Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 691
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Parasit Vectors ; 17(1): 194, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664829

RESUMEN

BACKGROUND: Sarcoptic mange is a serious animal welfare concern in bare-nosed wombats (Vombatus ursinus). Fluralaner (Bravecto®) is a novel acaricide that has recently been utilised for treating mange in wombats. The topical 'spot-on' formulation of fluralaner can limit treatment delivery options in situ, but dilution to a volume for 'pour-on' delivery is one practicable solution. This study investigated the in vitro acaricidal activity of Bravecto, a proposed essential oil-based diluent (Orange Power®), and two of its active constituents, limonene and citral, against Sarcoptes scabiei. METHODS: Sarcoptes scabiei were sourced from experimentally infested pigs. In vitro assays were performed to determine the lethal concentration (LC50) and survival time of the mites when exposed to varying concentrations of the test solutions. RESULTS: All compounds were highly effective at killing mites in vitro. The LC50 values of Bravecto, Orange Power, limonene and citral at 1 h were 14.61 mg/ml, 4.50%, 26.53% and 0.76%, respectively. The median survival times of mites exposed to undiluted Bravecto, Orange Power and their combination were 15, 5 and 10 min, respectively. A pilot survival assay of mites collected from a mange-affected wombat showed survival times of < 10 min when exposed to Bravecto and Orange Power and 20 min when exposed to moxidectin. CONCLUSIONS: These results confirm the acaricidal properties of Bravecto, demonstrate acaricidal properties of Orange Power and support the potential suitability of Orange Power and its active constituents as a diluent for Bravecto. As well as killing mites via direct exposure, Orange Power could potentially enhance the topical delivery of Bravecto to wombats by increasing drug penetration in hyperkeratotic crusts. Further research evaluating the physiochemical properties and modes of action of Orange Power and its constituents as a formulation vehicle would be of value.


Asunto(s)
Acaricidas , Isoxazoles , Aceites de Plantas , Sarcoptes scabiei , Escabiosis , Animales , Sarcoptes scabiei/efectos de los fármacos , Acaricidas/farmacología , Isoxazoles/farmacología , Escabiosis/tratamiento farmacológico , Escabiosis/parasitología , Aceites de Plantas/farmacología , Aceites de Plantas/química , Monoterpenos Acíclicos/farmacología , Porcinos , Limoneno/farmacología , Limoneno/química , Terpenos/farmacología , Terpenos/química , Ciclohexenos/farmacología , Ciclohexenos/química , Dosificación Letal Mediana
2.
Phytother Res ; 38(6): 2832-2846, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558480

RESUMEN

The effect of Crocus sativus on several disorders has been discussed or even confirmed, but the efficacy of this herb on the female reproductive system has not been well presented. In this regard, this systematic review comprehensively discussed the efficacy of C. sativus and its main phytochemical compounds on the female reproductive system and its disorders for the first time. In this systematic review, scientific databases, including PubMed, Web of Sciences, Google Scholar, Scopus, and Scientific Information Database, were explored profoundly. In vivo, in vitro, and human studies published until the end of July 2023, which had investigated the pharmacological properties of C. sativus, crocin, crocetin, safranal, or picrocrocin on the female reproductive system, were selected. A total of 50 studies conducted on the effect of C. sativus on the female reproductive system were acquired. These studies confirmed the efficacy of C. sativus or its main phytochemical ingredients in several aspects of the female reproductive system, including regulation of sex hormones, folliculogenesis, ovulation, and protection of the ovary and uterus against several oxidative stress. Several retrieved studies indicated that this herb also can alleviate the symptoms of patients suffering from dysmenorrhea, premenstrual syndrome, menopause, polycystic ovary disease (PCOD), and sexual dysfunction. Furthermore, it is a promising candidate for future studies or even trials regarding ovarian and cervical cancers. This review concluded that C. sativus can improve the symptoms of several female reproductive system disorders, which is particularly due to the presence of phytochemical ingredients, such as crocin, crocetin, and safranal.


Asunto(s)
Crocus , Crocus/química , Humanos , Femenino , Extractos Vegetales/farmacología , Síndrome Premenstrual/tratamiento farmacológico , Animales , Carotenoides/farmacología , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Menopausia/efectos de los fármacos , Dismenorrea/tratamiento farmacológico , Fitoquímicos/farmacología , Vitamina A/análogos & derivados , Ciclohexenos/farmacología , Glucósidos , Terpenos
3.
Fitoterapia ; 175: 105903, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479620

RESUMEN

A phytochemical study of the aerial parts of Piper mutabile C. DC. revealed seven undescribed compounds [two (2-7')-neolignans and five polyoxygenated cyclohexene glycosides] and six known propenylcatechol derivatives. The chemical structures of the isolated compounds were elucidated by extensive HR-ESI-MS and NMR analyses, as well as comparison with the literature. The absolute configurations of the (2-7')-neolignans were confirmed by GIAO 13C NMR calculations with a sorted training set strategy and TD-DFT calculation ECD spectra. The (2-7')-neolignans and polyoxygenated cyclohexene glycosides are unusual in natural sources. Undescribed neolignans 1 and 2 inhibited NO production in RAW 264.7 cells, with respective IC50 values of 14.4 and 9.5 µM.


Asunto(s)
Ciclohexenos , Glicósidos , Lignanos , Óxido Nítrico , Fitoquímicos , Piper , Componentes Aéreos de las Plantas , Óxido Nítrico/biosíntesis , Óxido Nítrico/metabolismo , Óxido Nítrico/antagonistas & inhibidores , Células RAW 264.7 , Ratones , Piper/química , Estructura Molecular , Componentes Aéreos de las Plantas/química , Animales , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Lignanos/farmacología , Lignanos/aislamiento & purificación , Lignanos/química , Glicósidos/farmacología , Glicósidos/aislamiento & purificación , Glicósidos/química , Ciclohexenos/farmacología , Ciclohexenos/aislamiento & purificación , China
4.
Exp Anim ; 73(3): 319-335, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38494723

RESUMEN

Dehydroepiandrosterone (DHEA) is frequently integrated as an adjuvant in over a quarter of controlled ovarian hyperstimulation (COH) protocols, despite the ongoing debate regarding its impact. This study aimed to evaluate the efficacy and mechanism of action of DHEA on ovarian follicular development and ovarian response in rats with varying ovarian reserves. The study involved 75 rats categorized into 15 distinct groups. The ovarian tissues of rats in both the normal ovarian reserve group and the premature ovarian insufficiency (POI) group, induced by 4-vinylcyclohexene diepoxide (VCD) injection, were subjected to histomorphological and biochemical analyses following the administration of DHEA, either alone or in combination with COH. Follicle counting was performed on histological sections obtained from various tissues. Serum concentrations of anti-Müllerian hormone (AMH) and the quantification of specific proteins in ovarian tissue, including phosphatase and tensin homolog of chromosome 10 (PTEN), phosphoinositide 3-kinase (PI3K), phosphorylated protein kinase B (pAKT), cyclooxygenase 2 (COX-2), caspase-3, as well as assessments of total antioxidant status and total oxidant status, were conducted employing the ELISA method. The impact of DHEA exhibited variability based on ovarian reserve. In the POI model, DHEA augmented follicular development and ovarian response to the COH protocol by upregulating the PTEN/PI3K/AKT signaling pathway, mitigating apoptosis, inflammation, and oxidative stress, contrary to its effects in the normal ovarian reserve group. In conclusion, it has been determined that DHEA may exert beneficial effects on ovarian stimulation response by enhancing the initiation of primordial follicles and supporting antral follicle populations.


Asunto(s)
Ciclohexenos , Deshidroepiandrosterona , Fosfohidrolasa PTEN , Fosfatidilinositol 3-Quinasas , Insuficiencia Ovárica Primaria , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Compuestos de Vinilo , Animales , Femenino , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/metabolismo , Fosfohidrolasa PTEN/metabolismo , Ciclohexenos/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Deshidroepiandrosterona/farmacología , Deshidroepiandrosterona/administración & dosificación , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Ovario/efectos de los fármacos , Ovario/metabolismo , Reserva Ovárica/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo
5.
Ecotoxicol Environ Saf ; 269: 115811, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086265

RESUMEN

Our previous study reveals that maternal exposure to 4-vinylcyclohexene diepoxide (VCD) during pregnancy causes insufficient ovarian follicle reserve and decreased fertility in offspring. The present study aims to further explore the reasons for the significant decline of fecundity in mice caused by VCD, and to clarify the changes of gut microbiota and microbial metabolites in F1 mice. The ovarian metabolomics, gut microbiota and microbial metabolites were analyzed. The results of ovarian metabolomics analysis showed that maternal VCD exposure during pregnancy significantly reduced the concentration of carnitine in the ovaries of F1 mice, while supplementation with carnitine (isovalerylcarnitine and valerylcarnitine) significantly increased the number of ovulation. The results of 16 S rDNA-seq and microbial metabolites analysis showed that maternal VCD exposure during pregnancy caused disordered gut microbiota, increased abundance of Parabacteroides and Flexispira bacteria that are involved in secondary bile acid synthesis. The concentrations of NorDCA, LCA-3S, DCA and other secondary bile acids increased significantly. Our results indicate that maternal exposure to VCD during pregnancy leads to disorder in gut microbiota and bile acid metabolism in F1 mice, accompanying with decreased ovarian function, providing further evidence that maternal exposure to VCD during pregnancy has intergenerational deleterious effects on offspring.


Asunto(s)
Microbioma Gastrointestinal , Compuestos de Vinilo , Embarazo , Femenino , Humanos , Ratones , Animales , Exposición Materna/efectos adversos , Ciclohexenos/toxicidad , Ácidos y Sales Biliares , Carnitina
6.
J Nat Med ; 77(4): 829-838, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37450205

RESUMEN

Safranal is one flavor component of saffron, which is used as a spice, food additive, and crude drug. In ISO3632, safranal is defined as the compound that contributes to the quality of saffron, and many quantitative determination methods for safranal have been reported. However, safranal is volatile and degrades easily during storage, and an analytical standard with an exact known purity is not commercially available, making it difficult to quantify accurately the content of safranal in saffron. Here, we developed a method for quantifying safranal using relative molar sensitivity (RMS), called the RMS method, using a GC-flame ionization detector (GC-FID). We determined the RMS of safranal to 1,4-bis(trimethylsilyl)benzene-d4, a certified reference material commercially available, by a combination of quantitative NMR and chromatography. Using two GC-FID instruments made by different manufacturers to evaluate inter-instrument effect, the resultant RMS was 0.770, and the inter-instrument difference was 0.6%. The test solution, with a known safranal concentration, was measured by the RMS method, with an accuracy of 99.4-101%, repeatability of 0.81%, and reproducibility of 0.81-1.3%. Given the ease of degradation, high volatility, and uncertain purity of safranal reagents, the RMS method is a more accurate quantification approach compared to the calibration curve method and methods based on absorption spectrophotometry. Moreover, our findings revealed that the GC-FID makeup gas affected the RMS and quantitative values.


Asunto(s)
Crocus , Crocus/química , Ionización de Llama , Reproducibilidad de los Resultados , Extractos Vegetales/química , Terpenos/metabolismo , Ciclohexenos/análisis , Ciclohexenos/metabolismo
7.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834472

RESUMEN

Dyslipidemia is a lipid metabolism disorder associated with the loss of the physiological homeostasis that ensures safe levels of lipids in the organism. This metabolic disorder can trigger pathological conditions such as atherosclerosis and cardiovascular diseases. In this regard, statins currently represent the main pharmacological therapy, but their contraindications and side effects limit their use. This is stimulating the search for new therapeutic strategies. In this work, we investigated in HepG2 cells the hypolipidemic potential of a picrocrocin-enriched fraction, analyzed by high-resolution 1H NMR and obtained from a saffron extract, the stigmas of Crocus sativus L., a precious spice that has already displayed interesting biological properties. Spectrophotometric assays, as well as expression level of the main enzymes involved in lipid metabolism, have highlighted the interesting hypolipidemic effects of this natural compound; they seem to be exerted through a non-statin-like mechanism. Overall, this work provides new insights into the metabolic effects of picrocrocin, thus confirming the biological potential of saffron and paving the way for in vivo studies that could validate this spice or its phytocomplexes as useful adjuvants in balancing blood lipid homeostasis.


Asunto(s)
Crocus , Humanos , Crocus/química , Células Hep G2 , Extractos Vegetales/farmacología , Terpenos/farmacología , Ciclohexenos/farmacología
8.
Curr Mol Med ; 23(9): 952-959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36397621

RESUMEN

A great number of research has been focused on plants as a source of medicine against many diseases to overcome the many side effects of chemical drugs. Safranal, one of the main constituents of saffron [Crocus sativus], has a broad spectrum of pharmacological effects, including anti-inflammatory, antioxidant, and antiapoptotic effects. The present review elaborates on the current understanding of the neuroprotective effects of safranal. According to data published so far, safranal has the potential to exert neuroprotective effects in neurological disorders such as epilepsy, stroke, multiple sclerosis, Parkinson, and Alzheimer's disease. Safranal could be considered a promising therapeutic agent in the future, although there is a great need for clinical trial studies.


Asunto(s)
Fármacos Neuroprotectores , Accidente Cerebrovascular , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Terpenos/farmacología , Terpenos/uso terapéutico , Ciclohexenos/farmacología , Extractos Vegetales/farmacología
9.
Nat Prod Res ; 37(9): 1429-1438, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-34866504

RESUMEN

Five new compounds including, a neolignan, eupomatenoid-19 (1) and four polyoxygenated seco-cyclohexenes, artahongkongenes G-J (2-5), together with fifteen known compounds (6-20) were isolated from the stems and leaves of Piper suipigua Buch.-Ham. ex D. Don. Their structures were determined by spectroscopic evidence (IR, UV, 1H NMR, 13C NMR and 2 D NMR) as well as MS. The absolute configurations of polyoxygenated seco-cyclohexenes 2-8 were identified by NOESY data and by comparison of their experimental and calculated ECD spectral data. Neolignans, eupomatenoid-19 (1) and eupomatenoid-7 (10), displayed cytotoxicity against several cancer cell lines. In addition, eupomatenoid-7 (10) showed antibacterial activity against Bacillus cereus, Bacillus subtilis and Staphylococcus aureus.


Asunto(s)
Lignanos , Piper , Lignanos/farmacología , Lignanos/análisis , Piper/química , Ciclohexenos/análisis , Extractos Vegetales/química , Hojas de la Planta/química , Estructura Molecular
10.
Molecules ; 27(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296396

RESUMEN

Saffron is a very high value-added ingredient used in the food supplement market and contains a high level of safranal. Adding synthetic safranal to saffron, which is significantly cheaper, and falsifying the origin of saffron may represent recurrent fraud. Saffron from different countries was analyzed to determine the stable isotope ratios δ13C and δ2H from safranal by gas chromatography coupled with isotope-ratio mass spectrometry (GC-C/P-IRMS) and the concentration of saffron metabolites with ultra-high performance liquid chromatography coupled with diode array detector (UHPLC-DAD). The isotopic analysis highlighted a higher ratio of δ2H in synthetic safranal than in natural safranal; the mean values were 36‱ (+/- 40) and -210‱ (+/- 35), respectively. The δ13C between Iranian, Spanish and other saffron was significantly different and represents median values of -28.62‱, -30.12‱ and -30.70‱, respectively. Moreover, linear and quadratic discriminant analyses (LDA and QDA) were computed using the two isotope ratios of safranal and the saffron metabolites. A first QDA showed that trans-crocetin and the δ13C of safranal, picrocrocin, and crocin C3 concentrations clearly differentiated Iranian saffron from other origins. A second model identified δ13C, trans-crocetin, crocin C2, crocin C3, and picrocrocin as good predictors to discriminate saffron samples from Iran, Spain, or other origins, with a total ability score classification matrix of 100% and a prediction matrix of 82.5%. This combined approach may be a useful tool to authenticate the origin of unknown saffron.


Asunto(s)
Crocus , Crocus/química , Irán , Extractos Vegetales/química , Ciclohexenos/análisis , Terpenos/análisis , Isótopos/análisis
11.
Biochem Biophys Res Commun ; 625: 66-74, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35952609

RESUMEN

Lipid metabolism disorders affect the growth and jeopardize the health of poultry, thus, decreasing economic benefits. Perillartine, a sweetener derived from Perilla frutescens, has excellent potential in regulating lipid metabolism. In this study, we explored the effects of perillartine on lipid metabolism in broiler chickens by establishing a nonalcoholic fatty liver model induced by a high-fat diet. By using network pharmacology and molecular docking, we analyzed the potential molecular targets and pathways through which perillartine regulates lipid metabolism and alleviates fatty liver. Perillartine was found to regulate the expression of genes associated with lipogenesis, lipolysis, and lipid transport, including FASN, PPARα, CPT-1, ACCα, APOB, and APOA1 in the liver, and to decrease lipid accumulation in the liver and blood in broilers without affecting growth performance. In addition, we discovered 24 candidate targets of perillartine, including SRD5A2 and XDH, through network pharmacology analysis and successfully constructed a compound-target-pathway-disease network. Our results suggested that perillartine may be a promising, long-lasting therapeutic molecule for modulating lipid metabolism disorders in broilers.


Asunto(s)
Pollos , Trastornos del Metabolismo de los Lípidos , Animales , Pollos/metabolismo , Ciclohexenos , Dieta , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Metabolismo de los Lípidos , Trastornos del Metabolismo de los Lípidos/metabolismo , Lípidos , Hígado/metabolismo , Simulación del Acoplamiento Molecular , Monoterpenos , Oximas
12.
J Agric Food Chem ; 70(31): 9748-9759, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35899925

RESUMEN

Osteoarthritis (OA) is an age-related degenerative disease. Oxidative stress (OS) modulates OA pathogenesis by enhancing chondrocyte apoptosis and extracellular matrix (ECM) degeneration via activation of the endoplasmic reticulum (ER) stress. Prior studies revealed that safranal plays a critical role in multiple diseases treatments, but there are no reports on its effect on OA. Therefore, investigating the effect of safranal on OA is needed. As a compound that can lead excessive reactive oxygen species (ROS) accumulation, tert-butyl hydroperoxide (TBHP) was used to induce OS and OS-mediated endoplasmic reticulum (ER) stress for imitating OA in vitro. Besides, the bilateral medial meniscus was removed to induce joint instability and excessive friction of the joint surface to establish destabilization of medial meniscus for imitating the initiation and progression of OA in vivo. We, next, conducted Western blot and RT-PCR analyses to identify biomarkers of the underlying signaling pathway. Our results demonstrated that 30 µM safranal strongly upregulated Sirt1 expression, suppressed TBHP-mediated ER stress, and, in turn, prevented chondrocyte apoptosis and ECM degeneration. Furthermore, compared with the other two classic signaling pathways of ER stress, safranal can inhibit the PERK-eIF2α-CHOP axis at the lower concentration (5 and 15 µM). In vivo, using Safranin O staining, X-ray, immunofluorescence (IF), and immunohistochemical (IHC) staining, we demonstrated that OA progression can be postponed with intraperitoneal injection of 90 and 180 mg/kg safranal in an OA mouse model. Taken together, our analyses revealed that safranal can potentially prevent OA development.


Asunto(s)
Condrocitos , Osteoartritis , Animales , Apoptosis , Ciclohexenos , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Ratones , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Osteoartritis/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Terpenos , terc-Butilhidroperóxido/farmacología
13.
Molecules ; 27(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35807531

RESUMEN

Saffron is widely cultivated and used as a spice. Recently published data on the chemical composition and pharmacological potential of saffron determine its use in pharmacy and medicine. The proposed high-performance thin-layer chromatography (HPTLC) method allows good separation of 11 analytes. The saffron quality (Iran, Ukraine, Spain, Morocco samples) assessment was based on the European Pharmacopoeia monograph and ISO 3632. The HPTLC method for the safranal, crocin, and picrocrocin quantification was proposed and validated. The crocins content in Ukrainian saffron was from 17.80% to 33.25%. Based on qualitative and quantitative assessment results, the saffron sample from Zaporizhzhia (Ukraine) had the highest compounds content and was chosen to obtain the working standards of picrocrocin and crocins (trans-4GG, trans-2G, trans-3Gg) by preparative chromatography. The compounds were isolated from lyophilized extract of saffron using a Symmetry Prep C18 column (300 × 19 mm × 7 µm), and identified by spectroscopic techniques (HPLC-DAD, UPLC-ESI-MS/MS). The purity of crocins and picrocrocin was more than 97%. A novel method proposed to obtain working standards is simple and reproducible for the routine analysis of saffron quality control.


Asunto(s)
Crocus , Carotenoides , Cromatografía Líquida de Alta Presión/métodos , Cromatografía en Capa Delgada , Crocus/química , Ciclohexenos/química , Glucósidos , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Terpenos/química
14.
Chemistry ; 28(60): e202201649, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-35896443

RESUMEN

The development of small-molecule covalent inhibitors and probes continuously pushes the rapidly evolving field of chemical biology forward. A key element in these molecular tool compounds is the "electrophilic trap" that allows a covalent linkage with the target enzyme. The reactivity of this entity needs to be well balanced to effectively trap the desired enzyme, while not being attacked by off-target nucleophiles. Here we investigate the intrinsic reactivity of substrates containing a class of widely used electrophilic traps, the three-membered heterocycles with a nitrogen (aziridine), phosphorus (phosphirane), oxygen (epoxide) or sulfur atom (thiirane) as heteroatom. Using quantum chemical approaches, we studied the conformational flexibility and nucleophilic ring opening of a series of model substrates, in which these electrophilic traps are mounted on a cyclohexene scaffold (C6 H10 Y with Y=NH, PH, O, S). It was revealed that the activation energy of the ring opening does not necessarily follow the trend that is expected from C-Y leaving-group bond strength, but steeply decreases from Y=NH, to PH, to O, to S. We illustrate that the HOMONu -LUMOSubstrate interaction is an all-important factor for the observed reactivity. In addition, we show that the activation energy of aziridines and phosphiranes can be tuned far below that of the corresponding epoxides and thiiranes by the addition of proper electron-withdrawing ring substituents. Our results provide mechanistic insights to rationally tune the reactivity of this class of popular electrophilic traps and can guide the experimental design of covalent inhibitors and probes for enzymatic activity.


Asunto(s)
Aziridinas , Aziridinas/química , Compuestos Epoxi/química , Nitrógeno , Fósforo , Ciclohexenos , Azufre , Oxígeno
15.
J Biochem Mol Toxicol ; 36(9): e23140, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35674002

RESUMEN

Rheumatoid arthritis (RA) is a systemic chronic disease characterized by inflammation and synovitis. More effective treatment methods with less side effects need to be developed. In this context, current study investigated the therapeutic effects of safranal in a model of complete Freund's adjuvant (CFA)-induced RA. The control group was given 1 ml of saline orally starting from the 8th day, and 0.2 ml of CFA was given to the RA, RA + Safranal and RA + Methotrexate (MTX) groups on the 0th day of the experiment. Starting from the 8th day of the experiment, 1 ml of saline was given to the RA group, safranal was given at 200 mg/kg of body weight to the RA + MTX group, and 3 mg/kg of MTX to the RA + MTX group twice a week. The results showed that weight gain decreased in the RA group compared to the control group while arthritis index score, thymus index, and planter temperature were found to be increased. Additionally, a deterioration in blood parameters, an increase in alanine aminotransferase, aspartate aminotransferase, urea, creatinine, C-reactive protein, and malondialdehyde levels, and a decrease in reduced glutathione levels and glutathione peroxidase and catalase (CAT) activities were seen while tumor necrosis factor-α, interleukin-6 (IL-6), cyclooxygenase-2, nuclear factor kappa B levels were found to be increased. However, the safranal had a regulatory effect on all the values, except IL-6 and CAT, and blood parameters. Moreover, histopathological examination revealed that safranal reduced inflammatory cell infiltration and edema.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Alanina , Animales , Antioxidantes/uso terapéutico , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Aspartato Aminotransferasas , Proteína C-Reactiva , Catalasa/metabolismo , Creatinina , Ciclohexenos , Ciclooxigenasa 2 , Adyuvante de Freund , Glutatión/metabolismo , Glutatión Peroxidasa , Interleucina-6/metabolismo , Malondialdehído , Metotrexato/farmacología , FN-kappa B/metabolismo , Ratas , Terpenos , Factor de Necrosis Tumoral alfa/metabolismo , Urea
16.
J Ethnopharmacol ; 294: 115340, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35551973

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Saffron (Crocus sativus L.) has been introduced as a potential promising natural antioxidant with anti-obesity properties. In Persian Medicine, saffron has been used to control appetite and obesity. AIM OF THE STUDY: The present study aims to investigate the effect of saffron and its bioactive compounds on adipocyte differentiation in human adipose-derived stem cells (ADSCs). MATERIALS AND METHODS: Flow-Cytometric analysis was performed to quantify the cell surface markers. The extracts cytotoxicity on hASCs was measured using alamarBlue® assay whereas their activities against adipocyte differentiation were studied using Oil Red O staining. The level of Peroxisome proliferator-activated receptor-γ (PPARγ), Fatty Acid Synthetase (FAS), and Glyceraldehyde-3-phosphate dehydrogenase (GAPHD) which are key proteins in cell differentiation was investigated by western blot analysis. RESULTS: Flow-cytometry revealed the mesenchymal stem cells markers, CD44 and CD90, on ADSCs surface. The saffron, crocin, and crocetin significantly inhibited adipocyte differentiation while saffron up to 20 µg/mL and crocin, crocetin and safranal up to 20 µM did not exhibit cytotoxicity. The western blotting analysis revealed a remarkable reduction in the level of PPARγ, GAPDH, and FAS proteins by 10 and 20 µM of crocin and 2.5 and 5 µM of crocetin. CONCLUSION: It seems that saffron, crocin, and crocetin could efficiently inhibit the differentiation of hASCs with benefits for the treatment and prevention of obesity.


Asunto(s)
Crocus , Células Madre Mesenquimatosas , Adipocitos , Carotenoides , Diferenciación Celular , Ciclohexenos , Humanos , Obesidad/metabolismo , PPAR gamma/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Terpenos , Vitamina A/análogos & derivados
17.
Ultrason Sonochem ; 86: 105971, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35429897

RESUMEN

In this work, a four-factor five-level full factorial central composite design (CCD) was used to optimize the ultrasound-assisted extraction (UAE) of saffron major components, namely picrocrocin, safranal and crocin. The process parameters included ethanol concentration (0-100%), extraction time (2-10 min), duty cycle (0.2-1.0) and ultrasonic amplitude (20-100%). The extracted compounds were measured both by spectrophotometry and chromatography techniques. The results revealed that the middle concentrations of ethanol and relatively long process durations along with high duty cycles and ultrasonic amplitudes had the most profound impact on the yields of the extracted bioactives. UAE was optimized using response surface methodology (RSM) and artificial bee colony (ABC); a comparison between these methods indicated their optimization power was approximately the same. According to the RSM analysis, an ethanol concentration of 58.58%, extraction time of 6.85 min, duty cycle of 0.82 and amplitude of 91.11% were the optimum extraction conditions, while the optimal conditions resulting from ABC were 53.07%, 7.32 min, 0.93 and 100% for the UAE variables respectively. Finally, HPLC analysis was carried out on the UAE optimum extract resulting from RSM. Four crocetin esters were detected in the optimal extract.


Asunto(s)
Crocus , Carotenoides , Colorantes , Crocus/química , Ciclohexenos , Etanol/química , Glucósidos , Extractos Vegetales/química , Terpenos
18.
Fitoterapia ; 158: 105170, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35288209

RESUMEN

Three new oxygenated cyclohexene derivatives, pandensenol D - F (1-3), two new flavanoids, pandensone A and B (4-5), and seven known compounds (6-12) were isolated from the methanol extract of the leaves of Uvaria pandensis Verdc. (Annonaceae). The structures were characterized by NMR spectroscopic and mass spectrometric analyses. The isolated metabolites were evaluated for their antibacterial activity against the Gram-positive bacteria Bacillus subtilis and Staphylococcus epidermidis, the Gram-negative bacteria Enterococcus raffinosus, Escherichia coli, Paraburkholderia caledonica, Pectobacterium carotovorum and Pseudomonas putida, and for cytotoxicity against the MCF-7 human breast cancer cell line. Out of the tested compounds, pandensenol D (1) and (6',7'-dihydro-8'α,9'ß-dihydroxy)-3-farnesylindole (12) showed weak activity, whereas (8'α,9'ß-dihydroxy)-3-farnesylindole (11) strong activity against B. subtilis. Four of the isolated compounds (1, 4, 11 and 12) showed moderate cytotoxicity against MCF-7 breast cancer cells (EC50 > 100 µM).


Asunto(s)
Uvaria , Antibacterianos/farmacología , Bacillus subtilis , Ciclohexenos , Flavonoides/análisis , Flavonoides/farmacología , Humanos , Estructura Molecular , Hojas de la Planta/química , Uvaria/química
19.
Crit Rev Food Sci Nutr ; 62(12): 3232-3249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33356506

RESUMEN

Saffron (Crocus sativus L.) is used as a spice for its organoleptic characteristics related to its coloring and flavoring properties, and it has been also used in traditional medicine to treat various diseases. The main chemical components responsible for these properties are crocin, crocetin and safranal. These compounds have been shown to have a wide spectrum of biological activities, including several properties as antigenotoxic, antioxidant, anticancer, anti-inflammatory, antiatherosclerotic, antidiabetic, hypotensive, hypoglycemic, antihyperlipidemic, antidegenerative and antidepressant, among others. This review article highlights the antioxidant effects of these bioactive compounds to reduce reactive oxygen species (ROS) and the mechanisms of action involved, since there are a multitude of diseases related to oxidative stress and the generation of free radicals (FRs). Recent studies have shown that the effects of crocin, crocetin and safranal against oxidative stress include the reduction in lipid peroxidation (malondialdehyde [MDA] levels) and nitric oxide (NO) levels, and the increase in the levels of glutathione, antioxidant enzymes (superoxide dismutase [SOD], catalase (CAT) and glutathione peroxidase [GPx]) and thiol content. Therefore, due to the great antioxidant effects of these saffron compounds, it makes saffron a potential source of bioactive extracts for the development of bioactive ingredients, which can be used to produce functional foods.


Asunto(s)
Crocus , Antioxidantes/farmacología , Carotenoides , Crocus/química , Ciclohexenos , Estrés Oxidativo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Terpenos , Vitamina A/análogos & derivados
20.
J Nat Prod ; 84(12): 3080-3089, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34802242

RESUMEN

Five new cyclohexene derivatives, dipandensin A and B (1 and 2) and pandensenols A-C (3-5), and 16 known secondary metabolites (6-21) were isolated from the methanol-soluble extracts of the stem and root barks of Uvaria pandensis. The structures were characterized by NMR spectroscopic and mass spectrometric analyses, and that of 6-methoxyzeylenol (6) was further confirmed by single-crystal X-ray crystallography, which also established its absolute configuration. The isolated metabolites were evaluated for antibacterial activity against the Gram-positive bacteria Bacillus subtilis and Staphylococcus epidermidis and the Gram-negative bacteria Enterococcus raffinosus, Escherichia coli, Paraburkholderia caledonica, Pectobacterium carotovorum, and Pseudomonas putida, as well as for cytotoxicity against the MCF-7 human breast cancer cell line. A mixture of uvaretin (20) and isouvaretin (21) exhibited significant antibacterial activity against B. subtilis (EC50 8.7 µM) and S. epidermidis (IC50 7.9 µM). (8'α,9'ß-Dihydroxy)-3-farnesylindole (12) showed strong inhibitory activity (EC50 9.8 µM) against B. subtilis, comparable to the clinical reference ampicillin (EC50 17.9 µM). None of the compounds showed relevant cytotoxicity against the MCF-7 human breast cancer cell line.


Asunto(s)
Ciclohexenos/química , Oxígeno/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Tallos de la Planta/química , Uvaria/química , Cristalografía por Rayos X/métodos , Ciclohexenos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA