrane potential (MMP) and increase of cleaved caspase-9, cleaved caspase-3 and cleaved PARP. Of note, we demonstrated that forskolin induced a decrease of p-C-Raf, p-MEK, p-ERK1/2 and p-p90Rsk, and an increase of p-PERK, p-eIF2α and CHOP, which indicated that the inhibition of Raf/MEK/ERK pathway and activation of PERK/eIF2α/CHOP pathway were involved, at least partially, in forskolin-induced MM.1S cells apoptosis. These findings confirm the anti-MM action of forskolin and extend the understanding of its anti-MM mechanism in MM.1S cells, as well as reinforcing the evidence for forskolin as a natural chemotherapeutic compound against MM.


Asunto(s)
Apoptosis , Colforsina , Puntos de Control de la Fase G2 del Ciclo Celular , Línea Celular Tumoral , Colforsina/farmacología , Ciclina B1/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Mitocondrias/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
3.
J Ethnopharmacol ; 276: 114174, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33932512

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese herbal formulas have been proven to exert an inhibitory effect on tumor. Compound mylabris capsules (CMC) has been used for treating cancer, especially hepatocellular carcinoma (HCC), for years in China. However, its therapeutic mechanisms on HCC remain unclear. AIM OF THE STUDY: This research aimed to elucidate the molecular targets and mechanisms of CMC for treating HCC. MATERIALS AND METHODS: First, the bioactive ingredients and potential targets of CMC, as well as HCC-related targets were retrieved from publicly available databases. Next, the overlapped genes between potential targets of CMC and HCC-related targets were determined using bioinformatics analysis. Then, networks of ingredient-target and gene-pathway were constructed. Finally, cell experiments were carried out to examine the effects of CMC-medicated serum on HCC and validate the core molecular targets. RESULTS: In total, 151 bioactive ingredients and 255 potential targets of CMC were selected, 982 differentially expressed genes of HCC were identified. Among them, 34 overlapped genes were finally selected. In addition, 20 pathways and 429 GO terms were significantly enriched. Protein-protein interaction and gene-pathway networks indicated that Cyclin B1(CCNB1) and Cyclin Dependent Kinase 1(CDK1) were the core gene targets for the treatment of CMC on HCC. Moreover, in vitro studies showed that CMC-medicated serum significantly inhibited the viability of HepG2 cells. Furthermore, CMC downregulated CCNB1 and CDK1 expressions and induced G2/M phase cell cycle arrest. CONCLUSIONS: CMC plays a therapeutic role in HCC via multi-component, -target and -pathway mechanisms, in which CCNB1 and CDK1 may be the core molecular targets. This study indicates that the integration of network pharmacology and bioinformatics analysis, followed by experimental validation, can serves as an effective tool for studying the therapeutic mechanisms of traditional Chinese medicine.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Medicamentos Herbarios Chinos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Biología Computacional , Ciclina B1/genética , Ciclina B1/metabolismo , Bases de Datos Genéticas , Bases de Datos Farmacéuticas , Regulación hacia Abajo/efectos de los fármacos , Medicamentos Herbarios Chinos/uso terapéutico , Redes Reguladoras de Genes/efectos de los fármacos , Células Hep G2 , Humanos , Masculino , Mapas de Interacción de Proteínas/efectos de los fármacos , Ratas Sprague-Dawley
4.
Phytomedicine ; 85: 153537, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33744595

RESUMEN

BACKGROUND: Valtrate is a novel epoxy iridoid ester isolated from Chinese herbal medicine Valeriana jatamansi Jones with anti-proliferative activity against various human cancer cell lines. However, its efficacy and molecular mechanisms against pancreatic cancer (PC) cells are largely unclear. PURPOSE: To investigate the anti-cancer effects of valtrate on PC cell lines and its underlying mechanisms. METHODS: MTT assay was first performed to detect the effect of valtrate on cell viability in human PC cell lines and normal pancreatic epithelial cells HPDE. Cell apoptosis and cycle phase assay were detected by flow cytometry. The relative mRNA expressions of Bax, Bcl-2, c-Myc, and CyclinB1 were tested by quantitative PCR (qPCR) assay. The expression of relative proteins was detected by Western blotting (WB). A PANC-1luc cells xenograft mouse model in nu/nu female mice was used to elucidate the effect of valtrate on tumor growth in vivo. RESULTS: Valtrate significantly inhibited the growth of PC cells without affecting the growth of normal pancreatic epithelial cells HPDE, induced significant apoptosis and cell cycle arrest in G2/M phase. Moreover, valtrate inhibited the tumor growth of PC cell PANC-1 in xenograft mice by 61%. Further mechanism study demonstrated that valtrate could increase the expression level of Bax, suppress Bcl-2 as well as c-Myc and Cyclin B1, inhibit the transcriptional activity of Stat3, while valtrate decreased the expression level of Stat3 and phosphated-Stat3 (Tyr705) and induced the high molecular aggregation of Stat3. Molecular docking analysis predicted that valtrate might interact with Cys712 of Stat3 protein. Valtrate could also induce a transient depleted intracellular glutathione (GSH) level and increased reactive oxygen species (ROS). NAC (N-acetylcysteine), a reducer reversed valtrate-induced the depletion of Stat3, p-Stat3, c-Myc, and Cyclin B1. CONCLUSION: Valtrate exerts anti-cancer activity against PC cells by directly targeting Stat3 through a covalent linkage to inhibit Stat3 activity, which causes apoptosis and cell cycle arrest.


Asunto(s)
Iridoides/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina B1/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Valeriana/química , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cancer Biol Med ; 17(3): 676-692, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32944399

RESUMEN

Objective: In this study, we aimed to develop an amino-terminal fragment (ATF) peptide-targeted liposome carrying ß-elemene (ATF24-PEG-Lipo-ß-E) for targeted delivery into urokinase plasminogen activator receptor-overexpressing bladder cancer cells combined with cisplatin (DDP) for bladder cancer treatment. Methods: The liposomes were prepared by ethanol injection and high-pressure microjet homogenization. The liposomes were characterized, and the drug content, entrapment efficiency, and in vitro release were studied. The targeting efficiency was investigated using confocal microscopy, ultra-fast liquid chromatography, and an orthotopic bladder cancer model. The effects of ATF24-PEG-Lipo-ß-E combined with DDP on cell viability and proliferation were evaluated by a Cell Counting Kit-8 (CCK-8) assay, a colony formation assay, and cell apoptosis and cell cycle analyses. The anticancer effects were evaluated in a KU-19-19 bladder cancer xenograft model. Results: ATF24-PEG-Lipo-ß-E had small and uniform sizes (˜79 nm), high drug loading capacity (˜5.24 mg/mL), high entrapment efficiency (98.37 ± 0.95%), and exhibited sustained drug release behavior. ATF24-PEG-Lipo-ß-E had better targeting efficiency and higher cytotoxicity than polyethylene glycol (PEG)ylated ß-elemene liposomes (PEG-Lipo-ß-E). DDP, combined with ATF24-PEG-Lipo-ß-E, exerted a synergistic effect on cellular apoptosis and cell arrest at the G2/M phase, and these effects were dependent on the caspase-dependent pathway and Cdc25C/Cdc2/cyclin B1 pathways. Furthermore, the in vivo antitumor activity showed that the targeted liposomes effectively inhibited the growth of tumors, using the combined strategy. Conclusions: The present study provided an effective strategy for the targeted delivery of ß-elemene (ß-E) to bladder cancer, and a combined strategy for bladder cancer treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Cisplatino/farmacología , Sesquiterpenos/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Proteína Quinasa CDC2 , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclina B1/metabolismo , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Liposomas/metabolismo , Ratones , Ratones Desnudos , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Molecules ; 25(10)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32422890

RESUMEN

As a plant medicine, Oxalidaceae has been used to treat various diseases in Korea. However, there is little data on the anti-cancer efficacy of Oxalidaceae, particularly O. obtriangulata. This study aimed to investigate the anti-cancer effect of O. obtriangulata methanol extract (OOE) and its regulatory actions on pancreatic carcinoma. OOE showed anti-proliferative effects and induced cell death in the colony formation and cell viability assays, respectively. The Fluorescence-activated cell sorting (FACS) data confirmed that OOE significantly induced cell cycle accumulation at the G2/M phase and apoptotic effects. Additionally, OOE inhibited the activated ERK (extracellular-signal-regulated kinase)/Src (Proto-oncogene tyrosine-protein kinase Src)/STAT3 (signal transducers and activators of transcription 3) pathways including nuclear translocation of STAT3. Furthermore, suppression of Ki67, PARP(Poly ADP-ribose polymerase), caspase-3, P27(Cyclin-dependent kinase inhibitor 1B), and c-Myc as well as the STAT3 target genes CDK(cyclin-dependent kinase)1, CDK2, Cyclin B1, VEGF-1(vascular endothelial growth factor-1), MMP-9(Matrix metallopeptidase 9), and Survivin by OOE was observed in BxPC3. We speculate that these molecular actions might support an anti-cancer effect of OOE. In this study, we demonstrated that OOE may be a promising anti-cancer material and may serve as a natural therapy and alternative remedy for pancreatic cancer treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Magnoliopsida/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina B1/genética , Ciclina B1/metabolismo , Humanos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Páncreas/metabolismo , Páncreas/patología , Extractos Vegetales/química , Plantas Medicinales , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Molecules ; 25(10)2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32429421

RESUMEN

Pancreatic cancer has a high mortality rate due to poor rates of early diagnosis. One tumor suppressor gene in particular, p53, is frequently mutated in pancreatic cancer, and mutations in p53 can inactivate normal wild type p53 activity and increase expression of transcription factor forkhead box M1 (FoxM1). Overexpression of FoxM1 accelerates cellular proliferation and cancer progression. Therefore, inhibition of FoxM1 represents a therapeutic strategy for treating pancreatic cancer. Broussoflavonol B (BF-B), isolated from the stem bark of Broussonetia kazinoki Siebold has previously been shown to inhibit the growth of breast cancer cells. This study aimed to investigate whether BF-B exhibits anti-pancreatic cancer activity and if so, identify the underlying mechanism. BF-B reduced cell proliferation, induced cell cycle arrest, and inhibited cell migration and invasion of human pancreatic cancer PANC-1 cells (p53 mutated). Interestingly, BF-B down-regulated FoxM1 expression at both the mRNA and protein level. It also suppressed the expression of FoxM1 downstream target genes, such as cyclin D1, cyclin B1, and survivin. Cell cycle analysis showed that BF-B induced the arrest of G0/G1 phase. BF-B reduced the phosphorylation of extracellular signal-regulated kinase ½ (ERK½) and expression of ERK½ downstream effector c-Myc, which regulates cell proliferation. Furthermore, BF-B inhibited cell migration and invasion, which are downstream functional properties of FoxM1. These results suggested that BF-B could repress pancreatic cancer cell proliferation by inactivation of the ERK/c-Myc/FoxM1 signaling pathway. Broussoflavonol B from Broussonetia kazinoki Siebold may represent a novel chemo-therapeutic agent for pancreatic cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Broussonetia/química , Flavonoles/farmacología , Proteína Forkhead Box M1/genética , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Cámaras de Difusión de Cultivos , Flavonoles/aislamiento & purificación , Proteína Forkhead Box M1/antagonistas & inhibidores , Proteína Forkhead Box M1/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Páncreas/metabolismo , Páncreas/patología , Corteza de la Planta/química , Extractos Vegetales/química , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Survivin/genética , Survivin/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Biomed Pharmacother ; 117: 109189, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31387191

RESUMEN

Paris polyphylla. is a traditional medicinal herb that has long been used to prevent cancer in many Asian countries. Polyphyllin I (PPI), an important bioactive constituent of Paris polyphylla, has been found to exhibit a wide variety of anticancer activities in many types of cancer cells. However, the effects of PPI on human gastric carcinoma cells and its mechanism of action remain unclear. In this study, we examined the effective anti-gastric carcinoma activity of PPI and its underlying mechanism of action in HGC-27 cells. In vitro, sub-micromolar concentrations of PPI inhibited HGC-27 cell proliferation with an IC50 of 0.34 ± 0.06 µM after a 72-h treatment. In vivo, 3 mg/kg PPI significantly inhibited proliferation of HGC-27 tumor cells, with a 78.8% inhibition rate compared to paclitaxel, and demonstrated higher safety. Analysis of MDC and mGFP-LC3 fluorescence, Western blotting and flow cytometry indicated that PPI induced cell cycle arrest in HGC-27 cells by promoting the conversion of LC3-I to LC3-II and by downregulating cyclin B1. Furthermore, Western blotting showed that PPI inhibited the autophagy-regulating PDK1/Akt/mTOR signaling pathway in vitro and in vivo. In addition, immunohistochemistry and TUNEL staining revealed that PPI decreased Ki67 expression and increased the percentage of apoptotic cells in HGC-27 xenograft tumors. These data indicate that PPI is an PDK1/Akt/mTOR signaling inhibitor and of therapeutic relevance for gastric cancer treatment and that the rhizome of Paris polyphylla deserves further clinical investigation as an alternative therapy for gastric cancer.


Asunto(s)
Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Diosgenina/análogos & derivados , Regulación hacia Abajo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Línea Celular Tumoral , Ciclina B1/metabolismo , Diosgenina/farmacología , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
9.
J Sci Food Agric ; 99(15): 6722-6730, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31350864

RESUMEN

BACKGROUND: Pyropia yezoensis, rich in porphyran, is a medicine-edible red alga. In the present study, the physicochemical characteristics, conformational states and antitumor activities of a novel porphyran extracted from the high-yield algal strain Pyropia yezoensis Chonsoo2 and its two degraded derivatives by gamma irradiation were investigated. RESULTS: Pyropia yezoensis porphyran is a water-soluble, triple-helical sulfated hetero-galactopyranose, named PYP. PYP was degraded by gamma irradiation at 20 kGy and 50 kGy, giving two low molecular weight derivatives comprising PYP-20 and PYP-50, respectively. PYP with a higher molecular weight has a solution conformation different from PYP-20 and PYP-50. Three porphyrans had no toxicity in normal human liver cells (HL-7702) and showed antitumor effects on Hep3B, HeLa and MDA-MB-231. They had better antitumor against HeLa cells, exhibiting a similar inhibition ratio compared to 5-fluorouracil, with PYP especially exhibiting a higher inhibition ratio than 5-fluorouracil. With respect to HeLa cells, the different antitumor activities might be related to porphyran molecular weight and solution conformation. Furthermore, the HeLa cell cycle was blocked in the G2/M phase after PYP treatment, leading to cell proliferation inhibition. The induction of cell cycle arrest was related to the changes in the expression of p21, p53, Cyclin B1 and cyclin-dependent kinase 1. CONCLUSION: Pyropia yezoensis porphyran, as applied to medicine and functional food, could potentially be used as a non-toxic natural adjuvant in cancer therapy. © 2019 Society of Chemical Industry.


Asunto(s)
Antineoplásicos/farmacología , Extractos Vegetales/farmacología , Rhodophyta/química , Sefarosa/análogos & derivados , Antineoplásicos/aislamiento & purificación , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclina B1/genética , Ciclina B1/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Extractos Vegetales/aislamiento & purificación , Sefarosa/aislamiento & purificación , Sefarosa/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
Gen Comp Endocrinol ; 280: 73-81, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30981702

RESUMEN

Evidence has shown that neuromedin S (NMS) and its receptor (NMU2R) are expressed in the hypothalamus, pituitary, and testis of pigs. To determine the potential mechanisms of NMS, we systematically investigated the direct effects of NMS on the hypothalamic-pituitary-testicular (HPT) axis of male pigs in vitro. We initially confirmed that NMU2R distributed in isolated hypothalamic cells, anterior pituitary cells and Leydig cells using immunocytochemistry. Subsequently we investigated the direct effects of NMS on hormone secretion from cells (anterior pituitary cells and Leydig cells) treated with different doses of NMS. The results showed that NMS increase the release of LH and FSH from anterior pituitary cells and testosterone from Leydig cells. NMS up-regulated the expression of NMU2R and GnRH mRNAs in hypothalamic cells, NMU2R, LH and FSH mRNAs in anterior pituitary cells, and NMU2R, STAR, P450 and 3ß-HSD mRNAs and the expression of PCNA and Cyclin B1 protein in Leydig cells; moreover, it down-regulated the expression of GnIH mRNA in hypothalamic cells. Using immunofluorescence staining and confocal microscopy, we also demonstrated the colocalization of NMU2R and AR or GnIH in Leydig cells. These data in vitro indicated that NMS may regulate the release and/or synthesis of LH, FSH and testosterone at different levels of the reproductive axis through NMU2R, which provided novel evidence of the potential roles of NMS in regulation of pig reproduction.


Asunto(s)
Hipotálamo/metabolismo , Neuropéptidos/farmacología , Hipófisis/metabolismo , Testículo/metabolismo , Animales , Ciclina B1/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/efectos de los fármacos , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Masculino , Hipófisis/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Androgénicos/metabolismo , Receptores de Neurotransmisores/metabolismo , Porcinos , Testículo/efectos de los fármacos , Testosterona/metabolismo
11.
J Environ Sci Health B ; 54(6): 533-537, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30947605

RESUMEN

Quercetin is a dietary bioflavonoid used widely as a food supplement and is generally recognized as safe. The aim of this in vitro study was to examine the steroid hormone (progesterone and 17- ß estradiol) release, proliferation (PCNA and cyclin B1) and apoptosis (caspase 3 and p53) of porcine ovarian granulosa cells after the addition of quercetin at concentrations 0.01, 0.1, 1, 10 and 100 µmol L-1. Progesterone release was stimulated at the concentration 10 µmol L-1. Quercetin neither had any impact on 17-ß estradiol secretion nor on the presence of PCNA. However, a significant enhancement of the occurrence of cyclin B1 was noted except for the lowest concentration 0.01 µmol L-1. Quercetin did not have any influence on the number of granulosa cells containing caspase 3, but at the concentration 10 µmol L-1 it inhibited p53 occurrence. Results confirm the safety of quercetin in porcine ovarian granulosa cell model and further suggest its possible concentration-dependent influence on ovarian functions through pathway that may involve progesterone, cyclin B1 and p53.


Asunto(s)
Células de la Granulosa/efectos de los fármacos , Quercetina/farmacología , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Ciclina B1/metabolismo , Suplementos Dietéticos , Estradiol/metabolismo , Femenino , Células de la Granulosa/metabolismo , Progesterona/metabolismo , Quercetina/administración & dosificación , Porcinos
12.
Molecules ; 24(4)2019 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-30813458

RESUMEN

This study aims to determine the anti-carcinogenic effects of the proanthocyanidin-rich fraction (PRFR) obtained from red rice germ and bran extract on HepG2 cells. The PRFR obtained from red rice germ and bran extract could reduce the cell viability of HepG2 cells as shown by the IC50 value at 20 µg/mL. Notably, PRFR concentrations at 20 and 40 µg/mL significantly increased the number of cells in the G2/M phase from 25.7% ± 1.4%in the control group to 36.2% ± 3.4% (p < 0.01) and 48.9% ± 2.6% (p < 0.0001), respectively, suggesting that the cells were arrested in this phase, which was confirmed by the reduction of survival proteins, including cyclin B1 and cdc25. Moreover, the PRFR at 20 and 40 µg/mL could induce cell death via the apoptosis cascade, indicated by the percentage of total apoptotic cells from 9.9% ± 3.1% in the control group to 41.1 ± 3.9 (p < 0.0001) and 82.2% ± 5.8% (p < 0.0001), respectively. This was clarified by increasing apoptotic proteins (such as cleaved PARP-1, cleaved caspase-8 and cleaved caspase-3) and decreasing anti-apoptotic protein survivin without p53 alterations. These results demonstrated that the PRFR obtained from red rice germ and bran extract could inhibit cell proliferation and induce cell apoptosis in HepG2 cells via survivin, which could potentially serve as a new target for cancer therapeutics making it an excellent "lead candidate" molecule for in vivo proof-of concept studies.


Asunto(s)
Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Oryza/química , Extractos Vegetales/química , Proantocianidinas/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Proteínas Reguladoras de la Apoptosis/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclina B1/metabolismo , Células Hep G2 , Humanos , Extractos Vegetales/aislamiento & purificación , Proantocianidinas/aislamiento & purificación , Transducción de Señal , Fosfatasas cdc25/metabolismo
13.
Phytomedicine ; 52: 238-246, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30599904

RESUMEN

BACKGROUND: The high mortality rate of oral cancers has stimulated the search for effective herbal medicines and their pharmacological targets. Vernonia cinerea, a perennial tropical herb, is wildly used as a traditional folk medicine for treatment of intestinal diseases and various skin diseases in addition to possessing anti-cancer activity. However, the effect of 8α-tigloyloxyhirsutinolide-13-O-acetate (8αTGH) as a major sesquiterpene lactone compound found in V. cinerea and the underlying mechanism of its action on oral cancer cells remains unknown. PURPOSE: To investigate the anti-cancer activity of 8αTGH extracted from V. cinerea and the underlying mechanism of its action in oral cancer cells. METHODS: The anti-proliferative effect of 8αTGH on oral squamous cell carcinoma (HSC4) and lung carcinoma (A549) was determined using the SRB colorimetric method. The molecular mechanism of 8αTGH was explored using kinase inhibitors, followed by Western blotting or RT-qPCR. Flow cytometry and Western blotting were used to assess cell cycle arrest. RESULTS: 8αTGH inhibited cancer cell growth more effectively on HSC4 than A549 and was much less effective on tested normal oral cells. 8αTGH inhibited STAT3 phosphorylation on both cancer cells. Notably, 8αTGH was able to suppress the constantly activated STAT2 found only in HSC4. The STAT2 inhibition by 8αTGH consequently caused down-regulation of ISG15 and ISG15 conjugates. As a result, decreased expression of CDK1/2 and Cyclin B1 was detected leading to G2/M cell cycle arrest. CONCLUSION: 8αTGH isolated from V. cinerea preferentially inhibits the proliferation of oral cancer cells by causing G2/M cell cycle arrest via inhibition of both STAT3 and STAT2 phosphorylation. The results provide molecular bases for developing 8αTGH as a drug candidate or a complementary treatment of oral cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Células Escamosas/patología , Furanos/farmacología , Lactonas/farmacología , Neoplasias de la Boca/patología , Factor de Transcripción STAT2/química , Factor de Transcripción STAT3/química , Sesquiterpenos/farmacología , Vernonia/química , Células A549 , Apoptosis/efectos de los fármacos , Proteína Quinasa CDC2/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina B1/metabolismo , Regulación hacia Abajo , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Fosforilación , Fitoquímicos/farmacología , Plantas Medicinales/química
14.
Cancer Lett ; 443: 56-66, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30481564

RESUMEN

A mammalian cell houses two genomes located separately in the nucleus and mitochondria. During evolution, communications and adaptations between these two genomes occur extensively to achieve and sustain homeostasis for cellular functions and regeneration. Mitochondria provide the major cellular energy and contribute to gene regulation in the nucleus, whereas more than 98% of mitochondrial proteins are encoded by the nuclear genome. Such two-way signaling traffic presents an orchestrated dynamic between energy metabolism and consumption in cells. Recent reports have elucidated the way how mitochondrial bioenergetics synchronizes with the energy consumption for cell cycle progression mediated by cyclin B1/CDK1 as the communicator. This review is to recapitulate cyclin B1/CDK1 mediated mitochondrial activities in cell cycle progression and stress response as well as its potential link to reprogram energy metabolism in tumor adaptive resistance. Cyclin B1/CDK1-mediated mitochondrial bioenergetics is applied as an example to show how mitochondria could timely sense the cellular fuel demand and then coordinate ATP output. Such nucleus-mitochondria oscillation may play key roles in the flexible bioenergetics required for tumor cell survival and compromising the efficacy of anti-cancer therapy. Further deciphering the cyclin B1/CDK1-controlled mitochondrial metabolism may invent effect targets to treat resistant cancers.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclina B1/metabolismo , Resistencia a Antineoplásicos , Neoplasias/metabolismo , Animales , Ciclo Celular , Núcleo Celular/metabolismo , Metabolismo Energético , Humanos , Mitocondrias/metabolismo
15.
Eur Rev Med Pharmacol Sci ; 22(16): 5347-5354, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30178861

RESUMEN

OBJECTIVE: To investigate the possible anti-cancer properties of cinnamon extract on two human tumor cell lines, HeLa cells and HL-60 cells. MATERIALS AND METHODS: Two human tumor cell lines, HeLa cells and HL-60 cells, were exposed to increased concentrations of an extract prepared from cinnamon. The cell proliferation and cell cycle distribution were evaluated using MTT assay and flow cytometry, respectively. The possible action mechanism was also investigated by Western blot. RESULTS: The results showed that cinnamon extract strongly inhibited tumor cell proliferation in a dose-dependent manner and exhibited dramatic increases in the percentage of cells in G2/M in parallel with exposure to increasing concentration of cinnamon extract. The Western blot results showed that cinnamon extract reduced the cyclin A, cyclin B1, ERK2, and p-ERK proteins expression. CONCLUSIONS: Our study suggested that cinnamon extract inhibit the tumor cell survival by both down-regulated their target cell cycle regulation molecules and mitosis regulation molecules.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cinnamomum zeylanicum/química , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Ciclina B1/metabolismo , Citometría de Flujo , Células HL-60 , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
16.
Int J Nanomedicine ; 13: 3625-3640, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29983558

RESUMEN

BACKGROUND: Lumbrokinase (LK) is an enzyme complex with antithrombotic, antioxidant, antitumor, and immunomodulatory effects. It has been extensively studied and used in clinical anti-tumor therapy. However, its half-life is short, its bioavailability is low, and its toxicity and side effects are great, which greatly limit its clinical application. Therefore, LK is often combined with other drugs (such as immune agents, hormones, or Chinese herbal medicine) to reduce its dosage and side effects and to improve its anti-tumor effects. METHODS AND RESULTS: Here, we described an LK/paclitaxel (PTX) nanocarrier based on poly(ethylene glycol)-b-(poly(ethylenediamine l-glutamate)-g-poly(ε-benzyoxycarbonyl-l-lysine)-r-poly(l-lysine)) (PEG-b-(PELG-g-(PZLL-r-PLL))). In the present study, LK and PTX were loaded by electrostatic and/or hydrophobic effects under mild conditions, thereby increasing the half-life and bioavailability of the drugs via the sustained release and enhancement of tumor site enrichment by the LK/PTX/PEG-b-(PELG-g-(PZLL-r-PLL)) complex through passive targeting. In this study, using bladder cancer cells (J82 cells) and rat bladder cancer model as the object, the structure of the nanocarrier, the relationship between drugs composition and antitumor properties were systematically studied. CONCLUSION: We propose that the block copolymer PEG-b-(PELG-g-(PZLL-r-PLL)) may function as a potent nanocarrier for augmenting anti-bladder cancer pharmacotherapy, with unprecedented clinical benefits.


Asunto(s)
Albúminas/uso terapéutico , Endopeptidasas/uso terapéutico , Paclitaxel/uso terapéutico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Albúminas/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclina B1/metabolismo , Portadores de Fármacos/química , Endopeptidasas/sangre , Endopeptidasas/farmacología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lisina/análogos & derivados , Lisina/síntesis química , Lisina/química , Masculino , Microvasos/patología , Peso Molecular , Paclitaxel/sangre , Paclitaxel/farmacología , Polietilenglicoles/síntesis química , Polietilenglicoles/química , Polilisina/análogos & derivados , Polilisina/síntesis química , Polilisina/química , Ratas Sprague-Dawley , Carga Tumoral/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/sangre , Neoplasias de la Vejiga Urinaria/irrigación sanguínea , Neoplasias de la Vejiga Urinaria/patología
17.
Cell Mol Biol (Noisy-le-grand) ; 64(7): 30-35, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29974843

RESUMEN

We investigated the effects of an aqueous root extract of Cichorium intybus on Bcl-2 and cyclin B1 levels in the brain, kidney and liver volumes and changes of serum total antioxidant status (TAS) and total oxidant status (TOS) levels in ethanol induced damage in rats. The rats were divided into five groups: non-treated controls (C), maltodextrin in tap water treated (MD), 6.4% ethanol in tap water treated (ET), Cichorium intybus + maltodextrin in tap water treated (CI+MD), and Cichorium intybus + 6.4% ethanol in tap water treated (CI+ET). Rats in the CI+MD and CI+ET groups were treated with 200 mg/kg water extract of Cichorium intybus. Chronic ethanol aMDinistration significantly increased cyclin B1 and decreased Bcl-2 levels in the brain and significantly decreased TAS values, increased TOS values of serum and significantly decreased kidney volume in the ET group. There was no significant difference in the liver volume or liver cell count. Our data revealed that ethanol aMDinistration induces an overexpression of cyclin B1 and decreases levels of Bcl-2 in rat brains and induced oxidative stress in the blood. C. intybus treatment possessed a partial amelioration effect on cyclin B1 levels and TAS values.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Cichorium intybus/química , Etanol/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Antioxidantes/química , Antioxidantes/farmacología , Encéfalo/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Ciclina B1/metabolismo , Riñón/patología , Hígado/patología , Masculino , Extractos Vegetales/química , Raíces de Plantas/química , Polisacáridos/farmacología , Ratas , Ratas Wistar , Factores de Tiempo , Proteína Letal Asociada a bcl/metabolismo
18.
Biomed Res Int ; 2018: 3693602, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29682539

RESUMEN

Recent studies showed the modulatory effect of kisspeptin (KP) on calcium waves through the cell membrane and inside the cell. Spermatozoon can induce similar ooplasmic calcium oscillations at fertilization to trigger meiosis II. Here, we evaluated the effect of KP supplementation with 6-dimethylaminopurine (6-DMAP) for 4 h on embryonic development after oocyte activation with single electric pulse, 5 µM ionomycin, or 8% ethanol. Compared to control nonsupplemented groups, KP significantly improved embryo developmental competence electric- and ethanol-activated oocytes in terms of cleavage (75.3% and 58.6% versus 64% and 48%, respectively, p < 0.05) and blastocyst development (31.3% and 10% versus 19.3% and 4%, respectively, p < 0.05). MOS expression was increased in electrically activated oocytes in presence of KP while it significantly reduced CCNB1 expression. In ionomycin treated group, both MOS and CCNB1 showed significant increase with no difference between KP and control groups. In ethanol-treated group, KP significantly reduced CCNB1 but no effect was observed on MOS expression. The early alterations in MOS and CCNB1 mRNA transcripts caused by KP may explain the significant differences in the developmental competence between the experimental groups. Kisspeptin supplementation may be adopted in protocols for porcine oocyte activation through electric current and ethanol to improve embryonic developmental competence.


Asunto(s)
Kisspeptinas/metabolismo , Oocitos/metabolismo , Partenogénesis/fisiología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Blastocisto/efectos de los fármacos , Blastocisto/metabolismo , Ciclina B1/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/fisiología , Ionomicina/farmacología , Proteínas Oncogénicas v-mos/metabolismo , Oocitos/efectos de los fármacos , Partenogénesis/efectos de los fármacos , ARN Mensajero/metabolismo , Porcinos
19.
Zhongguo Zhong Yao Za Zhi ; 43(4): 772-778, 2018 Feb.
Artículo en Chino | MEDLINE | ID: mdl-29600654

RESUMEN

Glioblastoma is a common brain tumor and the overall survival rate of the patients is very low, so it is an effective way to develop the potential chemotherapy or adjuvant chemotherapy drugs in glioblastoma treatment. As a well-known antimalarial drug, artesunate(ARTs) has clear side effects, and recently it has been reported to have antitumor effects, but rarely reported in glioblastoma. Different concentrations of ARTs were used to treat the glioblastoma cells, and then the inhibitory effect of ARTs on glioblastoma proliferation was detected by MTT assay; Ki67 immunofluorescence assay was used to detect the proliferation of cells; Soft agar experiment was used to explain the clonal formation abilities in vitro; Flow Cytometry was used to detect the cell cycle; and Western blot assay was used to determine the expression of key cell cycle protein. MTT assay results indicated that ARTs-treated glioblastoma cell A172, U251, U87 were significantly inhibited in a time-and-dose dependent manner as compared to the control group(DMSO treatment group). Soft agar experiment showed that ARTs could significantly reduce the clonal formation ability of glioblastoma. Furthermore, Flow cytometry analysis showed that ARTs could obviously increase the cell proportion in G0/G1 phase and reduce the cell proportion in S phase. Western blot results showed that the expressions of cell cycle-related proteins CDK2, CDK4, cyclin D1 and cyclin B1 were all obviously down-regulated. Above all, ARTs may inhibit the proliferation of glioblastoma cells by arresting cell cycle in G0/G1 phase through down-regulating the expression of CDK2, CDK4, cyclin D1, cyclin B1. These results may not only provide a novel method for rediscovering and reusing ARTs but also provide a new potential drug for treating glioblastoma.


Asunto(s)
Antineoplásicos/farmacología , Artesunato/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glioblastoma/patología , Apoptosis , Línea Celular Tumoral , Ciclina B1/metabolismo , Ciclina D1/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Glioblastoma/tratamiento farmacológico , Humanos
20.
Biomed Pharmacother ; 102: 618-625, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29602129

RESUMEN

OBJECTIVE: In this research, we aimed at finding out how San Yang Xue Dai (SYKT) promotes the radiosensitivity of non-small cell lung cancer (NSCLC) cell line NCI-H460. METHODS: Survival rate of NSCLC cells (A549, NCI-H460, NCI-H1650 and NCI-H1975) after the SYKT treatment or irradiation (IR) was calculated by the MTT assay. The radiosensitization of SYKT (0.5 g/mL and 1.0 g/mL) on cell line NCI-H460 and the radioresistant cell line NCI-H460R was studied by MTT assay and clone formation assay. The protein expression levels of iNOS, Cyclin B1 and CDC2 were determined by western blot, and the expression of NO was measured by Griess method. Finally, cell cycle and apoptotic rate of NSCLC cell line NCI-H460 were accessed by flow cytometry assay. BrdU staining was also applied to detect the cell proliferation after IR with or without SYKT treatment. RESULTS: The IC10 value of SYKT for NCI-H460 cells was 1.03 g/mL. After 1.0 g/mL SYKT treatment, the radiosensitivity of NCI-H460R cells was enhanced. The level of iNOS in the cells was found decreased after IR. We also found that SYKT could enhance iNOS and NO expressions while inhibit cyclin B1 and CDC2 expressions in radiation resistant cells. Combining ß-irradiation with SYKT caused cell cycle arrest in G2/M phase and increased cell apoptosis. CONCLUSION: SYKT resensitized radioresistant NCI-H460R cells via increasing cell apoptosis and cell cycle arrest. This was due to an elevated NO level caused by accumulating iNOS and effects of SYKT on radiosensitization of NSCLC should be further investigated in clinical application.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Medicamentos Herbarios Chinos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/biosíntesis , Tolerancia a Radiación , Fármacos Sensibilizantes a Radiaciones/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Proteína Quinasa CDC2/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Terapia Combinada , Ciclina B1/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Neoplasias Pulmonares/radioterapia , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/efectos de la radiación , Radiación Ionizante , Fármacos Sensibilizantes a Radiaciones/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA