Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 620
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Inorg Chem ; 63(16): 7464-7472, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38598182

RESUMEN

Uranium accumulation in the kidneys and bones following internal contamination results in severe damage, emphasizing the pressing need for the discovery of actinide decorporation agents with efficient removal of uranium and low toxicity. In this work, cinnamic acid (3-phenyl-2-propenoic acid, CD), a natural aromatic carboxylic acid, is investigated as a potential uranium decorporation ligand. CD demonstrates markedly lower cytotoxicity than that of diethylenetriaminepentaacetic acid (DTPA), an actinide decorporation agent approved by the FDA, and effectively removes approximately 44.5% of uranyl from NRK-52E cells. More importantly, the results of the prompt administration of the CD solution remove 48.2 and 27.3% of uranyl from the kidneys and femurs of mice, respectively. Assessments of serum renal function reveal the potential of CD to ameliorate uranyl-induced renal injury. Furthermore, the single crystal of CD and uranyl compound (C9H7O2)2·UO2 (denoted as UO2-CD) reveals the formation of uranyl dimers as secondary building units. Thermodynamic analysis of the solution shows that CD coordinates with uranyl to form a 2:1 molar ratio complex at a physiological pH of 7.4. Density functional theory (DFT) calculations further show that CD exhibits a significant 7-fold heightened affinity for uranyl binding in comparison to DTPA.


Asunto(s)
Cinamatos , Uranio , Cinamatos/química , Cinamatos/farmacología , Animales , Ligandos , Ratones , Uranio/química , Uranio/metabolismo , Uranio/toxicidad , Riñón/efectos de los fármacos , Riñón/metabolismo , Línea Celular , Teoría Funcional de la Densidad , Ratas , Estructura Molecular , Supervivencia Celular/efectos de los fármacos , Quelantes/química , Quelantes/farmacología , Quelantes/síntesis química
2.
J Ethnopharmacol ; 330: 118196, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38631488

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rosmarinic acid (RA), a natural polyphenol abundant in numerous herbal remedies, has been attracting growing interest owing to its exceptional ability to protect the liver. Toosendanin (TSN), a prominent bioactive compound derived from Melia toosendan Siebold & Zucc., boasts diverse pharmacological properties. Nevertheless, TSN possesses remarkable hepatotoxicity. Intriguingly, the potential of RA to counteract TSN-induced liver damage and its probable mechanisms remain unexplored. AIM OF THE STUDY: This study is aimed at exploring whether RA can alleviate TSN-induced liver injury and the potential mechanisms involved autophagy. MATERIALS AND METHODS: CCK-8 and LDH leakage rate assay were used to evaluate cytotoxicity. Balb/c mice were intraperitoneally administered TSN (20 mg/kg) for 24 h after pretreatment with RA (0, 40, 80 mg/kg) by gavage for 5 days. The autophagic proteins P62 and LC3B expressions were detected using western blot and immunohistochemistry. RFP-GFP-LC3B and transmission electron microscopy were applied to observe the accumulation levels of autophagosomes and autolysosomes. LysoTracker Red and DQ-BSA staining were used to evaluate the lysosomal acidity and degradation ability respectively. Western blot, immunohistochemistry and immunofluorescence staining were employed to measure the expressions of JAK2/STAT3/CTSC pathway proteins. Dual-luciferase reporter gene was used to measure the transcriptional activity of CTSC and RT-PCR was used to detect its mRNA level. H&E staining and serum biochemical assay were employed to determine the degree of damage to the liver. RESULTS: TSN-induced damage to hepatocytes and livers was significantly alleviated by RA. RA markedly diminished the autophagic flux blockade and lysosomal dysfunction caused by TSN. Mechanically, RA alleviated TSN-induced down-regulation of CTSC by activating JAK2/STAT3 signaling pathway. CONCLUSION: RA could protect against TSN-induced liver injury by activating the JAK2/STAT3/CTSC pathway-mediated autophagy and lysosomal function.


Asunto(s)
Autofagia , Enfermedad Hepática Inducida por Sustancias y Drogas , Cinamatos , Depsidos , Janus Quinasa 2 , Lisosomas , Ratones Endogámicos BALB C , Ácido Rosmarínico , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Depsidos/farmacología , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/metabolismo , Cinamatos/farmacología , Autofagia/efectos de los fármacos , Ratones , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Transducción de Señal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Medicamentos Herbarios Chinos/farmacología , Humanos
3.
Phytomedicine ; 128: 155455, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513376

RESUMEN

BACKGROUND: Ischemic stroke (IS) is a serious cerebrovascular disease characterized by significantly elevated mortality and disability rates, and the treatments available for this disease are limited. Neuroinflammation and oxidative stress are deemed the major causes of cerebral ischemic injury. N-Cinnamoylpyrrole alkaloids form a small group of natural products from the genus Piper and have not been extensively analyzed pharmacologically. Thus, identifying the effect and mechanism of N-cinnamoylpyrrole-derived alkaloids on IS is worthwhile. PURPOSE: The present research aimed to explore the antineuroinflammatory and antioxidative stress effects of N-cinnamoylpyrrole-derived alkaloids isolated from the genus Piper and to explain the effects and mechanism on IS. METHODS: N-cinnamoylpyrrole-derived alkaloids were isolated from Piper boehmeriaefolium var. tonkinense and Piper sarmentosum and identified by various chromatographic methods. Lipopolysaccharide (LPS)-induced BV-2 microglia and a mouse model intracerebroventricularly injected with LPS were used to evaluate the antineuroinflammatory and antioxidative stress effects. Oxygen‒glucose deprivation/reperfusion (OGD/R) and transient middle cerebral artery occlusion (tMCAO) models were used to evaluate the effect of PB-1 on IS. To elucidate the fundamental mechanism, the functional target of PB-1 was identified by affinity-based protein profiling (ABPP) strategy and verified by cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS), and circular dichroism (CD) analyses. The effect of PB-1 on the NF-κB and NRF2 signaling pathways was subsequently evaluated via western blotting and immunofluorescence staining. RESULTS: The results showed that N-cinnamoylpyrrole-derived alkaloids significantly affected neuroinflammation and oxidative stress. The representative compound, PB-1 not only inhibited neuroinflammation and oxidative stress induced by LPS or OGD/R insult, but also alleviated cerebral ischemic injury induced by tMCAO. Further molecular mechanism research found that PB-1 promoted antineuroinflammatory and antioxidative stress activities via the NF-κB and NRF2 signaling pathways by targeting eEF1A1. CONCLUSION: Our research initially unveiled that the therapeutic impact of PB-1 on cerebral ischemic injury might rely on its ability to target eEF1A1, leading to antineuroinflammatory and antioxidative stress effects. The novel discovery highlights eEF1A1 as a potential target for IS treatment and shows that PB-1, as a lead compound that targets eEF1A1, may be a promising therapeutic agent for IS.


Asunto(s)
Alcaloides , Accidente Cerebrovascular Isquémico , Piper , Pirroles , Animales , Masculino , Ratones , Alcaloides/farmacología , Alcaloides/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antioxidantes/farmacología , Antioxidantes/química , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Lipopolisacáridos , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Piper/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pirroles/farmacología , Pirroles/química , Cinamatos/química , Cinamatos/farmacología , Factor 1 de Elongación Peptídica/antagonistas & inhibidores , Factor 1 de Elongación Peptídica/metabolismo
4.
Nat Prod Res ; 38(5): 879-884, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37004998

RESUMEN

The use of various herbs and their compounds has been a strategy widely used in the fight against various human diseases. For example, rosmarinic acid, a bioactive phenolic compound commonly found in Rosemary plants (Rosmarinus officinalis Labiatae), has multiple therapeutic benefits in different diseases, such as cancer. Therefore, the study aimed to evaluate in silico and in vitro the inhibition potential of the enzyme Elastase from the porcine pancreas by rosmarinic acid isolated from the plant species R. officinalis Linn. Through Molecular Docking, the mechanism of action was investigated. In addition, rosmarinic acid presented a range of 5-60 µg/mL and significantly inhibited Elastase. At 60 µg/mL, there was an inhibition of 55% on the enzymatic activity. The results demonstrate the inhibition of Elastase by rosmarinic acid, which can lead to the development of new enzyme inhibitors that can be an inspiration for developing various drugs, including anticancer drugs.


Asunto(s)
Ácido Rosmarínico , Rosmarinus , Humanos , Elastasa Pancreática , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Cinamatos/farmacología , Depsidos/farmacología
5.
Nutrients ; 15(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836581

RESUMEN

Phytochemicals are abundantly occurring natural compounds extracted from plant sources. Rosmarinic acid (RA) is an abundant phytochemical of Lamiaceae species with various therapeutic implications for human health. In recent years, natural compounds have gained significant attention as adjuvant and complementary therapies to existing medications for various diseases. RA has gained popularity due to its anti-inflammatory and antioxidant properties and its roles in various life-threatening conditions, such as cancer, neurodegeneration, diabetes, etc. The present review aims to offer a comprehensive insight into the multifaceted therapeutic properties of RA, including its potential as an anticancer agent, neuroprotective effects, and antidiabetic potential. Based on the available evidences, RA could be considered a potential dietary component for treating various diseases, including cancer, diabetes and neurodegenerative disorders.


Asunto(s)
Diabetes Mellitus , Neoplasias , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Cinamatos/farmacología , Cinamatos/uso terapéutico , Cinamatos/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Neoplasias/tratamiento farmacológico , Diabetes Mellitus/tratamiento farmacológico , Fitoquímicos/uso terapéutico , Extractos Vegetales/química , Ácido Rosmarínico
6.
Phytother Res ; 37(5): 2119-2143, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37014255

RESUMEN

Rosmarinic acid (RA) is a natural phenolic compound present in culinary herbs of the Boraginaceae, Lamiaceae/Labiatae, and Nepetoideae families. While the medicinal applications of these plants have been known for ages, RA has only been relatively recently established as an effective ameliorative agent against various disorders including cardiac diseases, cancer, and neuropathologies. In particular, several studies have confirmed the neuroprotective potential of RA in multiple cellular and animal models, as well as in clinical studies. The neuroprotective effects mediated by RA stem from its multimodal actions on a plethora of cellular and molecular pathways; including oxidative, bioenergetic, neuroinflammatory, and synaptic signaling. In recent years, RA has garnered tremendous interest as an ideal therapeutic candidate for treating neurodegenerative diseases. This review first briefly discusses the pharmacokinetics of RA and then proceeds to detail the neuroprotective mechanisms of RA at the molecular levels. Finally, the authors focus on the ameliorative potential of RA against several central nervous system (CNS) disorders, ranging from neuropsychological stress and epilepsy to neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, Parkinson's disease, Lewy body dementia, and amyotrophic lateral sclerosis.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Animales , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Neuroprotección , Cinamatos/farmacología , Cinamatos/uso terapéutico , Cinamatos/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ácido Rosmarínico
7.
Biomed Pharmacother ; 162: 114687, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37062215

RESUMEN

Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects.


Asunto(s)
Lamiaceae , Neoplasias , Humanos , Extractos Vegetales/farmacología , Plantas/metabolismo , Cinamatos/farmacología , Depsidos/farmacología , Antioxidantes/farmacología , Neoplasias/tratamiento farmacológico , Ácido Rosmarínico
8.
Molecules ; 28(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36985814

RESUMEN

Leishmania infantum is the etiological agent of visceral leishmaniasis (VL) in South America, the Mediterranean basin, and West and Central Asia. The most affected country, Brazil, reported 4297 VL cases in 2017. L. infantum is transmitted by female phlebotomine sand flies during successive blood meals. There are no validated vaccines to prevent the infection and the treatment relies on drugs that often present severe side effects, which justify the efforts to find new antileishmanial drugs. Cinnamic acid derivatives have shown several pharmacological activities, including antiparasitic action. Therefore, in the present study, the biological evaluation of cinnamic acid and thirty-four derivatives against L. infantum is reported. The compounds were prepared by several synthesis methods and characterized by spectroscopic techniques and high-resolution mass spectrometry. The results revealed that compound 32 (N-(4-isopropylbenzyl)cinnamamide) was the most potent antileishmanial agent (IC50 = 33.71 µM) with the highest selectivity index (SI > 42.46), followed by compound 15 (piperonyl cinnamate) with an IC50 = 42.80 µM and SI > 32.86. Compound 32 was slightly less potent and nineteen times more selective for the parasite than amphotericin B (MIC = 3.14 uM; SI = 2.24). In the molecular docking study, the most likely target for the compound in L. infantum was aspartyl aminopeptidase, followed by aldehyde dehydrogenase, mitochondrial. The data obtained show the antileishmanial potential of this class of compounds and may be used in the search for new drug candidates against Leishmania species.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Leishmaniasis Visceral , Femenino , Humanos , Simulación del Acoplamiento Molecular , Antiprotozoarios/química , Leishmaniasis Visceral/tratamiento farmacológico , Cinamatos/farmacología , Cinamatos/uso terapéutico , Brasil
9.
J Ethnopharmacol ; 310: 116378, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36924865

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional use of Prunus species against skin diseases and especially for skin lightning cosmeceutical purposes is widespread in many cultures. Prunus mahaleb L. is a well known food plant and used in the baking industry for flavoring. The fruit kernels (endocarp) are used in India for hyperpigmentation. AIM OF THE STUDY: To investigate the chemical composition with the antimelanogenesis effect of P. mahaleb seed and kernel extracts and isolated compounds. MATERIALS AND METHODS: Isolation studies performed from the methanol extracts obtained from kernels and structures were determined using NMR and MS analysis. Antimelanogenesis effect was determined by mushroom tyrosinase assay, cellular tyrosinase assay and melanin content assay using B16F10 murine melanoma cells. RESULTS: Five cinnamic acid derivatives were isolated and their structures (2-O-ß-glucopyranosyloxy-4-methoxy-hydrocinnamic acid (1), cis-melilotoside (2), dihydromelilotoside (3), trans-melilotoside (4), 2-O-ß-glucosyloxy-4-methoxy trans-cinnamic acid (5)) were elucidated using advanced spectroscopic methods. Mushroom tyrosinase enzyme inhibition of extracts, fractions and pure compounds obtained from P. mahaleb kernels were investigated and structure-activity relationship revealed. According to a detailed, comprehensive and validated LC-MS/MS technique analysis, vanilic acid (41.407 mg/g), protocatechuic acid (8.992 mg/g) and ferulic acid (4.962 mg/g) in the kernel ethylacetate fraction; quinic acid (14.183 mg/g), fumaric acid (8.349 mg/g) and aconitic acid (5.574 mg/g) were found as major phenolic compounds in the water fraction. The correlation of trace element copper content in extracts and fractions with mushroom enzyme activity was determined. By examining the enzyme kinetics of the compounds with effective cinnamic acid derivatives, inhibition types and enzyme binding constants Ki were calculated. Compounds 1,3 and 5 exhibited high noncompetitive tyrosinase inhibitory activity against L-tyrosine substrates, with IC50 values of 0.22, 0.31 and 0.37 mM respectively. In addition compounds 1, 3 and 5 showed dose-dependent inhibitory effects on intracellular tyrosinase and melanin levels in α-melanocyte-stimulating hormone (α-MSH)-induced B16F10 melanoma cells. CONCLUSIONS: Potent tyrosinase inhibitory compounds and extracts of P. mahaleb kernels suggest that it could be a new, non-toxic and inexpensive resource for the cosmeceutical industry and in skin diseases associated with hyperpigmentation.


Asunto(s)
Cinamatos , Melanoma , Monofenol Monooxigenasa , Fenoles , Animales , Ratones , Cosmecéuticos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Melaninas/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Monofenol Monooxigenasa/efectos de los fármacos , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Prunus , Cinamatos/química , Cinamatos/aislamiento & purificación , Cinamatos/farmacología , Antineoplásicos/farmacología
10.
Molecules ; 28(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36838906

RESUMEN

The severity of infectious diseases associated with the resistance of microorganisms to drugs highlights the importance of investigating bioactive compounds with antimicrobial potential. Therefore, nineteen synthetic cinnamides and cinnamates having a cinnamoyl nucleus were prepared and submitted for the evaluation of antimicrobial activity against pathogenic fungi and bacteria in this study. To determine the minimum inhibitory concentration (MIC) of the compounds, possible mechanisms of antifungal action, and synergistic effects, microdilution testing in broth was used. The structures of the synthesized products were characterized with FTIR spectroscopy, 1 H-NMR, 13 C-NMR, and HRMS. Derivative 6 presented the best antifungal profile, suggesting that the presence of the butyl substituent potentiates its biological response (MIC = 626.62 µM), followed by compound 4 (672.83 µM) and compound 3 (726.36 µM). All three compounds were fungicidal, with MFC/MIC ≤ 4. For mechanism of action, compounds 4 and 6 directly interacted with the ergosterol present in the fungal plasmatic membrane and with the cell wall. Compound 18 presented the best antibacterial profile (MIC = 458.15 µM), followed by compound 9 (550.96 µM) and compound 6 (626.62 µM), which suggested that the presence of an isopropyl group is important for antibacterial activity. The compounds were bactericidal, with MBC/MIC ≤ 4. Association tests were performed using the Checkerboard method to evaluate potential synergistic effects with nystatin (fungi) and amoxicillin (bacteria). Derivatives 6 and 18 presented additive effects. Molecular docking simulations suggested that the most likely targets of compound 6 in C. albicans were caHOS2 and caRPD3, while the most likely target of compound 18 in S. aureus was saFABH. Our results suggest that these compounds could be used as prototypes to obtain new antimicrobial drugs.


Asunto(s)
Antiinfecciosos , Antifúngicos , Antifúngicos/farmacología , Staphylococcus aureus , Cinamatos/farmacología , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Candida albicans , Pruebas de Sensibilidad Microbiana
11.
Small ; 19(23): e2300594, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36755191

RESUMEN

A primary concern about photodynamic therapy (PDT) is its inability to regulate the generation levels of reactive oxidative species (ROS) based on the complex microenvironment, resulting in the impairment toward normal tissues and immunosuppression. Besides, tumor metastasis also compromises PDT's efficacy and drives mortality. However, it is very challenging to achieve such two goals within one nanosystem. Here, the nanoassembly (CPR) with self-regulated photodynamic and antimetastasis properties comprises three parts: chlorin e6-conjugated ß-cyclodextrin (CD-Ce6) acts as the main PDT agent and ferrocene (Fc)-terminated phenylboronic acid-containing conjugates entering into the cavity of CD-Ce6, as well as rosmarinic acid (RA)-boronic acid crosslinked shell. Compared with non-crosslinked counterpart, CPR displays better stability and enhanced tumor accumulation. Under laser irradiation, CPR generates plenty of ROS to damage tumor cells and induce immunogenic cell death. Mildly acidic TME partly cleaves the crosslinkers to dissociate antioxidant RAs from micelles, which together with Fc in CPR scavenge PDT-induced ROS in the TME. By contrast, under acidic lysosomal conditions, Fc catalyzes abundant H2 O2 in tumor cells to produce highly cytotoxic •OH, while RA continuously reduces ferroptosis-generated Fc+ into Fc, both to augment the PDT efficacy in tumor cells. CPR also remarkably hinders the epithelial-mesenchymal transition to prevent the lung metastasis.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Porfirinas , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Fototerapia , Cinamatos/farmacología , Porfirinas/farmacología , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Ácido Rosmarínico
12.
PeerJ ; 11: e14606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36643622

RESUMEN

Background: Kaempferia galanga (L.) is one of the prospective therapeutic plants with an aromatic rhizome, and belongs to the Zingiberaceae family. This herb is commonly used by local practitioners in traditional Asian medicine. Methods: In the present investigation, the novel Kaempferia galanga rhizome essential oil rich in ethyl p-methoxy cinnamate (EMCKG) was evaluated using GC/MS for chemical composition analysis. EMCKG was analyzed for its possible antimicrobial, neurodegenerative inhibitory, acetylcholinesterase, anti-inflammatory, and antioxidant activities as well as for the genotoxic effects using the standard methodologies. ANOVA and post hoc was performed to test the statistical significance of the study. Results: GC/MS analysis identified ethyl p-methoxy cinnamate as the major component of EMCKG essential oil with an area percentage of 66.39%. The EMCKG exhibited moderate (DPPH assay IC50 = 15.64 ± 0.263 µg/mL; ABTS assay IC50 = 16.93 ± 0.228 µg/mL) antioxidant activity than standard ascorbic acid (DPPH assay IC50 = 21.24 ± 0.413 µg/mL; ABTS assay IC50 = 21.156 ± 0.345 µg/mL). Similarly, EMCKG showed comparable activity in albumin denaturation (IC50 = 2.93 ± 0.59 µg/mL) and protease inhibitor assay (IC50 = 17.143 ± 0.506 µg/mL) to that of standard sodium diclofenac (IC50 = 23.87 ± 0.729 µg/mL and IC50 = 19.18 ± 0.271 µg/mL, respectively). The EMCKG exhibited a dose-dependent antimicrobial activity pattern with the highest inhibitory activity at 500 µg/mL against Staphylococcus aureus and considerable anticholinesterase activities (IC50 = 21.94 ± 0.109 µg/mL) compared to the standard galanthamine (IC50 = 27.18 ± 0.511 µg/mL). EMCKG also showed strong anti-diabetic activity (IC50 = 18.503 ± 0.480 µg/mL) and anti-tyrosinase activity (IC50 = 14.756 ± 0.325 µg/mL) as compared to the standards used (acarbose IC50 = 20.39 ± 0.231 µg/mL and kojic acid IC50 = 17.73 ± 0.192 µg/mL) in the study. Genotoxicity analysis of EMCKG revealed that at 1 µg/mL concentration has no toxic effects in mitosis of Allium cepa roots (Mitotic Index MI = 13.56% and chromosomal aberration CA = 07.60%). The ANOVA confirmed that except for the anticholinesterase activity, there is insignificant difference for essential oil and standards used for all the other bioactivities thus confirming their interchangeable applicability. Conclusions: Current research provides the basis for the fact that besides being a rich source of ethyl p-methoxycinnamate, EMCKG has the potential for future formulation and development of an inexpensive skin-care agent and for the preparation of anti-diabetic drugs.


Asunto(s)
Alpinia , Antiinfecciosos , Aceites Volátiles , Zingiberaceae , Inhibidores de la Colinesterasa/farmacología , Aceites Volátiles/farmacología , Monofenol Monooxigenasa , alfa-Amilasas , Acetilcolinesterasa , Zingiberaceae/química , Cinamatos/farmacología , Antioxidantes/farmacología , Antiinfecciosos/farmacología
13.
Pharm Biol ; 61(1): 155-164, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36604840

RESUMEN

CONTEXT: Salvia miltiorrhizae Bunge (Lamiaceae) is a traditional Chinese medicine (TCM) for the treatment of 'thoracic obstruction'. Transient receptor potential canonical channel 1 (TRPC1) is a important target for myocardial injury treatment. OBJECTIVE: This work screens the active component acting on TRPC1 from Salvia miltiorrhizae. MATERIALS AND METHODS: TCM Systems Pharmacology Database and Analysis Platform (TCMSP) was used to retrieve Salvia miltiorrhiza compounds for preliminary screening by referring to Lipinski's rule of five. Then, the compound group was comprehensively scored by AutoDock Vina based on TRPC1 protein. Surface plasmon resonance (SPR) was used to determine the affinity of the optimal compound to TRPC1 protein. Western blot assay was carried out to observe the effect of the optimal compound on TRPC1 protein expression in HL-1 cells, and Fura-2/AM detection was carried out to observe the effect of the optimal compound on calcium influx in HEK293 cells. RESULTS: Twenty compounds with relatively good characteristic parameters were determined from 202 compounds of Salvia miltiorrhiza. Rosmarinic acid (RosA) was obtained based on the molecular docking scoring function. RosA had a high binding affinity to TRPC1 protein (KD value = 1.27 µM). RosA (50 µM) could reduce the protein levels (417.1%) of TRPC1 after oxygen-glucose deprivation/reperfusion (OGD/R) in HL-1 cells and it could inhibit TRPC1-mediated Ca2+ influx injury (0.07 ΔRatio340/380) in HEK293 cells. DISCUSSION AND CONCLUSIONS: We obtained the potential active component RosA acting on TRPC1 from Salvia miltiorrhizae, and we speculate that RosA may be a promising clinical candidate for myocardial injury therapy.


Asunto(s)
Salvia miltiorrhiza , Humanos , Salvia miltiorrhiza/química , Simulación del Acoplamiento Molecular , Células HEK293 , Cinamatos/farmacología , Ácido Rosmarínico
14.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499415

RESUMEN

A series of thirty-two anilides of 3-(trifluoromethyl)cinnamic acid (series 1) and 4-(trifluoromethyl)cinnamic acid (series 2) was prepared by microwave-assisted synthesis. All the compounds were tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). All the compounds were evaluated in vitro against Mycobacterium smegmatis ATCC 700084 and M. marinum CAMP 5644. (2E)-3-[3-(Trifluoromethyl)phenyl]-N-[4-(trifluoromethyl)phenyl]prop-2-enamide (1j), (2E)-N-(3,5-dichlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1o) and (2E)-N-[3-(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)-phenyl]prop-2-enamide (2i), (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)phenyl]-prop-2-enamide (2p) showed antistaphylococcal (MICs/MBCs 0.15-5.57 µM) as well as anti-enterococcal (MICs/MBCs 2.34-44.5 µM) activity. The growth of M. marinum was strongly inhibited by compounds 1j and 2p in a MIC range from 0.29 to 2.34 µM, while all the agents of series 1 showed activity against M. smegnatis (MICs ranged from 9.36 to 51.7 µM). The performed docking study demonstrated the ability of the compounds to bind to the active site of the mycobacterial enzyme InhA. The compounds had a significant effect on the inhibition of bacterial respiration, as demonstrated by the MTT assay. The compounds showed not only bacteriostatic activity but also bactericidal activity. Preliminary in vitro cytotoxicity screening was assessed using the human monocytic leukemia cell line THP-1 and, except for compound 2p, all effective agents did show insignificant cytotoxic effect. Compound 2p is an interesting anti-invasive agent with dual (cytotoxic and antibacterial) activity, while compounds 1j and 1o are the most interesting purely antibacterial compounds within the prepared molecules.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Pruebas de Sensibilidad Microbiana , Cinamatos/farmacología , Cinamatos/química , Antibacterianos/farmacología , Antibacterianos/química
15.
Molecules ; 27(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630768

RESUMEN

Polyphenolic acids are the widely occurring natural products in almost each herbal plant, among which rosmarinic acid (RA, C18H16O8) is well-known, and is present in over 160 species belonging to many families, especially the Lamiaceae. Aside from this herbal ingredient, dozens of its natural derivatives have also been isolated and characterized from many natural plants. In recent years, with the increasing focus on the natural products as alternative treatments, a large number of pharmacological studies have been carried out to demonstrate the various biological activities of RA such as anti-inflammation, anti-oxidation, anti-diabetes, anti-virus, anti-tumor, neuroprotection, hepatoprotection, etc. In addition, investigations concerning its biosynthesis, extraction, analysis, clinical applications, and pharmacokinetics have also been performed. Although many achievements have been made in various research aspects, there still exist some problems or issues to be answered, especially its toxicity and bioavailability. Thus, we hope that in the case of natural products, the present review can not only provide a comprehensive understanding on RA covering its miscellaneous research fields, but also highlight some of the present issues and future perspectives worth investigating later, in order to help us utilize this polyphenolic acid more efficiently, widely, and safely.


Asunto(s)
Lamiaceae , Extractos Vegetales , Cinamatos/química , Cinamatos/farmacología , Depsidos/química , Depsidos/farmacología , Humanos , Extractos Vegetales/química , Ácido Rosmarínico
16.
J Ethnopharmacol ; 295: 115411, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35636653

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Prunella L. (Lamiaceae) is represented by nine species in the world and four species in Turkey. The infusion prepared from the aerial parts of Prunella vulgaris L. is used internally for abdominal pain and as an expectorant, the decoction prepared from all parts is used internally or externally as a wound healing. AIM OF THE STUDY: This study aims to investigate the wound healing potential of Prunella vulgaris L. on the scientific platform. MATERIAL AND METHODS: The aerial parts of the plant were extracted with 80% methanol. The resulting aqueous methanol extract was partitioned with n-hexane and ethyl acetate, and sub-extracts were obtained. The wound healing effects of the methanol extract and sub-extracts were studied in mice and rats using linear incision and circular excision wound models, and the anti-inflammatory effect was investigated using acetic acid-induced capillary permeability test. Isolation studies were performed using the ethyl acetate sub-extract, which exhibited the highest activity. RESULTS: Using various chromatographic methods, 6 compounds were isolated from the ethyl acetate sub-extract. The structures of the compounds were identified as methyl arginolate, ursolic acid, chlorogenic acid, rosmarinic acid, methyl 3-epimaclinate, and ethyl rosmarinate by spectroscopic techniques (UV, IR, 13C-NMR, 1H-NMR, 2D-NMR, MS). The wound healing mechanisms of the pure compounds were investigated by performing assays to inhibit the enzymes hyaluronidase, collagenase, and elastase. Ursolic acid, chlorogenic acid, and rosmarinic acid were found to be responsible for the anti-inflammatory and wound healing effects. CONCLUSION: The experimental study revealed that Prunella vulgaris showed significant wound healing and anti-inflammatory activities.


Asunto(s)
Antiinflamatorios , Extractos Vegetales , Prunella , Cicatrización de Heridas , Animales , Antiinflamatorios/farmacología , Ácido Clorogénico/farmacología , Cinamatos/farmacología , Depsidos/farmacología , Metanol , Ratones , Extractos Vegetales/farmacología , Prunella/química , Ratas , Triterpenos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Ácido Rosmarínico , Ácido Ursólico
17.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409270

RESUMEN

Stratum corneum (SC) pH regulates skin barrier functions and elevated SC pH is an important factor in various inflammatory skin diseases. Acidic topical formulas have emerged as treatments for impaired skin barriers. Sodium proton exchanger 1 (NHE1) is an important factor in SC acidification. We investigated whether topical applications containing an NHE1 activator could improve skin barrier functions. We screened plant extracts to identify NHE1 activators in vitro and found Melissa officinalis leaf extract. Rosmarinic acid, a component of Melissa officinalis leaf extract, significantly increased NHE1 mRNA expression levels and NHE1 production. Immunofluorescence staining of NHE1 in 3D-cultured skin revealed greater upregulation of NHE1 expression by NHE1 activator cream, compared to vehicle cream. Epidermal lipid analysis revealed that the ceramide level was significantly higher upon application of the NHE1 activator cream on 3D-cultured skin, compared to application of a vehicle cream. In a clinical study of 50-60-year-old adult females (n = 21), application of the NHE1 activator-containing cream significantly improved skin barrier functions by reducing skin surface pH and transepidermal water loss and increasing skin hydration, compared to patients who applied vehicle cream and those receiving no treatment. Thus, creams containing NHE1 activators, such as rosmarinic acid, could help maintain or recover skin barrier functions.


Asunto(s)
Cinamatos , Depsidos , Adulto , Cinamatos/metabolismo , Cinamatos/farmacología , Depsidos/metabolismo , Depsidos/farmacología , Epidermis/metabolismo , Femenino , Humanos , Concentración de Iones de Hidrógeno , Persona de Mediana Edad , Piel/metabolismo , Ácido Rosmarínico
18.
Pharm Biol ; 60(1): 609-620, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35286247

RESUMEN

CONTEXT: Obstructive sleep apnoea (OSA) causes chronic intermittent hypoxia (CIH), which results in mitochondrial dysfunction and generates reactive oxygen species (ROS) in the heart. Excessive free iron could accelerate oxidative damage, which may be involved in this process. Banxia-Houpu decoction (BHD) was reported to improve the apnoea hypopnoea index in OSA patients, but the specific mechanism was still unclear. OBJECTIVE: To investigate whether BHD could reduce CIH-induced heart damage by regulating iron metabolism and mitochondrial function. MATERIALS AND METHODS: C57BL/6N mice were randomly divided into control, CIH and BHD groups. Mice were exposed to CIH (21 - 5% O2, 20 times/h, 8 h/d) and administered BHD (3.51, 7.01 and 14.02 g/kg, intragastrically) for 21 d. Cardiac and mitochondrial function, iron levels, apoptosis and mitophagy were determined. RESULTS: BHD (7.01 g/kg) significantly improved cardiac dysfunction, pathological change and mitochondrial structure induced by CIH. BHD increased the Bcl-2/Bax ratio (1.4-fold) and inhibited caspase 3 cleavage in CIH mice (0.45-fold). BHD activated mitophagy by upregulating Parkin (1.94-fold) and PINK1 (1.26-fold), inhibiting the PI3K-AKT-mTOR pathway. BHD suppressed ROS generation by decreasing NOX2 (0.59-fold) and 4-HNE (0.83-fold). BHD reduced the total iron in myocardial cells (0.72-fold) and mitochondrial iron by downregulating Mfrn2 (0.81-fold) and MtFt (0.78-fold) proteins, and upregulating ABCB8 protein (1.33-fold). Rosmarinic acid, the main component of Perilla Leaf in BHD, was able to react with Fe2+ and Fe3+ in vitro. DISCUSSION AND CONCLUSIONS: These findings encourage the use of BHD to resist cardiovascular injury and provide the theoretical basis for clinical treatment in OSA patients.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Lesiones Cardíacas/prevención & control , Hipoxia/tratamiento farmacológico , Hierro/metabolismo , Animales , Apoptosis/efectos de los fármacos , Cinamatos/farmacología , Depsidos/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Lesiones Cardíacas/etiología , Hipoxia/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apnea Obstructiva del Sueño/complicaciones , Ácido Rosmarínico
19.
J Antibiot (Tokyo) ; 75(3): 176-180, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35064242

RESUMEN

On the basis of the one strain-many compounds (OSMAC) strategy, two new hygromycin A derivatives (3, 4), together with six known compounds were isolated from a medicinal plant inter rhizospheric Streptomyces in Pulsatilla chinensis. The structures of 3 and 4 were elucidated using NMR and HRESIMS analyses. A plausible biosynthetic pathway for these compounds was discussed. All the compounds were evaluated for their antimicrobial and cytotoxic activities. Compound 5 exhibited potent inhibitory activity against S. aureus and B. subtilis with the MICs of 16 and 8 µg ml-1, while 4 showed weak inhibitory activity against S. aureus.


Asunto(s)
Cinamatos/aislamiento & purificación , Higromicina B/análogos & derivados , Pulsatilla/microbiología , Suelo/química , Streptomyces/metabolismo , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Cinamatos/farmacología , Higromicina B/aislamiento & purificación , Higromicina B/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Rizosfera , Microbiología del Suelo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética
20.
Life Sci ; 293: 120279, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032552

RESUMEN

BACKGROUND: Curcumin is one of the compounds present in plants of the genus Curcuma sp., being very used not only as condiment but also with medicinal purposes. As an analgesic, papers highlight the efficacy of curcumin in the treatment of various types of pain. AIMS: In this study we evaluated the peripheral antinociceptive effect of curcumin and by which mechanisms this effect is induced. MAIN METHODS: The mice paw pressure test was used on animals which had increased pain sensitivity by intraplantar injection of carrageenan. All the drugs were administered in the right hind paw. KEY FINDINGS: Curcumin was administered to the right hind paw animals induced antinociceptive effect. Non -selective antagonist of opioid receptors naloxone reverted the antinociceptive effect induced by curcumin. Selective antagonists for µ, δ and κ opioid receptors clocinnamox, naltrindole and nor- binaltorphimine, respectively, reverted the antinociceptive effect induced by curcumin. Bestatin, enkephalinases inhibitor that degrade peptides opioids, did not change the nociceptive response. Selective antagonists for CB1 and CB2 cannabinoid receptors, AM251 and AM630, respectively, reversed the antinociceptive effect induced by curcumin. The MAFP inhibitor of the enzyme FAAH which breaks down anandamide, JZL184, enzyme inhibitor MAGL which breaks down the 2-AG, as well as the VDM11 anandamide reuptake inhibitor potentiated the antinociceptive effect of curcumin. SIGNIFICANCE: These results suggest that curcumin possibly peripheral antinociception induced by opioid and cannabinoid systems activation and possibly for endocannabinoids and opioids release.


Asunto(s)
Analgésicos/uso terapéutico , Agonistas de Receptores de Cannabinoides/uso terapéutico , Curcumina/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Receptores Opioides/metabolismo , Analgésicos/farmacología , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Ácidos Araquidónicos/farmacología , Ácidos Araquidónicos/uso terapéutico , Agonistas de Receptores de Cannabinoides/farmacología , Carragenina/toxicidad , Cinamatos/farmacología , Curcumina/farmacología , Relación Dosis-Respuesta a Droga , Endocannabinoides/farmacología , Endocannabinoides/uso terapéutico , Hiperalgesia/inducido químicamente , Masculino , Ratones , Derivados de la Morfina/farmacología , Antagonistas de Narcóticos/farmacología , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Dolor/metabolismo , Alcamidas Poliinsaturadas/farmacología , Alcamidas Poliinsaturadas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA