Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 628(8006): 180-185, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480886

RESUMEN

The gut microbiome has major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea and acute renal failure4,5 (haemolytic uremic syndrome). Although gut microorganisms can provide colonization resistance by outcompeting some pathogens or modulating host defence provided by the gut barrier and intestinal immune cells6,7, this phenomenon remains poorly understood. Here, we show that activation of the neurotransmitter receptor dopamine receptor D2 (DRD2) in the intestinal epithelium by gut microbial metabolites produced upon dietary supplementation with the essential amino acid L-tryptophan protects the host against Citrobacter rodentium, a mouse AE pathogen that is widely used as a model for EHEC infection8,9. We further find that DRD2 activation by these tryptophan-derived metabolites decreases expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Our results reveal a noncanonical colonization resistance pathway against AE pathogens that features an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization in the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches targeting DRD2 with dietary or pharmacological interventions to improve gut health and treat gastrointestinal infections, which afflict millions globally.


Asunto(s)
Citrobacter rodentium , Mucosa Intestinal , Receptores de Dopamina D2 , Triptófano , Animales , Femenino , Humanos , Masculino , Ratones , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Carga Bacteriana/efectos de los fármacos , Citrobacter rodentium/crecimiento & desarrollo , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidad , Suplementos Dietéticos , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/prevención & control , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Escherichia coli O157/patogenicidad , Escherichia coli O157/fisiología , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Receptores de Dopamina D2/metabolismo , Triptófano/administración & dosificación , Triptófano/metabolismo , Triptófano/farmacología
2.
Molecules ; 28(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959788

RESUMEN

This study is part of the work investigating bioactive fruit enzymes as sustainable alternatives to parasite anthelmintics that can help reverse the trend of lost efficacy. The study looked to define biological and molecular interactions that demonstrate the ability of the pomegranate extract punicalagin against intracellular parasites. The study compared transcriptomic reads of two distinct conditions. Condition A was treated with punicalagin (PA) and challenged with Citrobacter rodentium, while condition B (CM) consisted of a group that was challenged and given mock treatment of PBS. To understand the effect of punicalagin on transcriptomic changes between conditions, a differential correlation analysis was conducted. The analysis examined the regulatory connections of genes expressed between different treatment conditions by statistically querying the relationship between correlated gene pairs and modules in differing conditions. The results indicated that punicalagin treatment had strong positive correlations with the over-enriched gene ontology (GO) terms related to oxidoreductase activity and lipid metabolism. However, the GO terms for immune and cytokine responses were strongly correlated with no punicalagin treatment. The results matched previous studies that showed punicalagin to have potent antioxidant and antiparasitic effects when used to treat parasitic infections in mice and livestock. Overall, the results indicated that punicalagin enhanced the effect of tissue-resident genes.


Asunto(s)
Citrobacter rodentium , Transcriptoma , Ratones , Animales , Taninos Hidrolizables/farmacología , Antioxidantes/análisis
3.
Nutrients ; 15(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37111109

RESUMEN

Inflammatory bowel disease (IBD) has become a global public health challenge. Our previous study showed that barley leaf (BL) significantly reduces Citrobacter-rodentium (CR)-induced colitis, but its mechanism remains elusive. Thus, in this study, we used non-targeted metabolomics techniques to search for potentially effective metabolites. Our results demonstrated that dietary supplementation with BL significantly enriched arginine and that arginine intervention significantly ameliorated CR-induced colitis symptoms such as reduced body weight, shortened colon, wrinkled cecum, and swollen colon wall in mice; in addition, arginine intervention dramatically ameliorated CR-induced histopathological damage to the colon. The gut microbial diversity analysis showed that arginine intervention significantly decreased the relative abundance of CR and significantly increased the relative abundance of Akkermansia, Blautia, Enterorhabdus, and Lachnospiraceae, which modified the CR-induced intestinal flora disorder. Notably, arginine showed a dose-dependent effect on the improvement of colitis caused by CR.


Asunto(s)
Colitis , Hordeum , Animales , Ratones , Citrobacter rodentium , Arginina/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
4.
Microbiome ; 11(1): 21, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737826

RESUMEN

BACKGROUND: Vitamin B12 supplements typically contain doses that far exceed the recommended daily amount, and high exposures are generally considered safe. Competitive and syntrophic interactions for B12 exist between microbes in the gut. Yet, to what extent excessive levels contribute to the activities of the gut microbiota remains unclear. The objective of this study was to evaluate the effect of B12 on microbial ecology using a B12 supplemented mouse model with Citrobacter rodentium, a mouse-specific pathogen. Mice were fed a standard chow diet and received either water or water supplemented with B12 (cyanocobalamin: ~120 µg/day), which equates to approximately 25 mg in humans. Infection severity was determined by body weight, pathogen load, and histopathologic scoring. Host biomarkers of inflammation were assessed in the colon before and after the pathogen challenge. RESULTS: Cyanocobalamin supplementation enhanced pathogen colonization at day 1 (P < 0.05) and day 3 (P < 0.01) postinfection. The impact of B12 on gut microbial communities, although minor, was distinct and attributed to the changes in the Lachnospiraceae populations and reduced alpha diversity. Cyanocobalamin treatment disrupted the activity of the low-abundance community members of the gut microbiota. It enhanced the amount of interleukin-12 p40 subunit protein (IL12/23p40; P < 0.001) and interleukin-17a (IL-17A; P < 0.05) in the colon of naïve mice. This immune phenotype was microbe dependent, and the response varied based on the baseline microbiota. The cecal metatranscriptome revealed that excessive cyanocobalamin decreased the expression of glucose utilizing genes by C. rodentium, a metabolic attribute previously associated with pathogen virulence. CONCLUSIONS: Oral vitamin B12 supplementation promoted C. rodentium colonization in mice by altering the activities of the Lachnospiraceae populations in the gut. A lower abundance of select Lachnospiraceae species correlated to higher p40 subunit levels, while the detection of Parasutterella exacerbated inflammatory markers in the colon of naïve mice. The B12-induced change in gut ecology enhanced the ability of C. rodentium colonization by impacting key microbe-host interactions that help with pathogen exclusion. This research provides insight into how B12 impacts the gut microbiota and highlights potential consequences of disrupting microbial B12 competition/sharing through over-supplementation. Video Abstract.


Asunto(s)
Citrobacter rodentium , Vitamina B 12 , Humanos , Animales , Ratones , Vitamina B 12/farmacología , Interacciones Microbiota-Huesped , Colon , Suplementos Dietéticos
5.
Carbohydr Polym ; 277: 118830, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34893247

RESUMEN

The inflammatory effects of carrageenan (CGN), a ubiquitous food additive, remains controversial. Gut microbiota and intestinal homeostasis may be a breakthrough in resolving this controversy. Here we show that, κ-CGN did not cause significant inflammatory symptoms, but it did cause reduced bacteria-derived short-chain fatty acids (SCFAs) and decreased thickness of the mucus layer by altering microbiota composition. Administration of the pathogenic bacterium Citrobacter rodentium, further aggravated the inflammation and mucosal damage in the presence of κ-CGN. Mucus layer degradation and altered SCFA levels could be reproduced by fecal transplantation from κ-CGN-fed mice, but not from germ-free κ-CGN-fed mice. These symptoms could be partially repaired by administering probiotics. Our results suggest that κ-CGN may not be directly inflammatory, but it creates an environment that favors inflammation by perturbation of gut microbiota composition and then facilitates expansion of pathogens, and this effect may be partially reversed by the introduction of probiotics.


Asunto(s)
Antibacterianos/farmacología , Carragenina/farmacología , Citrobacter rodentium/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Intestinos/efectos de los fármacos , Antibacterianos/administración & dosificación , Carragenina/administración & dosificación , Suplementos Dietéticos , Inflamación/metabolismo , Inflamación/microbiología , Intestinos/metabolismo , Intestinos/microbiología , Pruebas de Sensibilidad Microbiana
6.
Front Immunol ; 12: 753092, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745126

RESUMEN

Increasing evidence support that cellular amino acid metabolism shapes the fate of immune cells; however, whether aspartate metabolism dictates macrophage function is still enigmatic. Here, we found that the metabolites in aspartate metabolism are depleted in lipopolysaccharide (LPS) plus interferon gamma (IFN-γ)-stimulated macrophages. Aspartate promotes interleukin-1ß (IL-1ß) secretion in M1 macrophages. Mechanistically, aspartate boosts the activation of hypoxia-inducible factor-1α (HIF-1α) and inflammasome and increases the levels of metabolites in aspartate metabolism, such as asparagine. Interestingly, asparagine also accelerates the activation of cellular signaling pathways and promotes the production of inflammatory cytokines from macrophages. Moreover, aspartate supplementation augments the macrophage-mediated inflammatory responses in mice and piglets. These results uncover a previously uncharacterized role for aspartate metabolism in directing M1 macrophage polarization.


Asunto(s)
Ácido Aspártico/metabolismo , Inflamasomas/fisiología , Interleucina-1beta/biosíntesis , Macrófagos Peritoneales/inmunología , Animales , Citrobacter rodentium , Colitis/inmunología , Colitis/microbiología , Citocinas/sangre , Infecciones por Enterobacteriaceae/inmunología , Femenino , Subunidad alfa del Factor 1 Inducible por Hipoxia , Interferón gamma/farmacología , Interleucina-1beta/genética , Lipopolisacáridos/farmacología , Activación de Macrófagos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Porcinos
7.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34625492

RESUMEN

Group 3 innate lymphoid cells (ILC3s) control the formation of intestinal lymphoid tissues and play key roles in intestinal defense. They express neuropeptide vasoactive intestinal peptide (VIP) receptor 2 (VPAC2), through which VIP modulates their function, but whether VIP exerts other effects on ILC3 remains unclear. We show that VIP promotes ILC3 recruitment to the intestine through VPAC1 independent of the microbiota or adaptive immunity. VIP is also required for postnatal formation of lymphoid tissues as well as the maintenance of local populations of retinoic acid (RA)-producing dendritic cells, with RA up-regulating gut-homing receptor CCR9 expression by ILC3s. Correspondingly, mice deficient in VIP or VPAC1 suffer a paucity of intestinal ILC3s along with impaired production of the cytokine IL-22, rendering them highly susceptible to the enteric pathogen Citrobacter rodentium This heightened susceptibility to C. rodentium infection was ameliorated by RA supplementation, adoptive transfer of ILC3s, or by recombinant IL-22. Thus, VIP regulates the recruitment of intestinal ILC3s and formation of postnatal intestinal lymphoid tissues, offering protection against enteric pathogens.


Asunto(s)
Citrobacter rodentium/inmunología , Infecciones por Enterobacteriaceae/inmunología , Linfocitos/inmunología , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Animales , Células Dendríticas/inmunología , Microbioma Gastrointestinal/inmunología , Interleucinas/análisis , Tejido Linfoide/citología , Tejido Linfoide/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CCR/biosíntesis , Receptores de Tipo II del Péptido Intestinal Vasoactivo/genética , Tretinoina/metabolismo , Péptido Intestinal Vasoactivo/genética , Interleucina-22
8.
Mol Nutr Food Res ; 65(19): e2100346, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34369649

RESUMEN

INTRODUCTION: Pectins have anti-inflammatory properties on intestinal immunity through direct interactions on Toll-like receptors (TLRs) in the small intestine or via stimulating microbiota-dependent effects in the large intestine. Both the degree of methyl-esterification (DM) and the distribution of methyl-esters (degree of blockiness; DB) of pectins contribute to this influence on immunity, but whether and how the DB impacts immunity through microbiota-dependent effects in the large intestine is unknown. Therefore, this study tests pectins that structurally differ in DB in a mouse model with Citrobacter rodentium induced colitis and studies the impact on the intestinal microbiota composition and associated attenuation of inflammation. METHODS AND RESULTS: Both low and high DB pectins induce a more rich and diverse microbiota composition. These pectins also lower the bacterial load of C. rodentium in cecal digesta. Through these effects, both low and high DB pectins attenuate C. rodentium induced colitis resulting in reduced intestinal damage, reduced numbers of Th1-cells, which are increased in case of C. rodentium induced colitis, and reduced levels of GATA3+ Tregs, which are related to tissue inflammation. CONCLUSION: Pectins prevent C. rodentium induced colonic inflammation by lowering the C. rodentium load in the caecum independently of the DB.


Asunto(s)
Colitis/tratamiento farmacológico , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Pectinas/química , Pectinas/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Ciego/efectos de los fármacos , Ciego/metabolismo , Citrobacter rodentium/patogenicidad , Citrus sinensis/química , Colitis/microbiología , Colitis/patología , Citocinas/metabolismo , Infecciones por Enterobacteriaceae/patología , Ésteres/química , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Ratones Endogámicos C57BL , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/patología
9.
J Nutr ; 151(11): 3391-3399, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34383918

RESUMEN

BACKGROUND: Probiotics are beneficial in intestinal disorders. However, the benefits of Lactobacillus johnsonii in experimental colitis remain unknown. OBJECTIVES: This study aimed to investigate the benefits of L. johnsonii against Citrobacter rodentium-induced colitis. METHODS: Thirty-six 5-wk-old female C57BL/6J mice were randomly assigned to 3 groups (n = 12): control (Ctrl) group, Citrobacter rodentium treatment (CR) group (2 × 109 CFU C. rodentium), and Lactobacillus johnsonii and Citrobacter rodentium cotreatment (LJ + CR) group (109 CFU L. johnsonii with C. rodentium). Colon length, mucosal thickness, proinflammatory cytokine genes, and endoplasmic reticulum stress were tested. RESULTS: The CR group had greater spleen weight, mucosal thickness, and Ki67+ cells (0.4-4.7 times), and a 23.8% shorter colon length than the Ctrl group, which in the LJ + CR group were 22.4%-77.6% lower and 30% greater than in the CR group, respectively. Relative to the Ctrl group, serum proinflammatory cytokines and immune cell infiltration were greater by 0.3-1.6 times and 6.2-8.8 times in the CR group, respectively; relative to the CR group, these were 19.9%-61.9% and 69.5%-84.2% lower in the LJ + CR group, respectively. The mRNA levels of lysozyme (Lyz) and regenerating islet-derived protein III were 22.7%-36.5% lower and 1.5-2.7 times greater in the CR group than in the Ctrl group, respectively, whereas they were 22.2%-25.7% greater and 57.2%-76.9% lower in the LJ + CR group than in the CR group, respectively. Cell apoptosis was 11.9 times greater in the CR group than in the Ctrl group, and 87.4% lower in the LJ + CR group than in the CR group. Consistently, the protein abundances of C/EBP homologous protein (CHOP), cleaved caspase 1 and 3, activating transcription factor 6α (ATF6A), and phospho-inositol-requiring enzyme 1α (P-IRE1A) were 0.3-2.1 times greater in the CR group and 31.1%-60.4% lower in the LJ + CR group. All these indexes did not differ between the Ctrl and LJ + CR groups, except for CD8+ T lymphocytes and CD11b+ and F4/80+ macrophages (1-1.5 times greater in LJ + CR) and mRNA concentration of Lyz2 (20.1% lower in LJ + CR). CONCLUSIONS: L. johnsonii supplementation is a promising nutritional strategy for preventing C. rodentium-induced colitis in mice.


Asunto(s)
Colitis , Infecciones por Enterobacteriaceae , Lactobacillus johnsonii , Animales , Citrobacter rodentium , Colon , Estrés del Retículo Endoplásmico , Femenino , Ratones , Ratones Endogámicos C57BL
10.
Mol Nutr Food Res ; 65(15): e2001065, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34075695

RESUMEN

SCOPE: Inflammatory bowel disease (IBD) is an inflammatory gastrointestinal disorder in which endoplasmic reticulum (ER) stress and dysbiosis of the intestinal microbiota are implicated. Glycine supplementation is reported to reduce inflammatory responses in experimental colitis. However, the underlying mechanisms responsible for the beneficial effects remain unclear. METHODS AND RESULTS: Female C57BL/6 mice are orally administered with glycine (3.5 or 5.2 g kg-1 body weight) for 14 continuous days. On day 8 post-glycine supplementation, the mice are orally inoculated with 2 × 109 CFU Citrobacter rodentium (C. rodentium). The results show that glycine alleviates C. rodentium-induced body weight loss, increased disease activity index and spleen weight, colon length shortening, and colonic hyperplasia. Glycine suppresses the activation and infiltration of inflammatory cells, and secretion of pro-inflammatory cytokines in the colon tissues. The apoptosis of colon epithelial cells is also abrogated by glycine, which is associated with the inactivation of activating transcription factor 6α (ATF6α)-C/EBP homologous protein (CHOP) signaling. In addition, glycine administration increases α diversity, restores ß diversity, and abolishes the reduction in Lactobacillus, Bifidobacterium, Alistipes, Turicibacter, and Alloprevotella in the colon. CONCLUSIONS: Glycine supplementation is a nutritional strategy that may ameliorate C. rodentium-induced colitis by regulating ATF6α-CHOP-mediated ER stress and enhancing the abundance of Lactobacillus.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Colitis/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Glicina/farmacología , Animales , Péptidos Antimicrobianos/genética , Muerte Celular/efectos de los fármacos , Citrobacter rodentium/patogenicidad , Colitis/metabolismo , Colitis/microbiología , Colon/efectos de los fármacos , Colon/microbiología , Colon/patología , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/microbiología , Ratones Endogámicos C57BL
11.
Food Funct ; 12(3): 1121-1134, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33427835

RESUMEN

Irritable bowel syndrome (IBS) is a chronic intestinal disorder accompanied by low-grade inflammation, visceral hypersensitivity, and gut microbiota dysbiosis. Several studies have indicated that Lactobacillus supplementation can help to alleviate IBS symptoms and that these effects are strain-specific. Therefore, this study aimed to investigate the key physiological characteristics and functional genes contributing to the IBS-alleviating effects of Lactobacillus. An IBS model was established by subjecting C57BL/6 mice to Citrobacter rodentium ingestion and water avoidance stress. Lactobacillus strains with different physiological characteristics were administered to mice intragastrically for 4 weeks (5 × 109 CFU/0.2 mL per mouse per day). Indicators of colonic inflammation, visceral hypersensitivity, and gut microbiota were also evaluated. Finally, differences in functional genes between Lactobacillus strains were analyzed by a comparative genomic analysis, and the relationships between the physiological characteristics, functional genes, and IBS-alleviating effects of the strains were quantified using correlation analysis. Among the eight tested Lactobacillus strains, only Lactobacillus plantarum CCFM8610 significantly inhibited the expression of IL-1ß, IL-6, PAR-2, and mast cell tryptase. L. plantarum CCFM8610 also significantly increased the intestinal barrier function, inhibited visceral hypersensitivity symptoms, and modulated the gut microbiota diversity and composition. The correlation analysis of factors associated with the IBS-alleviating effects of Lactobacillus revealed the ability to synthesize conjugated linoleic acid as the most strongly associated physiological characteristic and COG1028-related genes as the most strongly associated functional genes. In conclusion, these findings can facilitate the rapid screening of Lactobacillus strains with IBS-alleviating effects and lay a foundation for studies of the related mechanisms.


Asunto(s)
Síndrome del Colon Irritable/microbiología , Lactobacillus/genética , Probióticos/farmacología , Animales , Citrobacter rodentium , Colon/microbiología , Colon/patología , Corticosterona/sangre , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/patología , Humanos , Inflamación/patología , Inflamación/prevención & control , Lactobacillus/fisiología , Ácidos Linoleicos Conjugados , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Triptasas/metabolismo
12.
Food Funct ; 12(2): 881-891, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33411865

RESUMEN

SCOPE: C. rodentium is the murine equivalent of Enteropathogenic Escherichia. coli (EPEC) and Enterohemorrhagic Escherichia coli (EHEC) which induce damage to the intestinal epithelial barrier that results in diarrhea and intestinal inflammation. Dietary fibre intake can be an effective approach to limit epithelial damage by these enteric pathogens. Therefore, the protective effect of dietary fibre pectin against dysfunction of epithelial barrier integrity upon C. rodentium infection was investigated. METHODS AND RESULTS: Pectins that structurally differed in the degree and distribution of methylesters were tested on barrier protective effects on epithelial cells against C. rodentium by measuring transepithelial electrical resistance and lucifer yellow fluxes. All three pectins protected the epithelial barrier from C. rodentium induced damage in a structure-independent manner. These barrier protective effects were also independent of pectin-induced TLR2 activation. Furthermore, the pectins induced anti-adhesive effects on C. rodentium by interacting with C. rodentium and not with epithelial cells. This may be explained by antimicrobial effects of pectins on C. rodentium and not on other enteric bacteria including Lactobacillus plantarum and E. coli. A competition ELISA for binding of C. rodentium to pectin supported this finding as it showed that pectin interacts strongly with C. rodentium, whereas it interacts weakly or not with L. plantarum or E. coli. CONCLUSION: These findings demonstrate that pectin protects the epithelial barrier from C. rodentium induced damage by inducing anti-microbial effects.


Asunto(s)
Citrobacter rodentium , Pectinas/farmacología , Animales , Adhesión Bacteriana/efectos de los fármacos , Adhesión Bacteriana/fisiología , Células Epiteliales , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Ratones , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo
13.
Br J Nutr ; 125(1): 50-61, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-32792032

RESUMEN

Dietary choline, which is converted to phosphatidylcholine (PC) in intestinal enterocytes, may benefit inflammatory bowel disease patients who typically have reduced intestinal choline and PC. The present study investigated the effect of dietary choline supplementation on colitis severity and intestinal mucosal homoeostasis using a Citrobacter rodentium-induced colitis model. C57BL/6J mice were fed three isoenergetic diets differing in choline level: choline-deficient (CD), choline-sufficient (CS) and choline-excess (CE) for 3 weeks prior to infection with C. rodentium. The effect of dietary choline levels on the gut microbiota was also characterised in the absence of infection using 16S rRNA gene amplicon sequencing. At 7 d following infection, the levels of C. rodentium in CD mice were significantly greater than that in CS or CE groups (P < 0·05). CD mice exhibited greater damage to the surface epithelium and goblet cell loss than the CS or CE mice, which was consistent with elevated pro-inflammatory cytokine and chemokine levels in the colon. In addition, CD group exhibited decreased concentrations of PC in the colon after C. rodentium infection, although the decrease was not observed in the absence of challenge. Select genera, including Allobaculum and Turicibacter, were enriched in response to dietary choline deficiency; however, there was minimal impact on the total bacterial abundance or the overall structure of the gut microbiota. Our results suggest that insufficient dietary choline intake aggravates the severity of colitis and demonstrates an essential role of choline in maintaining intestinal homoeostasis.


Asunto(s)
Colina/farmacología , Colitis/dietoterapia , Dieta/efectos adversos , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Quimiocinas/metabolismo , Citrobacter rodentium , Colitis/etiología , Colitis/microbiología , Colon/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/análisis , Índice de Severidad de la Enfermedad
14.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008767

RESUMEN

Decreases in short-chain-fatty-acids (SCFAs) are linked to inflammatory bowel disease (IBD). Yet, the mechanisms through which SCFAs promote wound healing, orchestrated by intestinal stem cells, are poorly understood. We discovered that, in mice with Citrobacter rodentium (CR)-induced infectious colitis, treatment with Pectin and Tributyrin diets reduced the severity of colitis by restoring Firmicutes and Bacteroidetes and by increasing mucus production. RNA-seq in young adult mouse colon (YAMC) cells identified higher expression of Lgr4, Lgr6, DCLK1, Muc2, and SIGGIR after Butyrate treatment. Lineage tracing in CR-infected Lgr5-EGFP-IRES-CreERT2/ROSA26-LacZ (Lgr5-R) mice also revealed an expansion of LacZ-labeled Lgr5(+) stem cells in the colons of both Pectin and Tributyrin-treated mice compared to control. Interestingly, gut microbiota was required for Pectin but not Tributyrin-induced Lgr5(+) stem cell expansion. YAMC cells treated with sodium butyrate exhibited increased Lgr5 promoter reporter activity due to direct Butyrate binding with Lgr5 at -4.0 Kcal/mol, leading to thermal stabilization. Upon ChIP-seq, H3K4me3 increased near Lgr5 transcription start site that contained the consensus binding motif for a transcriptional activator of Lgr5 (SPIB). Thus, a multitude of effects on gut microbiome, differential gene expression, and/or expansion of Lgr5(+) stem cells seem to underlie amelioration of colitis following dietary intervention.


Asunto(s)
Colitis/microbiología , Colitis/patología , Dieta , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/patología , Microbiota , Células Madre/patología , Animales , Biodiversidad , Butiratos/farmacología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Citrobacter rodentium/fisiología , Epitelio/patología , Fermentación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Mucina 2/metabolismo , Pectinas/farmacología , Regiones Promotoras Genéticas/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regeneración/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Triglicéridos/farmacología
15.
Nutrients ; 12(10)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076301

RESUMEN

Enteropathogenic and enterohemorrhagic Escherichia coli are important enteric pathogens that induce hemorrhagic colitis or even fatal hemolytic uremic syndrome. Emerging evidence shows that some bio-actives derived from fruits and vegetables may serve as alternatives to antibiotics for overcoming multidrug resistant E. coli infections. In this study, the Citrobacter rodentium (Cr) infection model was utilized to mimic E. coli-induced acute intestinal inflammation, and the effects of a cruciferous vegetable-derived cancer protective compound, indole-3-carbinol (I3C), on the immune responses of Cr-susceptible C3H/HeN mice were investigated. Dietary I3C significantly inhibited the loss of body weight and the increase in spleen size in Cr infected mice. In addition, I3C treatment reduced the inflammatory response to Cr infection by maintaining anti-inflammatory cytokine IL-22 mRNA levels while reducing expression of other pro-inflammatory cytokines including IL17A, IL6, IL1ß, TNF-α, and IFN-γ. Moreover, the serum cytokine levels of IL17, TNF-α, IL12p70, and G-CSF also were down-regulated by I3C in Cr-infected mice. Additionally, dietary I3C specifically enhanced the Cr-specific IgG response to Cr infection. In general, dietary I3C reduced the Cr-induced pro-inflammatory response in susceptible C3H/HeN mice and alleviated the physiological changes and tissue damage induced by Cr infection but not Cr colonization.


Asunto(s)
Antibacterianos , Antiinflamatorios , Brassicaceae/química , Citrobacter rodentium , Suplementos Dietéticos , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/inmunología , Inmunoglobulina G/inmunología , Indoles/administración & dosificación , Fitoterapia , Esplenomegalia/tratamiento farmacológico , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/complicaciones , Infecciones por Enterobacteriaceae/patología , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/patología , Indoles/aislamiento & purificación , Indoles/farmacología , Mediadores de Inflamación/metabolismo , Interleucinas/metabolismo , Masculino , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Esplenomegalia/etiología , Esplenomegalia/patología , Interleucina-22
16.
Nat Commun ; 11(1): 4457, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32901017

RESUMEN

Innate lymphoid cells (ILCs) and CD4+ T cells produce IL-22, which is critical for intestinal immunity. The microbiota is central to IL-22 production in the intestines; however, the factors that regulate IL-22 production by CD4+ T cells and ILCs are not clear. Here, we show that microbiota-derived short-chain fatty acids (SCFAs) promote IL-22 production by CD4+ T cells and ILCs through G-protein receptor 41 (GPR41) and inhibiting histone deacetylase (HDAC). SCFAs upregulate IL-22 production by promoting aryl hydrocarbon receptor (AhR) and hypoxia-inducible factor 1α (HIF1α) expression, which are differentially regulated by mTOR and Stat3. HIF1α binds directly to the Il22 promoter, and SCFAs increase HIF1α binding to the Il22 promoter through histone modification. SCFA supplementation enhances IL-22 production, which protects intestines from inflammation. SCFAs promote human CD4+ T cell IL-22 production. These findings establish the roles of SCFAs in inducing IL-22 production in CD4+ T cells and ILCs to maintain intestinal homeostasis.


Asunto(s)
Ácidos Grasos Volátiles/inmunología , Microbioma Gastrointestinal/inmunología , Inmunidad Innata , Interleucinas/biosíntesis , Animales , Butiratos/inmunología , Butiratos/metabolismo , Butiratos/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/microbiología , Citrobacter rodentium , Colitis/inmunología , Colitis/microbiología , Colitis/prevención & control , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/prevención & control , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/farmacología , Microbioma Gastrointestinal/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Técnicas In Vitro , Interleucinas/deficiencia , Interleucinas/genética , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfocitos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Regiones Promotoras Genéticas , Receptores de Hidrocarburo de Aril/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Interleucina-22
17.
PLoS One ; 15(7): e0236106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32673362

RESUMEN

Alfalfa is a forage legume commonly associated with ruminant livestock production that may be a potential source of health-promoting phytochemicals. Anecdotal evidence from producers suggests that later cuttings of alfalfa may be more beneficial to non-ruminants; however, published literature varies greatly in measured outcomes, supplement form, and cutting. The objective of this study was to measure body weight, average daily feed intake, host immunity, and the colon microbiota composition in mice fed hay, aqueous, and chloroform extracts of early (1st) and late (5th) cutting alfalfa before and after challenge with Citrobacter rodentium. Prior to inoculation, alfalfa supplementation did not have a significant impact on body weight or feed intake, but 5th cutting alfalfa was shown to improve body weight at 5- and 6-days post-infection compared to 1st cutting alfalfa (P = 0.02 and 0.01). Combined with the observation that both chloroform extracts improved mouse body weight compared to control diets in later stages of C. rodentium infection led to detailed analyses of the immune system and colon microbiota in mice fed 1st and 5th cutting chloroform extracts. Immediately following inoculation, 5th cutting chloroform extracts significantly reduced the relative abundance of C. rodentium (P = 0.02) and did not display the early lymphocyte recruitment observed in 1st cutting extract. In later timepoints, both chloroform extracts maintained lower splenic B-cell and macrophage populations while increasing the relative abundance of potentially beneficially genera such as Turicibacter (P = 0.02). At 21dpi, only 5th cutting chloroform extracts increased the relative abundance of beneficial Akkermansia compared to the control diet (P = 0.02). These results suggest that lipid soluble compounds enriched in late-cutting alfalfa modulate pathogen colonization and early immune responses to Citrobacter rodentium, contributing to protective effects on body weight.


Asunto(s)
Citrobacter rodentium/fisiología , Colon/efectos de los fármacos , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Lípidos/química , Medicago sativa/química , Extractos Vegetales/farmacología , Inmunidad Adaptativa/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Colon/microbiología , Citocinas/biosíntesis , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Femenino , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/uso terapéutico , Solubilidad
18.
PLoS Pathog ; 16(3): e1008448, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32208465

RESUMEN

The composition of the intestinal microbiota influences the outcome of enteric infections in human and mice. However, the role of specific members and their metabolites contributing to disease severity is largely unknown. Using isogenic mouse lines harboring distinct microbiota communities, we observed highly variable disease kinetics of enteric Citrobacter rodentium colonization after infection. Transfer of communities from susceptible and resistant mice into germ-free mice verified that the varying susceptibilities are determined by microbiota composition. The strongest differences in colonization were observed in the cecum and could be maintained in vitro by coculturing cecal bacteria with C. rodentium. Cohousing of animals as well as the transfer of cultivable bacteria from resistant to susceptible mice led to variable outcomes in the recipient mice. Microbiome analysis revealed that a higher abundance of butyrate-producing bacteria was associated with the resistant phenotype. Quantification of short-chain fatty acid (SCFA) levels before and after infection revealed increased concentrations of acetate, butyrate and propionate in mice with delayed colonization. Addition of physiological concentrations of butyrate, but not of acetate and/or propionate strongly impaired growth of C. rodentium in vitro. In vivo supplementation of susceptible, antibiotic-treated and germ-free mice with butyrate led to the same level of protection, notably only when cecal butyrate concentration reached a concentration higher than 50 nmol/mg indicating a critical threshold for protection. In the recent years, commensal-derived primary and secondary bacterial metabolites emerged as potent modulators of hosts susceptibility to infection. Our results provide evidence that variations in SCFA production in mice fed fibre-rich chow-based diets modulate susceptibility to colonization with Enterobacteriaceae not only in antibiotic-disturbed ecosystems but even in undisturbed microbial communities. These findings emphasise the need for microbiota normalization across laboratory mouse lines for infection experiments with the model-pathogen C. rodentium independent of investigations of diet and antibiotic usage.


Asunto(s)
Citrobacter rodentium/crecimiento & desarrollo , Infecciones por Enterobacteriaceae/metabolismo , Ácidos Grasos/metabolismo , Microbioma Gastrointestinal , Animales , Ratones
19.
Mol Nutr Food Res ; 64(6): e1900873, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31945799

RESUMEN

SCOPE: Marine-derived n-3 PUFAs may ameliorate inflammation associated with inflammatory bowel diseases. Plant-derived n-3 PUFAs are thought to be inferior owing to shorter chain lengths. The aim of this study is to compare the impact of plant- and fish-derived PUFAs on murine colitis. METHODS AND RESULTS: C57BL/6 mice are fed high fat (36% kcal) diets with either 2.5% w/w sunflower oil (SO), flaxseed oil (FSO), ahiflower oil (AO), or fish oil (FO). After 4 weeks, mice are orogastrically challenged with Citrobacter rodentium (108 CFU) or sham gavaged. Fecal shedding is assayed at 2, 7, 10, and 14 days post infection (PI), and fecal microbiota at 14 days PI. Colonic inflammation and lipid mediators are measured. Supplementation regulates intestinal inflammation with crypt lengths being 66, 73, and 62 ±17 µm shorter (compared to SO) for FSO, AO, and FO respectively, p < 0.01. FSO blunts pathogen shedding at the peak of infection and FSO and AO both enhance fecal microbial diversity. FO attenuates levels of lipoxin and leukotriene B4 while plant oils increase pro-resolving mediator concentrations including D, E, and T-series resolvins. CONCLUSION: Plant and fish n-3 PUFAs attenuate colitis-induced inflammation while exhibiting characteristic pro-resolving lipid mediator metabolomes. Plant oils additionally promote microbial diversity.


Asunto(s)
Citrobacter rodentium/patogenicidad , Colitis/dietoterapia , Ácidos Grasos Omega-3/farmacología , Aceites de Pescado/farmacología , Aceites de Plantas/farmacología , Animales , Derrame de Bacterias/efectos de los fármacos , Colitis/microbiología , Colitis/patología , Colon/efectos de los fármacos , Colon/metabolismo , Suplementos Dietéticos , Infecciones por Enterobacteriaceae/dietoterapia , Mediadores de Inflamación/metabolismo , Aceite de Linaza/química , Aceite de Linaza/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Aceite de Girasol/farmacología
20.
Nutr Res ; 73: 27-37, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31841745

RESUMEN

The pomegranate fruit peel is a rich source of polyphenols including punicalins, punicalagins, and ellagic acids, but is considered an agricultural waste product. Pomegranate derived products have been reported to have a wide variety of health promoting benefits including antibacterial properties in vitro but there is limited evidence of their antibacterial properties in vivo. The purpose of this study was to test the in vivo antibacterial properties of a pomegranate peel extract (PPX) containing punicalin, punicalagin, and ellagic acid. C3H/He mice were orally pre-treated with water or PPX prior to infection with the mouse bacterial pathogen, Citrobacter rodentium (Cr) that mimics many aspects of human enteropathogenic Escherichia coli infections. Fecal excretion of Cr was monitored and mice were euthanized on day 12 post-infection to assess Cr colonization of the colon and spleen, histological changes, and gene expression. PPX-treatment reduced Cr infection induced weight loss and mortality that was observed in water-treated infected mice. However, Cr colonization of the colon and clearance was unaffected by PPX-treatment. Consistent with this, PPX treatment did not alter the potent Th1/Th17 pro-inflammatory response elicited by Cr infection. Significant colonization of the spleen was only seen in water-treated infected mice and was inversely correlated with the dose of PPX administered. PPX treatment decreased the extent of Cr-induced colon damage that correlated with decreased mortality and reduced colonization of the spleen. Thus, a pomegranate peel extract contains bioactive compounds that mitigate the deleterious effects of an in vivo infection with the model enteropathogenic bacteria, Cr.


Asunto(s)
Traslocación Bacteriana/efectos de los fármacos , Citrobacter rodentium , Colitis/tratamiento farmacológico , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Extractos Vegetales/farmacología , Granada (Fruta) , Animales , Colon/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C3H
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA