Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pharm Res ; 41(3): 557-566, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302834

RESUMEN

PURPOSE: Green tea is a widely consumed beverage. A recent clinical study reported green tea decreased systemic exposure of raloxifene and its glucuronide metabolites by 34-43%. However, the underlying mechanism(s) remains unknown. This study investigated a change in raloxifene's solubility as the responsible mechanism. METHODS: The effects of green tea extract, (-)-epigallocatechin gallate (EGCG), and (-)-epigallocatechin (EGC) on raloxifene's solubility were assessed in fasted state simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluids (FeSSIF). EGCG and EGC represent green tea's main bioactive constituents, flavan-3-gallate and flavan-3-ol catechins respectively, and the tested concentrations (mM) match the µg/mg of each compound in the extract. Our mouse study (n = 5/time point) evaluated the effect of green tea extract and EGCG on the systemic exposure of raloxifene. RESULTS: EGCG (1 mM) and EGC (1.27 mM) decreased raloxifene's solubility in FaSSIF by 78% and 13%, respectively. Micelle size in FaSSIF increased with increasing EGCG concentrations (> 1000% at 1 mM), whereas EGC (1.27 mM) did not change micelle size. We observed 3.4-fold higher raloxifene solubility in FeSSIF compared to FaSSIF, and neither green tea extract nor EGCG significantly affected raloxifene solubility or micelle size in FeSSIF. The mice study showed that green tea extract significantly decreased raloxifene Cmax by 44%, whereas EGCG had no effect. Green tea extract and EGCG did not affect the AUC0-24 h of raloxifene or the metabolite-to-parent AUC ratio. CONCLUSIONS: This study demonstrated flavan-3-gallate catechins may decrease solubility of poorly water-soluble drugs such as raloxifene, particularly in the fasted state.


Asunto(s)
Catequina , , Ratones , Animales , Catequina/análisis , Catequina/metabolismo , Catequina/farmacología , Clorhidrato de Raloxifeno/farmacología , Solubilidad , Micelas , Antioxidantes , Extractos Vegetales/farmacología
2.
J Endocrinol Invest ; 47(3): 709-720, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37672168

RESUMEN

PURPOSE: Selective androgen (ostarine, OST) and estrogen (raloxifene, RAL) receptor modulators with improved tissue selectivity have been developed as alternatives to hormone replacement therapy. We investigated the combined effects of OST and RAL on muscle tissue in an estrogen-deficient rat model of postmenopausal conditions. METHODS: Three-month-old Sprague Dawley rats were divided into groups: (1) untreated non-ovariectomized rats (Non-OVX), (2) untreated ovariectomized rats (OVX), (3) OVX rats treated with OST, (4) OVX rats treated with RAL, (5) OVX rats treated with OST and RAL. Both compounds were administered in the diet. The average dose received was 0.6 ± 0.1 mg for OST and 11.1 ± 1.2 mg for RAL per kg body weight/day. After thirteen weeks, rat activity, muscle weight, structure, gene expression, and serum markers were analyzed. RESULTS: OST increased muscle weight, capillary ratio, insulin-like growth factor 1 (Igf-1) expression, serum phosphorus, uterine weight. RAL decreased muscle weight, capillary ratio, food intake, serum calcium and increased Igf-1 and Myostatin expression, serum follicle stimulating hormone (FSH). OST + RAL increased muscle nucleus ratio, uterine weight, serum phosphorus, FSH and luteinizing hormone and decreased body and muscle weight, serum calcium. Neither treatment changed muscle fiber size. OVX increased body and muscle weight, decreased uterine weight, serum calcium and magnesium. CONCLUSION: OST had beneficial effects on muscle in OVX rats. Side effects of OST on the uterus and serum electrolytes should be considered before using it for therapeutic purposes. RAL and RAL + OST had less effect on muscle and showed endocrinological side effects on pituitary-gonadal axis.


Asunto(s)
Anilidas , Factor I del Crecimiento Similar a la Insulina , Clorhidrato de Raloxifeno , Femenino , Ratas , Animales , Clorhidrato de Raloxifeno/farmacología , Calcio , Ratas Sprague-Dawley , Estrógenos/farmacología , Fibras Musculares Esqueléticas , Hormona Folículo Estimulante , Fósforo
3.
Clin Transl Sci ; 16(10): 1779-1790, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37639334

RESUMEN

Green tea is a popular beverage worldwide. The abundant green tea catechin (-)-epigallocatechin gallate (EGCG) is a potent in vitro inhibitor of intestinal UDP-glucuronosyltransferase (UGT) activity (Ki ~2 µM). Co-consuming green tea with intestinal UGT drug substrates, including raloxifene, could increase systemic drug exposure. The effects of a well-characterized green tea on the pharmacokinetics of raloxifene, raloxifene 4'-glucuronide, and raloxifene 6-glucuronide were evaluated in 16 healthy adults via a three-arm crossover, fixed-sequence study. Raloxifene (60 mg) was administered orally with water (baseline), with green tea for 1 day (acute), and on the fifth day after daily green tea administration for 4 days (chronic). Unexpectedly, green tea decreased the geometric mean green tea/baseline raloxifene AUC0-96h ratio to ~0.60 after both acute and chronic administration, which is below the predefined no-effect range (0.75-1.33). Lack of change in terminal half-life and glucuronide-to-raloxifene ratios indicated the predominant mechanism was not inhibition of intestinal UGT. One potential mechanism includes inhibition of intestinal transport. Using established transfected cell systems, a green tea extract normalized to EGCG inhibited 10 of 16 transporters tested (IC50 , 0.37-12 µM). Another potential mechanism, interruption by green tea of gut microbe-mediated raloxifene reabsorption, prompted a follow-up exploratory clinical study to evaluate the potential for a green tea-gut microbiota-drug interaction. No clear mechanisms were identified. Overall, results highlight that improvements in current models and methods used to predict UGT-mediated drug interactions are needed. Informing patients about the risk of co-consuming green tea with raloxifene may be considered.


Asunto(s)
Catequina , , Adulto , Humanos , Catequina/farmacología , Interacciones Farmacológicas , Glucurónidos , Clorhidrato de Raloxifeno/farmacología , Té/química , Estudios Cruzados
4.
In Vivo ; 37(3): 1156-1163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37103074

RESUMEN

BACKGROUND/AIM: Liver cancer is one of the malignancies with the highest mortality-to-incidence ratio worldwide. Therefore, novel therapeutic approaches are urgently needed. Combination therapy and drug repurposing can improve the response of the patients to therapy in several cancers. The aim of the present study was to merge these two strategies and evaluate whether the two-drug- or three-drug- combination of sorafenib, raloxifene, and loratadine improves the antineoplastic effect on human liver cancer cells in comparison to the single-drug effect. MATERIALS AND METHODS: The human liver cancer cell lines HepG2 and HuH7 were studied. The effect of sorafenib, raloxifene, and loratadine on the metabolic activity was determined using the MTT assay. The inhibitory concentrations (IC20 and IC50) were calculated from these results and used in the drug-combination experiments. Apoptosis and cell survival were studied by flow cytometry and using the colony formation assay, respectively. RESULTS: In both cell lines, sorafenib, raloxifene, and loratadine in two-drug and three-drug combinations significantly reduced metabolic activity and significantly increased the percentage of apoptotic cells compared to the single-drug effect. In addition, all the combinations significantly reduced the colony-forming capacity in the HepG2 cell line. Surprisingly, the effect of raloxifene on apoptosis was similar to that observed using the combinations. CONCLUSION: The triple combination sorafenib-raloxifene-loratadine may be a novel promising approach in the treatment of liver cancer patients.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenib/farmacología , Loratadina/farmacología , Loratadina/uso terapéutico , Clorhidrato de Raloxifeno/farmacología , Carcinoma Hepatocelular/patología , Proliferación Celular , Neoplasias Hepáticas/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral
5.
Microbiol Spectr ; 9(3): e0095121, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34908453

RESUMEN

Staphylococcus aureus is a versatile human commensal bacteria and pathogen that causes various community and hospital-acquired infections. The S. aureus efflux pump NorA which belongs to the major facilitator superfamily, confers resistance to a range of substrates. Many efflux pump inhibitors (EPIs) have been discovered, but none is clinically approved due to their undesirable toxicities. In this study, we have screened clinically approved drugs for possible NorA EPI-like activity. We identified six drugs that showed the best efflux pump inhibition in vitro, with a fractional inhibitory concentration index of ≤0.5, indicating synergism with hydrophilic fluoroquinolones. The mechanistic validation of efflux inhibitory potential was demonstrated in ethidium bromide-based accumulation and efflux inhibition assays. We further confirmed the functionality of EPIs by norfloxacin accumulation assay depicting more realistic proof of the conjecture. None of the EPIs disturbed membrane function or depleted the ATP synthesis levels in bacteria. Both raloxifene and pyrvinium displayed an increase in bactericidal activity of ciprofloxacin in time-kill kinetics, prolonged its post-antibiotic effect, and reduced the frequency of spontaneous resistant mutant development. The combination of EPIs with ciprofloxacin caused significant eradication of preformed biofilms. Moreover, in the murine thigh infection model, a single dose of pyrvinium combined with ciprofloxacin reduced the bacterial burden significantly compared to untreated control and ciprofloxacin alone, indicating the efficacy of the combination. Conclusively, this study represents approved drugs that can be repurposed and combined with antibiotics as NorA EPIs, having anti-biofilm properties to treat severe S. aureus infections at clinically relevant concentrations. IMPORTANCE Staphylococcus aureus is a frequent pathogen bacterium and the predominant cause of worsened nosocomial infections. Efflux pumps contribute to drug efflux and are reportedly associated with biofilm formation, thereby promoting difficult-to-treat biofilm-associated S. aureus infections. One strategy to combat these bacteria is to reduce active efflux and increase pathogen sensitivity to existing antibiotics. Repurposing approved drugs may solve the classical toxicity issues with previous efflux pump inhibitors and help reach sufficient plasma concentrations. We describe the in silico-based screening of FDA-approved drugs that identified six different molecules able to inhibit NorA pump (Major Facilitator Superfamily). Our study highlights that these compounds bind to and block the activity of the NorA pump and increase the sensitivity of S. aureus and methicillin-resistant S. aureus to fluoroquinolones. These drugs combined with fluoroquinolones significantly reduced the preformed biofilms and displayed significant efficacy in the murine thigh infection model when compared to untreated control and ciprofloxacin alone.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Portadoras/antagonistas & inhibidores , Reposicionamiento de Medicamentos , Fluoroquinolonas/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Ciprofloxacina/farmacología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Farmacorresistencia Bacteriana Múltiple/genética , Quimioterapia Combinada , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Norfloxacino/farmacología , Compuestos de Pirvinio/farmacología , Clorhidrato de Raloxifeno/farmacología , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo
6.
J Ethnopharmacol ; 275: 114096, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33823166

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The increasing use of "kidney"-nourishing Traditional Chinese Medicine (TCM) like Er-xian decoction (EXD) for management of menopausal symptoms and osteoporosis has aroused concerns about their safety, and whether they interact with prescription drugs as both of them act via estrogen receptors (ERs) and regulate serum estradiol. AIM OF THE STUDY: The present study aimed to evaluate whether EXD selectively exerted estrogenic activities and interacted with Selective Estrogen Receptor Modulators (SERMs). MATERIALS AND METHODS: In vivo, mature ovariectomized (OVX) rats were administrated with EXD or combined treatment of EXD and SERMs for 12 weeks. The tissue-selective effect of EXD and its interaction of SERMs were studied in four estrogen sensitive tissues, bone, brain, breast and uterus. In vitro, the interaction of extracts of EXD-treated serum and SERMs in four ER-positive cell lines. RESULTS: In OVX rats, EXD selectively alleviated estrogen deficiency-induced changes in the bone and brain without inducing any estrogenic effects in the breast or uterus. Two-way ANOVA indicated the presence of interactions between EXD and SERMs in OVX rats but EXD did not significantly alter the tissue responses to SERMs in the bone, breast or brain. Indeed, the combined use of EXD and SERMs appeared to suppress the estrogenic effect of raloxifene and tamoxifen in the uterus. Extract of EXD-treated serum directly stimulated cell proliferation or differentiation in human osteosarcoma MG-63, neuroblastoma SHSY5Y, breast cancer MCF-7, and endometrial Ishikawa cells. Two-way ANOVA revealed that EXD-treated serum interacted with SERMs at various concentrations and altered the effects of tamoxifen in MG-63 and MCF-7 cells. CONCLUSIONS: EXD exerted estrogenic effects in a tissue-selective manner and interacted with SERMs. Combined treatment of EXD and SERMs did not hamper the beneficial effects of SERMs on the bone or brain but appeared to moderate the estrogenic effect of SERMs in the uterus.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Estrógenos/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo , Mama/efectos de los fármacos , Mama/metabolismo , Mama/patología , Línea Celular Tumoral , Sistema Nervioso Central/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Estradiol/farmacología , Estradiol/uso terapéutico , Estrógenos/química , Estrógenos/uso terapéutico , Femenino , Interacciones de Hierba-Droga/fisiología , Hormonas/sangre , Humanos , Glándulas Mamarias Humanas/efectos de los fármacos , Medicina Tradicional China , Modelos Biológicos , Ovariectomía/efectos adversos , Clorhidrato de Raloxifeno/farmacología , Clorhidrato de Raloxifeno/uso terapéutico , Ratas Sprague-Dawley , Receptores de Estrógenos/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Útero/efectos de los fármacos , Útero/metabolismo , Útero/patología , Agua
7.
J Pharm Pharmacol ; 73(7): 901-915, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33769535

RESUMEN

OBJECTIVES: The study was aimed to evaluate the potential of hydroalcoholic extract of Pinus roxburghii (PRE) stem bark in post-menopausal osteoporosis and its underlying mechanisms. METHODS: In silico docking of the markers was done using AutoDock version 4.2. for molecular targets: receptor activator of nuclear factor-κB (RANK), osteoprotegerin (OPG) and Cathepsin. Female Wistar rats of bodyweight 200-250 g were employed and surgical ovariectomy (OVX) was performed. PRE was administered at a dose of 100 and 200 mg/kg whereas standard drug, raloxifene given at 1 mg/kg orally for eight weeks. KEY FINDINGS: PRE (20 and 40 µg/mL) significantly increased the cellular proliferation in osteoblastic UMR cell lines 11.58 and 15.09% respectively. Eight weeks after surgical removal of ovaries, a significant bone porosity was confirmed by modulation in bone breaking strength of tibia, lumber, and femur; bone mineral density (BMD), calcium, phosphorus, hydroxyproline levels in OVX group. Treatment with PRE 100 and 200 mg/kg significantly restored the bone loss. Real-time polymerase chain reaction (RT-PCR) analysis of molecular markers RANK, OPG and cathepsin and histology also confirmed the attenuation of bone loss. The quantification of quercetin, gallic acid, caffeic acid, catechin, tannic acid and ascorbic acid was done by high-performance liquid chromatography (HPLC) and high performance thin layer chromatography. CONCLUSIONS: P. roxburghii produced anti-osteoporotic effect possibly due to estrogenic modulation, and improved bone remodeling.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Estrógenos/metabolismo , Osteoporosis Posmenopáusica , Pinus , Porosidad/efectos de los fármacos , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Animales , Densidad Ósea/efectos de los fármacos , Remodelación Ósea/efectos de los fármacos , Catepsinas/metabolismo , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/metabolismo , Osteoporosis Posmenopáusica/patología , Osteoprotegerina/metabolismo , Extractos Vegetales , Clorhidrato de Raloxifeno/farmacología , Ratas , Resultado del Tratamiento
8.
Future Med Chem ; 13(6): 533-542, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33527838

RESUMEN

Aim: As an important epigenetic modulator, histone lysine-specific demethylase 1 (LSD1) has been proved to be associated with the progression of renal cell carcinoma (RCC). Discovering novel LSD1 inhibitors offers therapeutic potential for RCC treatment. Methods & Results: We identified raloxifene as a novel LSD1 inhibitor (IC50 = 2.08 µM) through small compound library screening. Molecular docking indicated raloxifene might bind LSD1 in the flavin adenine dinucleotide (FAD) binding cavity in a reversible manner. Cell viability and migration assays showed raloxifene could suppress the proliferation and migration of RCC cells bearing overexpressed LSD1. Conclusion: Our findings indicated that LSD1 might be a promising therapeutic target for RCC and that raloxifene could serve as a lead compound for further anti-RCC metastasis drug discovery.


Asunto(s)
Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Histona Demetilasas/metabolismo , Clorhidrato de Raloxifeno/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Sitios de Unión , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Histona Demetilasas/antagonistas & inhibidores , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Simulación del Acoplamiento Molecular , Clorhidrato de Raloxifeno/química , Clorhidrato de Raloxifeno/farmacología
9.
Toxicol In Vitro ; 72: 105087, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33440186

RESUMEN

UDP glucuronosyltransferases (UGTs) of the gastrointestinal tract play a crucial role in protection against the toxic effects of xenobiotics in the environment. UGTs such as UGT1A8 and UGT1A10 are predominantly expressed in gastrointestinal tissues. In this study, we examined the phase II metabolism of raloxifene in differentiated Caco-2 monolayers by inducing UGT1A8 and UGT1A10 expression in these cells. The present study evaluated the following four flavonoids of Scutellaria baicalensis as model herbal compounds: scutellarein, salvigenin, baicalein, and wogonin. All test compounds, endpoint substrates, and their metabolites were quantified using liquid chromatography and high-resolution mass spectrometry. The transepithelial electrical resistance values for the individual compounds were comparable regardless of whether they were measured individually. Salvigenin significantly inhibited UGT1A8 and UGT1A10 activities in a concentration-dependent manner. All individual compounds except scutellarein inhibited UGT1A8 and UGT1A10 activity at a concentration of 100 µM. In addition, all individual flavonoids at 100 µM, except wogonin, significantly increased the amount of raloxifene in the basolateral chambers. The positive control, canagliflozin, significantly inhibited both UGT1A8 and UGT1A10 activities. These findings suggest that the Caco-2 assay can be utilized for identifying UGT1A8 and UGT1A10 inhibitors and indicate the potential of salvigenin for enhancing the pharmacological effects of UGT substrate drugs.


Asunto(s)
Flavonoides/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Interacciones de Hierba-Droga , Clorhidrato de Raloxifeno/farmacología , Scutellaria baicalensis , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Células CACO-2 , Glucurónidos/metabolismo , Glucuronosiltransferasa/metabolismo , Humanos , Intestinos/enzimología
10.
Endocrinology ; 162(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33269387

RESUMEN

Several neurodegenerative disorders are characterized by proteasome dysfunctions leading to protein aggregations and pathogenesis. Since we showed that estrogen receptor alpha (ERα) activates the proteasome, drugs able to stimulate ERα in the central nervous system (CNS) could hold potential for therapeutic intervention. However, the transcriptional effects of selective estrogen receptor modulators (SERMs), such as tamoxifen and raloxifene, can be tissue specific. A direct comparison of the effects of different SERMs on gene transcription in the CNS has never been performed. Here, we report an RNA-seq analysis of the spinal cord treated with estrogen, tamoxifen, or raloxifene. We find stark SERM and sex-specific differences in gene expression profiles in the spinal cord. Notably, raloxifene, but not estrogen or tamoxifen, modulates numerous deubiquitinating enzymes, proteasome subunits and assembly factors, and these effects translate into decreased protein aggregates. In the SOD1-G93A mouse model of amyotrophic lateral sclerosis, we found that even a low dose of raloxifene causes a significant decrease in mutant SOD1 aggregates in the spinal cord, accompanied by a delay in the decline of muscle strength in females, but not in males. These results strongly indicate SERM-selective as well as sex-specific effects, and emphasize the importance of sex as a biological variable to be considered for the careful selection of specific SERM for use in clinical trials for neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Clorhidrato de Raloxifeno/uso terapéutico , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Médula Espinal/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Masculino , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Clorhidrato de Raloxifeno/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Caracteres Sexuales , Médula Espinal/enzimología , Ubiquitinación/efectos de los fármacos
11.
Antiviral Res ; 186: 104990, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249093

RESUMEN

The endocytic pathway is a common strategy that several highly pathogenic viruses use to enter into the cell. To demonstrate the usefulness of this pathway as a common target for the development of broad-spectrum antivirals, the inhibitory effect of drug compounds targeting endosomal membrane proteins were investigated. This study entailed direct comparison of drug effectiveness against animal and human pathogenic viruses, namely Ebola (EBOV), African swine fever virus (ASFV), and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A panel of experimental and FDA-approved compounds targeting calcium channels and PIKfyve at the endosomal membrane caused potent reductions of entry up to 90% in SARS-CoV-2 S-protein pseudotyped retrovirus. Similar inhibition was observed against transduced EBOV glycoprotein pseudovirus and ASFV. SARS-CoV-2 infection was potently inhibited by selective estrogen receptor modulators in cells transduced with pseudovirus, among them Raloxifen inhibited ASFV with very low 50% inhibitory concentration. Finally, the mechanism of the inhibition caused by the latter in ASFV infection was analyzed. Overall, this work shows that cellular proteins related to the endocytic pathway can constitute suitable cellular targets for broad range antiviral compounds.


Asunto(s)
Virus de la Fiebre Porcina Africana/efectos de los fármacos , Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Endosomas/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Virus de la Fiebre Porcina Africana/fisiología , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Colesterol/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ebolavirus/fisiología , Endocitosis/efectos de los fármacos , Endosomas/metabolismo , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Clorhidrato de Raloxifeno/farmacología , Receptores de Estrógenos/metabolismo , SARS-CoV-2/fisiología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Células Vero
12.
Sci Rep ; 10(1): 16551, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024171

RESUMEN

The neurodegenerative Alzheimer's disease (AD) affects more than 30 million people worldwide. There is thus far no cure or prevention for AD. Aggregation of hyperphosphorylated tau in the brain correlates with the cognitive decline of patients of AD and other neurodegenerative tauopathies. Intracerebral injection of tau aggregates isolated from tauopathy brains causes similar pathology in the recipient mice, demonstrating the pathogenic role of abnormally phosphorylated tau. Compounds controlling the aggregation of hyperphosphorylated tau therefore are probable modulators for the disease. Here we report the use of recombinant hyperphosphorylated tau (p-tau) to identify potential tauopathy therapeutics and risk factors. Hyperphosphorylation renders tau prone to aggregate and to impair cell viability. Taking advantage of these two characters of p-tau, we performed a screen of a 1280-compound library, and tested a selective group of prescription drugs in p-tau aggregation and cytotoxicity assays. R-(-)-apomorphine and raloxifene were found to be p-tau aggregation inhibitors that protected p-tau-treated cells. In contrast, a subset of benzodiazepines exacerbated p-tau cytotoxicity apparently via enhancing p-tau aggregation. R-(-)apomorphine and raloxifene have been shown to improve cognition in animals or in humans, whereas benzodiazepines were linked to increased risks of dementia. Our results demonstrate the feasibility and potential of using hyperphosphorylated tau-based assays for AD drug discovery and risk factor identification.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Apomorfina/farmacología , Cognición/efectos de los fármacos , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos , Medicamentos bajo Prescripción/farmacología , Agregado de Proteínas/efectos de los fármacos , Clorhidrato de Raloxifeno/farmacología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Apomorfina/uso terapéutico , Benzodiazepinas/efectos adversos , Humanos , Fosforilación/efectos de los fármacos , Medicamentos bajo Prescripción/uso terapéutico , Clorhidrato de Raloxifeno/uso terapéutico , Factores de Riesgo
13.
Sci Rep ; 10(1): 4864, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32184468

RESUMEN

Excessive phosphorus intake adversely affects bone and mineral metabolism. Estrogen is one of the factors affecting fibroblast growth factor 23 (FGF23), a phosphorus-regulating hormone. However, the interaction between excess phosphorus and estrogen status has not been fully elucidated. This study investigated the involvement of estrogen in the effects of high phosphorus intake on bone metabolism and ectopic calcification in ovariectomized (OVX) rats. The interaction between high phosphorus diet and OVX was not observed in bone mineral density and aortic calcium. In contrast, high phosphorus intake markedly increased renal calcium concentration in sham rats, whereas the effect was attenuated in OVX rats, which was reversed by a selective estrogen-receptor modulator treatment. A strong positive correlation between renal calcium and serum FGF23 was observed. In addition, fibroblast growth factor receptor 1 (FGFR1: a predominant receptor of FGF23) inhibitor treatment partially decreased renal calcium concentrations in rats with high phosphorus intake. In conclusion, the effect of high phosphorus intake on bone metabolism and aortic calcification did not depend on the estrogen status; in contrast, high phosphorus intake synergistically induced nephrocalcinosis in the presence of estrogenic action on the bone. Furthermore, FGF23 was involved in the nephrocalcinosis induced by high phosphorus intake partially through FGFR1 signaling.


Asunto(s)
Estrógenos/metabolismo , Factores de Crecimiento de Fibroblastos/sangre , Nefrocalcinosis/metabolismo , Fósforo/efectos adversos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Aorta/metabolismo , Densidad Ósea/efectos de los fármacos , Calcio/metabolismo , Modelos Animales de Enfermedad , Femenino , Factores de Crecimiento de Fibroblastos/efectos de los fármacos , Nefrocalcinosis/sangre , Nefrocalcinosis/inducido químicamente , Ovariectomía/efectos adversos , Pirimidinas/farmacología , Clorhidrato de Raloxifeno/farmacología , Ratas
14.
Phytomedicine ; 53: 286-293, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30668409

RESUMEN

BACKGROUND: Osteoporosis is a systemic skeletal disease of fragility fractures due to the loss of mass and deterioration of the microarchitecture of bone. PURPOSE: The aim of the study was to assess the osteogenic effects and the underlying mechanisms of the combined administration of You-Gui Yin (YGY) and Raloxifene hydrochloride (RLX) in ovariectomized (OVX) mice. METHODS: First, a classic animal model was used to mimic postmenopausal osteoporosis through the removal of the ovary of mice. Second, the OVX mice were administered YGY, RLX, and YGY + RLX for 12 weeks. Next, the bone microtomographic histomorphometry and bone mineral density (BMD) were assessed by micro-CT, and the biochemical markers of procollagen type I N-terminal propeptide (P1NP) and beta-isomerized C-telopeptide (ß-CTX) in serum were assessed. Finally, primary bone marrow stromal cells (BMSCs) were isolated from the tibia and cultured to evaluate cell proliferation and osteogenic differentiation. RESULTS: The results showed that BMD on the YGY + RLX group was higher than that on the RLX group (p < 0.05) and did not have a significant difference when compared with the sham group. Notably, the YGY + RLX group had a dramatically increased trabecular number (Tb.N) compared with that of the YGY group (p < 0.05). Moreover, the BV/TV (bone volume/total volume) and Tb.N in the YGY + RLX group were higher than that in the RLX group (p < 0.05), and the Tb.Sp (trabecular separation) was lower than that in the RLX group (p < 0.05). Moreover, the serum level of P1NP from the YGY + RLX group dramatically increased when compared with that from the YGY and RLX groups (YGY group: p < 0.05; RLX groups: p < 0.01). Notably, there was no significant difference between the YGY and YGY + RLX groups. In addition, cell proliferation from the co-administration of YGY and RLX was clearly higher than a single use of YGY and RLX (p < 0.01, respectively). The ALP/BCA (alkaline phosphatase/bicinchoninic acid) in the YGY + RLX group was higher than that in the RLX group (p < 0.01). CONCLUSION: Overall, co-administered YGY and RLX could partially attenuate bone loss and were more effective than individually using either one; this outcome might be associated with the proliferation and osteogenic differentiation of BMSCs.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Medicamentos Herbarios Chinos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Clorhidrato de Raloxifeno/farmacología , Animales , Densidad Ósea/efectos de los fármacos , Resorción Ósea/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Medicamentos Herbarios Chinos/química , Femenino , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Osteogénesis/efectos de los fármacos , Osteoporosis/metabolismo , Osteoporosis/patología , Ovariectomía , Tibia/diagnóstico por imagen , Tibia/efectos de los fármacos
15.
Med Hypotheses ; 122: 10-15, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30593388

RESUMEN

Methotrexate (MTX), an antifolate, is the anchor drug for the treatment of rheumatoid arthritis (RA). It is inexpensive, effective, and generally safe. When clinical response is inadequate, biological therapies are commonly used in combination with MTX. However, biological agents have safety concerns (i.e. infections, malignancy) and the addition of a biologic agent is expensive, making strategies to improve MTX efficacy important. Inhibition of pathways of folate metabolism involving purine metabolism by MTX, have been traditionally emphasized as important in MTX efficacy. However, inhibition MTX catabolism may also be important. MTX is irreversibly hydroxylated to form 7-hydroxy methotrexate (7-OH-MTX) by aldehyde oxidase (EC 1.2.3.1) (AOX). Catabolism of MTX to 7-OH-MTX is the first metabolic process imposed on an oral dose of MTX and will alter subsequent interactions of MTX with other enzymes. 7-OH-MTX is less potent than MTX in the treatment of rat adjuvant arthritis. RA patients with a low capacity to catabolize MTX to 7-OH-MTX do better clinically than individuals who are rapid formers of 7-OH-MTX. Therefore, altering the catabolism of MTX may be an innovative way to improve MTX efficacy. Raloxifene is a FDA-approved therapy for postmenopausal osteoporosis and for the reduction of invasive breast cancers but has no known activity in RA. Raloxifene is a potent inhibitor of human liver AOX. Postmenopausal women with RA frequently have low bone mineral density and would be candidates for raloxifene and MTX combination therapy. The effect of raloxifene on MTX metabolism has never been studied. Our hypothesis is that in postmenopausal women with RA and osteoporosis treated with MTX and raloxifene, the inhibition of AOX with resultant decreased formation of 7-OH MTX; will increase MTX levels and improve MTX efficacy. This hypothesis could be studied in an open-label, proof of concept clinical study in individuals before and after the addition of raloxifene. Red blood cell MTX and 7-OH-MTX levels and RA disease activity (DAS28) would be measured. In possible future studies, there are dietary substances, as supplements, (e.g. epigallocatechin gallate in green tea and resveratrol) which inhibit human liver AOX which could be evaluated.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Metotrexato/farmacología , Animales , Antirreumáticos/farmacología , Artritis Reumatoide/metabolismo , Productos Biológicos/uso terapéutico , Quimioterapia Combinada , Femenino , Ácido Fólico/química , Antagonistas del Ácido Fólico/farmacología , Humanos , Leucovorina/química , Masculino , Metotrexato/análogos & derivados , Metotrexato/metabolismo , Osteoporosis/tratamiento farmacológico , Purinas/química , Clorhidrato de Raloxifeno/farmacología , Ratas , Ratas Endogámicas Lew , Resultado del Tratamiento
16.
Drug Metab Dispos ; 46(5): 552-560, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29467215

RESUMEN

Green tea (Camellia sinensis) is a popular beverage worldwide, raising concern for adverse interactions when co-consumed with conventional drugs. Like many botanical natural products, green tea contains numerous polyphenolic constituents that undergo extensive glucuronidation. As such, the UDP-glucuronosyltransferases (UGTs), particularly intestinal UGTs, represent potential first-pass targets for green tea-drug interactions. Candidate intestinal UGT inhibitors were identified using a biochemometrics approach, which combines bioassay and chemometric data. Extracts and fractions prepared from four widely consumed teas were screened (20-180 µg/ml) as inhibitors of UGT activity (4-methylumbelliferone glucuronidation) in human intestinal microsomes; all demonstrated concentration-dependent inhibition. A biochemometrics-identified fraction rich in UGT inhibitors from a representative tea was purified further and subjected to second-stage biochemometric analysis. Five catechins were identified as major constituents in the bioactive subfractions and prioritized for further evaluation. Of these catechins, (-)-epicatechin gallate and (-)-epigallocatechin gallate showed concentration-dependent inhibition, with IC50 values (105 and 59 µM, respectively) near or below concentrations measured in a cup (240 ml) of tea (66 and 240 µM, respectively). Using the clinical intestinal UGT substrate raloxifene, the Ki values were ∼1.0 and 2.0 µM, respectively. Using estimated intestinal lumen and enterocyte inhibitor concentrations, a mechanistic static model predicted green tea to increase the raloxifene plasma area under the curve up to 6.1- and 1.3-fold, respectively. Application of this novel approach, which combines biochemometrics with in vitro-in vivo extrapolation, to other natural product-drug combinations will refine these procedures, informing the need for further evaluation via dynamic modeling and clinical testing.


Asunto(s)
Camellia sinensis/química , Glucuronosiltransferasa/antagonistas & inhibidores , Glucuronosiltransferasa/metabolismo , Mucosa Intestinal/metabolismo , Extractos Vegetales/farmacología , Clorhidrato de Raloxifeno/farmacología , Té/química , Bebidas , Catequina/análogos & derivados , Catequina/farmacología , Interacciones Farmacológicas/fisiología , Humanos , Himecromona/farmacología , Intestinos/efectos de los fármacos , Microsomas/efectos de los fármacos , Microsomas/metabolismo
17.
Osteoporos Int ; 28(3): 1109-1119, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27796444

RESUMEN

This study investigated the effects of raloxifene and alendronate to follow parathyroid hormone (PTH) on bone collagen and biomechanical properties in ovariectomized rabbits. Sequential treatments of raloxifene and alendronate after hPTH(1-34) treatment improved biomechanical properties with and without bone collagen improvement, respectively. INTRODUCTION: The standard sequential treatment to follow human parathyroid hormone (hPTH) (1-34) therapy for osteoporosis has yet to be determined. The objective of this study was to compare the effects of raloxifene and alendronate treatments to follow daily hPTH(1-34) treatment on non-enzymatic collagen cross-links, bone mass, and bone strength in ovariectomized (OVX) rabbits. METHODS: From 3 months after ovariectomy, seven month-old female New Zealand white rabbits were given either vehicle or hPTH(1-34) (8 µg/kg/day), once daily for 5 months. After hPTH(1-34) treatment, the hPTH(1-34)-treated animals were divided into two groups, and given raloxifene (10 mg/kg, daily) orally or alendronate (100 µg/kg, twice weekly) subcutaneously for 5 months. We evaluated bone mineral density (BMD), bone structural parameters, advanced glycation end product (AGE) content in collagen, and bone mechanical parameters including intrinsic parameters in the femur. RESULTS: Raloxifene (hPTH/RLX) and alendronate (hPTH/ALN) to follow hPTH(1-34) increased cortical thickness, maximum load, and maximum stress and decreased endocortical surface in the diaphysis, in addition to increasing total BMD in the distal metaphysis. Decreased trabecular AGE, pentosidine, and homocysteine contents and increased toughness and breaking energy were noted with hPTH/RLX treatment only. With hPTH/ALN treatment, no effects on non-enzymatic collagen cross-link AGEs were noted although increases in stiffness and elastic modulus were observed. CONCLUSION: These results suggest that sequential treatments with hPTH(1-34) and antiresorptive drugs (raloxifene and alendronate) have a beneficial effect on bone mass and biomechanical properties in OVX rabbits.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Densidad Ósea/efectos de los fármacos , Colágeno/efectos de los fármacos , Alendronato/administración & dosificación , Alendronato/farmacología , Animales , Biomarcadores/metabolismo , Fenómenos Biomecánicos , Densidad Ósea/fisiología , Conservadores de la Densidad Ósea/administración & dosificación , Colágeno/metabolismo , Esquema de Medicación , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , Femenino , Fémur/efectos de los fármacos , Fémur/patología , Fémur/fisiopatología , Productos Finales de Glicación Avanzada/efectos de los fármacos , Productos Finales de Glicación Avanzada/metabolismo , Ovariectomía , Conejos , Clorhidrato de Raloxifeno/administración & dosificación , Clorhidrato de Raloxifeno/farmacología , Estrés Mecánico , Teriparatido/farmacología , Soporte de Peso
18.
Neurotoxicology ; 56: 64-75, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27395752

RESUMEN

Selective estrogen receptor modulators (SERMs) are a class of therapeutic chemicals which present tissue-specific estrogen receptor modulating activity. Neonatal exposure to SERMs has been reported to adversely affect central nervous system development, however, mechanism and involvement of hypothalamic kisspeptin neurone in this impairment remains undetermined. To clarify this uncertainty, neonates from female Donryu rats were subcutaneously injected with raloxifene (RLX) at 0.1, 1, and 10mg/kg or tamoxifen (TMX) at 10mg/kg on postnatal day 0, and then hypothalamic KiSS1 mRNA expression and gonadotropin levels were investigated during young adulthood and estrous cycling was monitored until middle age. Treatment with RLX or TMX at 10mg/kg significantly depressed luteinizing hormone surge levels and KiSS1 mRNA expression in the anteroventral periventricular nucleus (AVPV), the control center of estrous cyclicity. The 10mg/kg TMX group also showed decreased levels of follicle-stimulating hormone and KiSS1 mRNA expression in the arcuate nucleus (ARC). Early cessation of normal estrous cycling was observed in the 10mg/kg RLX group, while the estrous cycle in the 10mg/kg TMX group had ceased by the start of the analysis. The same dose of tamoxifen or raloxifene had either weak-estrogenic or anti-estrogenic activity on the uterus, respectively; however, treatment in adulthood with both SERMs did not affect KiSS1 mRNA expression in either the AVPV or ARC in the present study. These results indicate that neonatal exposure to SERMs could disrupt neuroendocrine development and postnatal reproductive function through the alteration of kisspeptin neurons.


Asunto(s)
Discapacidades del Desarrollo/inducido químicamente , Enfermedades del Sistema Endocrino/inducido químicamente , Hipotálamo/patología , Kisspeptinas/metabolismo , Neuronas/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/toxicidad , Factores de Edad , Animales , Animales Recién Nacidos , Peso Corporal/efectos de los fármacos , Discapacidades del Desarrollo/patología , Modelos Animales de Enfermedad , Enfermedades del Sistema Endocrino/patología , Estradiol/análogos & derivados , Estradiol/farmacología , Ciclo Estral/efectos de los fármacos , Femenino , Hormonas/metabolismo , Hipotálamo/efectos de los fármacos , Kisspeptinas/genética , Neuronas/efectos de los fármacos , Ovariectomía , Embarazo , Progesterona/farmacología , Clorhidrato de Raloxifeno/farmacología , Ratas , Tamoxifeno/farmacología
19.
Bioorg Med Chem ; 24(4): 759-67, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26795112

RESUMEN

Raloxifene, a selective estrogen receptor modulator (SERM), reduces fracture risk at least in part by improving the mechanical properties of bone in a cell- and estrogen receptor-independent manner. In this study, we determined that raloxifene directly interacts with the bone tissue. Through the use of multiple and complementary biophysical techniques including nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR), we show that raloxifene interacts specifically with the organic component or the organic/mineral composite, and not with hydroxyapatite. Structure-activity studies reveal that the basic side chain of raloxifene is an instrumental determinant in the interaction with bone. Thus, truncation of portions of the side chain reduces bone binding and also diminishes the increase in mechanical properties. Our results support a model wherein the piperidine interacts with bone matrix through electrostatic interactions with the piperidine nitrogen and through hydrophobic interactions (van der Waals) with the aliphatic groups in the side chain and the benzothiophene core. Furthermore, in silico prediction of the potential binding sites on the surface of collagen revealed the presence of a groove with sufficient space to accommodate raloxifene analogs. The hydroxyl groups on the benzothiophene nucleus, which are necessary for binding of SERMs to the estrogen receptor, are not required for binding to the bone surface, but mediate a more robust binding of the compound to the bone powder. In conclusion, we report herein a novel property of raloxifene analogs that allows them to interact with the bone tissue through potential contacts with the organic matrix and in particular collagen.


Asunto(s)
Matriz Ósea/efectos de los fármacos , Colágeno/metabolismo , Fémur/efectos de los fármacos , Clorhidrato de Raloxifeno/farmacología , Animales , Matriz Ósea/metabolismo , Colágeno/química , Perros , Durapatita/química , Fémur/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Piperidinas/química , Polilisina/química , Polilisina/metabolismo , Unión Proteica , Clorhidrato de Raloxifeno/metabolismo , Receptores de Estrógenos/metabolismo , Electricidad Estática , Relación Estructura-Actividad , Tiofenos/química
20.
Schizophr Res ; 168(3): 634-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25979306

RESUMEN

BACKGROUND: Evidence suggests that oestrogen plays a protective role against the development and severity of schizophrenia. However, while oestrogen may be beneficial as a treatment in schizophrenia, its chronic use is associated with side-effects. Selective oestrogen receptor modulators (SERMs) may provide an alternative, however little is known about the mechanism underlying their effects in schizophrenia. METHODS: We investigated the effect of raloxifene and tamoxifen on dopaminergic-induced disruptions of prepulse inhibition (PPI). PPI measures sensorimotor gating and PPI disruptions are considered an endophenotype for schizophrenia. Adult female Sprague-Dawley rats were either intact, ovariectomized (OVX), OVX and 17ß-oestradiol-treated, OVX and raloxifene-treated (low or high dose), or OVX and tamoxifen-treated (low or high dose). RESULTS: The dopamine D1/D2 receptor agonist, apomorphine (0, 0.1, 0.3 and 1mg/kg), caused the expected dose-dependent disruption in PPI in intact and OVX rats. This PPI disruption was prevented in OVX rats treated with 17ß-oestradiol, a high dose of raloxifene or a high dose of tamoxifen. In untreated OVX rats, average PPI was 55% after saline and 34% after 1mg/kg apomorphine treatment, a reduction of 21%. However, oestradiol-treated and raloxifene-treated OVX rats showed only a 7% PPI reduction, and tamoxifen-treated OVX rats had a 4% PPI reduction caused by apomorphine treatment. Startle amplitude was not different between the groups. CONCLUSION: The SERMs, raloxifene and tamoxifen, can prevent dopamine D1/D2 receptor-mediated disruptions of sensorimotor gating, similar to oestradiol. These data lend support for the use of SERMs as a treatment for schizophrenia.


Asunto(s)
Estradiol/farmacología , Estrógenos/farmacología , Inhibición Prepulso/efectos de los fármacos , Clorhidrato de Raloxifeno/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología , Estimulación Acústica , Animales , Apomorfina/farmacología , Agonistas de Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Estrógenos/metabolismo , Femenino , Ovariectomía , Inhibición Prepulso/fisiología , Distribución Aleatoria , Ratas Sprague-Dawley , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Reflejo de Sobresalto/efectos de los fármacos , Reflejo de Sobresalto/fisiología , Esquizofrenia/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA