Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 16(6): e0252904, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34143815

RESUMEN

Successful eutrophication control strategies need to address the limiting nutrient. We conducted a battery of laboratory and in situ nutrient-limitation tests with waters collected from 9 streams in an agricultural region of the upper Snake River basin, Idaho, USA. Laboratory tests used the green alga Raphidocelis subcapitata, the macrophyte Lemna minor (duckweed) with native epiphytes, and in situ nutrient-limitation tests of periphyton were conducted with nutrient-diffusing substrates (NDS). In the duckweed/epiphyte test, P saturation occurred when concentrations reached about 100 µg/L. Chlorophyll a in epiphytic periphyton was stimulated at low P additions and by about 100 µg/L P, epiphytic periphyton chlorophyll a appeared to be P saturated. Both duckweed and epiphyte response patterns with total N were weaker but suggested a growth stimulation threshold for duckweed when total N concentrations exceeded about 300 µg/L and approached saturation at the highest N concentration tested, 1300 µg/L. Nutrient uptake by epiphytes and macrophytes removed up to 70 and 90% of the N and P, respectively. The green algae and the NDS nutrient-limitation test results were mostly congruent; N and P co-limitation was the most frequent result for both test series. Across all tests, when N:P molar ratios >30 (mass ratios >14), algae or macrophyte growth was P limited; N limitation was observed at N:P molar ratios up to 23 (mass ratios up to 10). A comparison of ambient periphyton chlorophyll a concentrations with chlorophyll a accrued on control artificial substrates in N-limited streams, suggests that total N concentrations associated with a periphyton chlorophyll a benchmark for desirable or undesirable conditions for recreation would be about 600 to 1000 µg/L total N, respectively. For P-limited streams, the corresponding benchmark concentrations were about 50 to 90 µg/L total P, respectively. Our approach of integrating controlled experiments and matched biomonitoring field surveys was cost effective and more informative than either approach alone.


Asunto(s)
Araceae/fisiología , Chlorophyta/fisiología , Nitrógeno/análisis , Fósforo/análisis , Ríos/química , Biomasa , Clorofila A/biosíntesis , Ecosistema , Eutrofización , Idaho , Perifiton
2.
Molecules ; 25(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936538

RESUMEN

Microalgae are freshwater and marine unicellular photosynthetic organisms that utilize sunlight to produce biomass. Due to fast microalgal growth rate and their unique biochemical profiles and potential applications in food and renewable energy industries, the interest in microalgal research is rapidly increasing. Biochemical and genetic engineering have been considered to improve microalgal biomass production but these manipulations also limited microalgal growth. The aim of the study was the biochemical characterization of recently identified microalgal strain Planktochlorella nurekis with elevated cell size and DNA levels compared to wild type strain that was achieved by a safe non-vector approach, namely co-treatment with colchicine and cytochalasin B (CC). A slight increase in growth rate was observed in twelve clones of CC-treated cells. For biochemical profiling, several parameters were considered, namely the content of proteins, amino acids, lipids, fatty acids, ß-glucans, chlorophylls, carotenoids, B vitamins and ash. CC-treated cells were characterized by elevated levels of lipids compared to unmodified cells. Moreover, the ratio of carotenoids to chlorophyll a and total antioxidant capacity were slightly increased in CC-treated cells. We suggest that Planktochlorella nurekis with modified DNA levels and improved lipid content can be considered to be used as a dietary supplement and biofuel feedstock.


Asunto(s)
Biomasa , ADN/química , Lípidos/genética , Microalgas/genética , Biocombustibles , Clorofila A/biosíntesis , Clorofila A/química , ADN/genética , Lípidos/biosíntesis , Lípidos/química , Microalgas/química , Microalgas/metabolismo , Fotosíntesis/genética
3.
FEMS Microbiol Lett ; 366(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31899507

RESUMEN

The aim of our study was to establish the effect of selenium and betaine on the growth of D. salina, accumulation of photosynthetic pigments and antioxidant activity of the hydrophobic fraction. This approach was an attempt to demonstrate 'microalgae biostimulant' effects, similar to 'plant biostimulant' effects, i.e. increased tolerance to abiotic stress and enhanced accumulation of bioactive compounds. A high-throughput assay was done in 24-well microplates, at 15% NaCl and different concentrations of sodium selenite (0, 0.5, 2 and 8 µM) or betaine (0, 5, 50 and 500 µM). Both selenium and betaine induced a slight delay in algae growth during the actively growing stage but the final density reached similar values to the control. Betaine significantly enhanced (50%-100%) carotenoids and chlorophyll a accumulation, in a concentration depending manner. Antioxidant activity increased almost 3-fold in extracts of algae treated with 50 µM betaine. Selenium had a much more discrete effect than betaine on pigments biosynthesis. The antioxidant activity of the extracts increased 2-fold in the presence of Se compared to the control. Our work proves that it is possible to enhance production and activity of bioactive compounds from microalgae by using ingredients, which already proved to act as plant biostimulants.


Asunto(s)
Betaína/metabolismo , Chlorophyceae/efectos de los fármacos , Chlorophyceae/crecimiento & desarrollo , Clorofila A/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Selenio/metabolismo , Antioxidantes/análisis , Carotenoides/metabolismo , Chlorophyceae/metabolismo , Mezclas Complejas/química , Mezclas Complejas/aislamiento & purificación , Medios de Cultivo/química , Cloruro de Sodio/metabolismo
4.
PLoS One ; 13(10): e0205861, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30335803

RESUMEN

In controlled environment plant production facilities, elevating either light or CO2 levels generally has led to increased biomass and yield due to enhanced canopy photosynthesis. Today, advancements in light-emitting diodes (LEDs) have made this technology a viable option for both supplementary lighting in greenhouses and a sole lighting source in controlled environment chambers. Our study used tomato plants grown under both ambient CO2 (AC) and elevated CO2 (EC) conditions then exposed them to various CO2 and lighting treatments during both whole plant and leaf level measurements. Plants grown under EC reached the first flower developmental stage 8 days sooner and were approximately 15cm taller than those grown under AC. However, under AC plants had more leaf area while their dry weights were similar. Of note, under EC chlorophyll a and b were lower, as were carotenoids per unit leaf area. Whole plant analyses, under all CO2 challenges, showed that plants exposed to high-pressure sodium (HPS), red-blue LED, and red-white LED had similar photosynthesis, respiration, and daily carbon gain. Under different light qualities, day-time transpiration rates were similar among CO2 conditions. Day-time water-use efficiency (WUE) was higher in plants grown and exposed to EC. Similarly, WUE of plants grown under AC but exposed to short-term elevated CO2 conditions was higher than those grown and tested under AC during all light treatments. Under all CO2 conditions, plants exposed to red-white and red-blue LEDs had lower WUE than those exposed to HPS lighting. Assessing alterations due to CO2 and light quality on a whole plant basis, not merely on an individual leaf basis, furthers our understanding of the interactions between these two parameters during controlled environment production. Principle component analyses of both whole plant and leaf data indicates that increasing CO2 supply has a more dramatic effect on photosynthesis and WUE than on transpiration.


Asunto(s)
Dióxido de Carbono/farmacología , Iluminación/métodos , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Transpiración de Plantas/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Dióxido de Carbono/metabolismo , Carotenoides/biosíntesis , Clorofila A/biosíntesis , Ambiente Controlado , Luz , Solanum lycopersicum/fisiología , Solanum lycopersicum/efectos de la radiación , Fotosíntesis/fisiología , Fotosíntesis/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Transpiración de Plantas/fisiología , Transpiración de Plantas/efectos de la radiación , Análisis de Componente Principal , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA