Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(12): 18566-18578, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38349500

RESUMEN

Chlorpyrifos (CPF) poisoning is a public health problem for which there is not currently any effective prophylaxis. In this study, we investigated the protective effect of grape seed extract (GSE) against CPF-induced hepatotoxicity. Rats were daily treated either with CPF (2 mg/kg) or CPF and GSE (20 mg/kg) for 1 week, sacrificed, and their livers dissected for biochemical, molecular, and histopathological analyses. CPF generated liver dysfunction by altering carbohydrate, lipid, amino acid, ammonia and urea metabolism, and provoked mitochondrial impairment through disturbing tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and mitochondrial viability. CPF also induced cholinergic excitotoxicity along with oxidative stress and histopathological alterations. Interestingly, treatment with GSE prevented all the detrimental effects of CPF through the regulation of cytochrome P450 (CYP450) gene expression. Molecular docking analysis indicated that GSE-containing polyphenols acted as epigenetic modulators through inhibiting DNA (cytosine-5)-methyltransferase 1 (DNMT1), thus favoring the CYP2C6 detoxification pathway. Thereby, GSE might be a promising strategy in the protection of the liver against CPF toxicity.


Asunto(s)
Cloropirifos , Extracto de Semillas de Uva , Ratas , Animales , Cloropirifos/farmacología , Extracto de Semillas de Uva/farmacología , Extracto de Semillas de Uva/metabolismo , Fase I de la Desintoxicación Metabólica , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Antioxidantes/metabolismo , Hígado
2.
J Trace Elem Med Biol ; 81: 127346, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000167

RESUMEN

BACKGROUND: Chlorpyrifos (CPF) is a widely used insecticide that causes toxicity to living organisms through the production of free radicals. Cerium oxide nanoparticles (CeO2NPs) are a new antioxidant agent that has proved therapeutic effects. We evaluated the effect of CeO2NPs on CPF hepatotoxicity. METHODS: Forty rats were randomized into four groups. Group I: rats received 1 ml corn oil by gastric tube once daily and 0.5 ml PBS by intra-peritoneal injection twice a week for 4 weeks. Group II: received CeO2NPs 0.5 mg/kg in PBS by i.p. injection, twice weekly for four weeks. Group III: were treated with oral administration of CPF 13.5 mg/kg in corn oil daily for 4 weeks. Group IV: received CPF as in group III, then each animal received CeO2NPs twice weekly for four weeks as in group II. Twenty-four hours after the last dose, rats were anesthetized and sera were collected for liver enzymes assessment. Afterwards, rats were sacrificed, livers were excised, the right lobe of each liver was fixed for immunohistochemical studies, and the left lobe was homogenized for oxidative profile assessment and molecular analysis. RESULTS: CPF group showed significant increase in liver transaminases, disturbance of the oxidative profile with up-regulation of BAX expression and down-regulation in the Bcl-2, Gadd45 and NFE2L2. CPF caused severe histopathological liver damage as well as significant increase in anti-Caspase 3 and TNF immunostaining. The CeO2NPs treated group revealed significant improvement of all previous parameters. CONCLUSION: CeO2NPs could alleviate CPF hepatoxicity through decreasing expression of the inflammatory and apoptotic proteins and increasing the activity of antioxidant enzymes.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Cloropirifos , Nanopartículas , Ratas , Animales , Cloropirifos/toxicidad , Antioxidantes/farmacología , Aceite de Maíz/farmacología , Estrés Oxidativo , Nanopartículas/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico
3.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37958950

RESUMEN

In recent years, the phenomenon of acute poisoning and organ damage caused by organophosphorus pesticides (OPs) has been a frequent occurrence. Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides. The main active components of ginseng stems and leaves are total ginseng stem-and-leaf saponins (GSLSs), which have various biological effects, including anti-inflammatory, antioxidant and anti-tumor activities. We speculate that these could have great potential in the treatment of severe diseases and the relief of organophosphorus-pesticide-induced side effects; however, their mechanism of action is still unknown. At present, our work aims to evaluate the effects of GSLSs on the antioxidation of CPF in vivo and in vitro and their potential pharmacological mechanisms. Mice treated with CPF (5 mg/kg) showed severe intestinal mucosal injury, an elevated diamine oxidase (DAO) index, the decreased expression of occlusive protein-1 (ZO-1) and occlusive protein, an impaired intestinal mucosal oxidation system and intestinal villi relaxation. In addition, chlorpyrifos exposure significantly increased the contents of the inflammatory factor TNF-α and the oxidative-stress-related indicators superoxide dismutase (SOD), catalase (CAT), glutathione SH (GSH), glutathione peroxidase (GSH-PX), reactive oxygen species (ROS) and total antioxidant capacity (T-AOC); elevated the level of lipid peroxide malondialdehyde (MDA); reversed the expression of Bax and caspase; and activated NF-κB-related proteins. Interestingly, GSLS supplementation at doses of 100 and 200 mg/kg significantly reversed these changes after treatment. Similar results were observed in cultured RAW264.7 cells. Using flow cytometry, Hoechst staining showed that GSLSs (30 µg/mL, 60 µg/mL) could improve the cell injury and apoptosis caused by CPF and reduce the accumulation of ROS in cells. In conclusion, GSLSs play a protective role against CPF-induced enterotoxicity by inhibiting NF-κB-mediated apoptosis and alleviating oxidative stress and inflammation.


Asunto(s)
Cloropirifos , Panax , Plaguicidas , Saponinas , Ratones , Animales , Cloropirifos/toxicidad , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , FN-kappa B/metabolismo , Panax/metabolismo , Saponinas/farmacología , Compuestos Organofosforados/farmacología , Plaguicidas/farmacología , Estrés Oxidativo , Glutatión/metabolismo , Apoptosis , Hojas de la Planta/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-37770145

RESUMEN

Intensive use of chemical pesticides in agriculture poses environmental risks and may have negative impacts on agricultural productivity. The potential phytotoxicity of two chemical pesticides, chlorpyrifos (CPS) and fensulfothion (FSN), were evaluated using Cicer arietinum and Allium cepa as model crops. Different concentrations (0-100 µgmL-1) of both CPS and FSN decreased germination and biological attributes of C. arietinum. High pesticide doses significantly (p ≤ 0.05) caused membrane damage by producing thiobarbituric acid reactive substances (TBARS) and increasing proline (Pro) content. Pesticides elevated ROS levels and substantially increased the superoxide anions and H2O2 concentrations, thus aggravating cell injury. Plants exposed to high pesticide dosages displayed significantly higher antioxidant levels to combat pesticide-induced oxidative stress. Ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) increased by 48%, 93%, 71%, 52% and 94%, respectively, in C. arietinum roots exposed to 100 µgFSNmL-1. Under CLSM, pesticide-exposed C. arietinum and 2',7'-dichlorodihydrofluorescein diacetate (2'7'-DCF) and 3,3'-diaminobenzidine stained roots exhibited increased ROS production in a concentration-dependent manner. Additionally, enhanced Rhodamine 123 (Rhd 123) and Evan's blue fluorescence in roots, as well as changes in mitochondrial membrane potential (ΔΨm) and cellular apoptosis, were both associated with high pesticide dose. Allium cepa chromosomal aberration (CAs) assay showed a clear reduction in mitotic index (MI) and numerous chromosomal anomalies in root meristematic cells. Additionally, a-dose-dependent increase in DNA damage in root meristematic cells of A. cepa and conversion of the super-coiled form of DNA to open circular in pBR322 plasmid revealed the genotoxic potential of pesticides. The application of CPS and FSN suggests phytotoxic and cyto-genotoxic effects that emphasize the importance of careful monitoring of current pesticide level in soil before application and addition at optimal levels to soil-plant system. It is appropriate to prepare both target-specific and slow-release agrochemical formulations for crop protection with concurrent safeguarding of agroecosystems.


Asunto(s)
Cloropirifos , Insecticidas , Plaguicidas , Insecticidas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Antioxidantes/farmacología , Plaguicidas/toxicidad , Cebollas , Cloropirifos/metabolismo , Cloropirifos/farmacología , Daño del ADN , Suelo , Raíces de Plantas
5.
Pest Manag Sci ; 79(12): 4921-4930, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37532920

RESUMEN

BACKGROUND: The microbiomes of some arthropods are believed to eliminate pesticides by chemical degradation or stimulation of the host immune system. The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important agricultural pest with known resistance to used pesticides. We sought to analyze microbiome composition in CPB larvae from different sites and to identify the effect of pesticides on the microbiome of surviving and dead larvae after chlorpyrifos treatment in laboratory. Changes in the Lactococcus lactis community in larvae treated with chlorpyrifos and fed by potato leaves with L. lactis cover were studied by manipulative experiment. The microbiome was characterized by sequencing the 16S RNA gene. RESULTS: The microbiome of L. decemlineata larvae is composed of a few operational taxonomic units (OTUs) (Enterobacteriaceae, Pseudocitrobacter, Acinetobacter, Pseudomonas, L. lactis, Enterococcus, Burkholderia and Spiroplasma leptinotarsae). The microbiome varied among the samples from eight sites and showed differences in profiles between surviving and dead larvae. The survival of larvae after chlorpyrifos treatment was correlated with a higher proportion of L. lactis sequences in the microbiome. The S. leptinotarsa profile also increased in the surviving larvae, but this OTU was not present in all sampling sites. In manipulative experiments, larvae treated with L. lactis had five-fold lower mortality rates than untreated larvae. CONCLUSION: These results indicate that the microbiome of larvae is formed from a few bacterial taxa depending on the sampling site. A member of the gut microbiome, L. lactis, is believed to help overcome the toxic effects of chlorpyrifos in the larval gut. © 2023 Society of Chemical Industry.


Asunto(s)
Cloropirifos , Escarabajos , Microbioma Gastrointestinal , Plaguicidas , Solanum tuberosum , Animales , Larva , Plaguicidas/farmacología , Cloropirifos/farmacología , Solanum tuberosum/genética
6.
Chemosphere ; 337: 139286, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37379974

RESUMEN

The Ecuadorian Amazon has experienced a significant land use change due to the demographic increase and the expansion of the agricultural frontier. Such changes in land use have been associated to water pollution problems, including the emission of untreated urban wastewater and pesticides. Here we provide the first report on the influence of urbanization and intensive agriculture expansion on water quality parameters, pesticide contamination and the ecological status of Amazonian freshwater ecosystems of Ecuador. We monitored 19 water quality parameters, 27 pesticides, and the macroinvertebrate community in 40 sampling locations of the Napo River basin (northern Ecuador), including a nature conservation reserve and sites in areas influenced by African palm oil production, corn production and urbanization. The ecological risks of pesticides were assessed using a probabilistic approach based on species sensitivity distributions. The results of our study show that urban areas and areas dominated by African palm oil production have a significant influence on water quality parameters, affecting macroinvertebrate communities and biomonitoring indices. Pesticide residues were detected in all sampling sites, with carbendazim, azoxystrobin, diazinon, propiconazole and imidacloprid showing the largest prevalence (>80% of the samples). We found a significant effect of land use on water pesticide contamination, with residues of organophosphate insecticides correlating with African palm oil production and some fungicides with urban areas. The pesticide risk assessment indicated organophosphate insecticides (ethion, chlorpyrifos, azinphos-methyl, profenofos and prothiophos) and imidacloprid as the compounds posing the largest ecotoxicological hazard, with pesticide mixtures potentially affecting up to 26-29% of aquatic species. Ecological risks of organophosphate insecticides were more likely to occur in rivers surrounded by African palm oil plantations, while imidacloprid risks were identified in corn crop areas as well as in natural areas. Future investigations are needed to clarify the sources of imidacloprid contamination and to assess its effects for Amazonian freshwater ecosystems.


Asunto(s)
Cloropirifos , Insecticidas , Plaguicidas , Contaminantes Químicos del Agua , Plaguicidas/análisis , Ecuador , Insecticidas/análisis , Calidad del Agua , Ecosistema , Aceite de Palma , Urbanización , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agricultura , Agua Dulce , Ríos/química
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122878, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209480

RESUMEN

The trace level detection of adulterants in food, nutritional supplements and medicinal herbs is highly challenging in the field of food processing and herbal industries. In addition, laborious sample processing procedures and well trained personnel are required to analyse the samples using conventional analytical equipments. In this study, a highly sensitive technique with minimal sampling processes and human intervention is proposed for the trace amount detection of pesticidal residues in centella powder. Herein, graphene oxide gold (GO-Au) nanocomposite coated parafilm is developed as substrate by simple dropcasting technique to facilitate dual surface enhanced Raman signal. The dual SERS enhancement involving chemical enhancement from graphene and electromagnetic signal enhancement from gold nanoparticles is utilized for detection of chlorpyrifos in the ppm level concentration. The flexible polymeric surfaces could be the better choice for SERS substrates due to their inherent properties such as flexibility, transparency, roughness and hydrophobicity. Among the various types of flexible substrates explored, GO-Au nanocomposites coated parafilm substrates showed better Raman signal enhancement. Parafilm coated with GO-Au nanocomposites is successful in achieving detection limits down to 0.1 ppm of chlorpyrifos in centella herbal powder sample. Thus, the fabricated parafilm based GO-Au SERS substrates could be used as a screening tool at quality control of herbal product manufacturing sectors for trace level detection of adulterants in herbal samples from their unique chemical and structural information.


Asunto(s)
Centella , Cloropirifos , Nanopartículas del Metal , Humanos , Espectrometría Raman/métodos , Oro/química , Parafina , Polvos , Nanopartículas del Metal/química
8.
Ecotoxicology ; 32(3): 383-393, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36995476

RESUMEN

Despite their environmental implications, ecotoxicological information regarding pesticide mixtures is relatively scarce. This study aimed to determine the ecotoxicity of individual pesticide formulations and their mixtures (insecticides and fungicides), which are applied during the production cycle of potato, according to agricultural practices from a Latin American region in Costa Rica. Two benchmark organisms were employed: Daphnia magna and Lactuca sativa. First, the evaluation of individual formulations (chlorothalonil, propineb, deltamethrin+imidacloprid, ziram, thiocyclam and chlorpyrifos) revealed differences between available EC50 for active ingredients (a.i.) and their respective formulations toward D. magna; on the contrary, no information could be retrieved from scientific literature for comparison in the case of L. sativa. In general, acute toxicity was higher toward D. magna than L. sativa. Moreover, interactions could not be determined on L. sativa, as the chlorothalonil formulation was not toxic at high levels and the concentration-response to propineb could not be fitted to obtain an IC50 value. The commercial formulation composed of deltamethrin+imidacloprid followed the concentration addition model (when compared with parameters retrieved from individual a.i.) and the other three mixtures evaluated (I: chlorothalonil-propineb-deltamethrin+imidacloprid; II: chlorothalonil-propineb-ziram-thiocyclam; III: chlorothalonil-propineb-chlorpyrifos) produced an antagonistic effect on D. magna, thus suggesting less acute toxicity than their individual components. Subsequent chronic studies showed that one of the most toxic mixtures (II) negatively affected D. magna reproduction at sublethal concentrations indicating that this mixture poses a risk to this species if these pesticides co-exist in freshwater systems. These findings provide useful data to better estimate the impact of real agricultural practices related to the use of agrochemicals.


Asunto(s)
Cloropirifos , Plaguicidas , Solanum tuberosum , Ziram , Animales , Plaguicidas/toxicidad , Plaguicidas/análisis , Cloropirifos/toxicidad , Costa Rica , Ziram/farmacología , Daphnia
9.
Biol Trace Elem Res ; 201(4): 1772-1780, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35522419

RESUMEN

Chlorpyrifos (CPF), mainly exposed by oral, dermal, or inhalation, is a broad-spectrum organophosphate pesticide used in pest control, increasing agricultural productivity, and being considered toxic to living things. Selenium (Se), an essential component of selenoenzymes and selenoproteins, is an essential element that protects cells from oxidative stress and has antioxidant properties. The study aimed to examine the oxidative stress caused by different doses of CPF exposure in brain, liver, and kidney tissues while observing the healing effect of Se application on tissue damage and antioxidant levels. A total of 56 rats were divided into seven different groups: 1st group control (water); 2nd group sham (corn oil); the 3rd group was CPF-L (5.4 mg/kg CPF); the 4th group was CPF-H (13.5 mg/kg CPF); the 5th group was Se (3 mg/kg Se); 6th group was CPF-L + Se (5.4 mg/kg CPF + 3 mg/kg Se); the 7th group was CPF-H + Se (13.5 mg/kg CPF + 3 mg/kg Se). The brain, liver, and kidney tissues were obtained from rats sacrificed 6 weeks later. Acetylcholinesterase (AChE), oxidant, and antioxidant parameters were examined in the tissues. The results suggest that CPF causes neurotoxicity, hepatotoxicity, and renal toxicity by altering AChE levels, inducing lipid peroxidation, and decreasing antioxidant systems. Se treatment increased the activities of AChE and, antioxidant defense system and reduced the malondialdehyde (MDA) levels in the brain, liver, and kidney tissues of rats. Se was found to heal and also protect these tissues against these changes resulting from CPF exposure.


Asunto(s)
Cloropirifos , Insecticidas , Selenio , Ratas , Animales , Cloropirifos/toxicidad , Antioxidantes/farmacología , Antioxidantes/metabolismo , Selenio/farmacología , Acetilcolinesterasa/metabolismo , Estrés Oxidativo , Insecticidas/toxicidad
10.
Anim Biotechnol ; 34(3): 738-745, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34559034

RESUMEN

Chlorpyrifos is an organophosphate and the cypermethrin is type 2 pyrethroid insecticide that are used for indoor and outdoor pest control. The present study aimed to investigate differential transcriptional profiling to identify the candidate gene associated with lung injury following exposure to chlorpyrifos and/or cypermethrin in a mouse model system. Swiss male albino mice (n = 24) were divided into three treatment groups (n = 6 each) that were given chlorpyrifos (2.76 mg kg-1 body weight), cypermethrin (2 mg kg-1 body weight) and the combination of both pesticides orally dissolved in corn oil and one control group (n = 6) that received corn oil for 90 days. The pulmonary expression of the Apaf1 was observed using RT2 Profiler PCR Array. The results showed that chronic exposure to chlorpyrifos, cypermethrin and their combination downregulated (67, 63 and 66 genes) and upregulated (4, 2 and 2 genes), respectively. The pulmonary expression of Apaf1 that plays important role in apoptosis was found to be downregulated. The immunohistochemistry depicted reduced expression of Apaf1 in both airway epithelium and alveolar septa following exposure to chlorpyrifos and/or cypermethrin. In conclusion, results demonstrated that exposure to chlorpyrifos, cypermethrin and their combination cause lung damage by the dysregulation of Apaf1 gene expression.


Asunto(s)
Cloropirifos , Piretrinas , Ratones , Masculino , Animales , Cloropirifos/toxicidad , Cloropirifos/análisis , Regulación hacia Abajo , Aceite de Maíz/análisis , Piretrinas/toxicidad , Piretrinas/análisis , Pulmón
11.
Environ Pollut ; 320: 120760, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36464116

RESUMEN

Chlorpyrifos (CP) is a commonly used organophosphorous pesticide that is frequently utilised in the agricultural industry because of its great efficiency and inexpensive cost. The focus of the present study was to assess the impact of CP toxicity on Brassica juncea L. and to unravel the ameliorative potential of phytohormone, 24-epibrassinolide (EBL) mediated plant-microbe (Pseudomonas aeruginosa (B1), Burkholderia gladioli (B2)) interaction in B. juncea L. The maximum significant increment in the total chlorophyll, carotenoids, xanthophyll, anthocyanin and flavonoid content with EBL and B2 treatment in CP stressed B. juncea seedlings on spectrophotometric analysis were observed. Autofluorescence imaging of photosynthetic pigments i.e. chlorophyll, carotenoids, and total phenols with confocal microscopy showed maximum fluorescence with EBL and B2. Furthermore, when compared to CP stressed seedlings, scanning electron microscopy (SEM) study of the abaxial surface of leaves revealed a recovery in stomatal opening. The supplementation of EBL and PGPR (plant growth promoting rhizobacteria) improved the level of psb A (D1 subunit PSII) and psb B (CP 47 subunit of PSII) genes expression. The expression analysis of chalcone synthase (CHS), Phenylalanine ammonialyase (PAL), Phyotene synthase (PSY) with RT-PCR system showed up-regulation in the expression when supplemented with EBL and PGPR. As a result, the current study suggests that EBL and PGPR together, can reduce CP-induced toxicity in B. juncea seedlings and recovering the seedling biomass.


Asunto(s)
Cloropirifos , Cloropirifos/toxicidad , Cloropirifos/metabolismo , Planta de la Mostaza/metabolismo , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Plantones
12.
Aging (Albany NY) ; 14(22): 8982-8999, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36374217

RESUMEN

Chlorpyrifos (CPF) is a class of toxic compounds which has been widely used in agriculture that can cause multi-organ damage to the liver, kidneys, testes, and nervous system. Currently, most studies on ginseng have concentrated on the roots and rhizomes, and less research has been conducted on the above-ground parts. Our laboratory found that ginseng stem and leaf total saponin (GSLS) features strong antioxidant activity. In this experiment, we selected different concentrations of CPF to induce hippocampal neuronal cell injury model in mice, conducted a cell survival screening test, and also selected appropriate concentrations of CPF to induce brain injury model in mice. CCK-8, flow cytometry, Elisa, Hoechst 33258 staining, Annexin V-FITC/PI staining, HE staining, Morris water maze, and qRT-PCR were adopted for detecting the effects of GSLS treatment on CPF-induced cell viability, mitochondrial membrane potential, reactive oxygen species (ROS) levels, Ca2+ concentration and GSLS treatment on CPF-induced brain injury and related signaling in mice, respectively. The effects of GSLS treatment on CPF-induced brain injury and the related signaling pathways in mice were examined. The results showed that GSLS at 60 µg/ml and 125 µg/ml concentrations elevated the viability of CPF-induced HT22 cells, increased mitochondrial membrane potential, depleted ROS, decreased Ca2+ concentration, and decreased apoptosis rate. Meanwhile, GSLS treatment significantly reduced CPF-induced escape latency in mice, elevated the number of entries into the plateau and effective area, increased the effective area and target quadrant residence time, as well as improved the pathological damage of mouse hippocampal neurons. The results of mouse brain sections demonstrated that GSLS treatment significantly increased SOD and CAT activities and lowered MDA accumulation in CPF-induced mice. qRT-PCR revealed that PTEN mRNA expression was significantly decreased with PI3K and AKT expression being significantly increased in GSLS-treated CPF-induced mice. Thus, the obtained results indicate that GSLS can effectively antagonize CPF-induced brain toxicity in mice through regulating PTEN/PI3K/AKT pathway.


Asunto(s)
Lesiones Encefálicas , Cloropirifos , Panax , Saponinas , Animales , Ratones , Apoptosis , Encéfalo/metabolismo , Cloropirifos/toxicidad , Panax/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Hojas de la Planta/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saponinas/farmacología
13.
Toxicology ; 480: 153317, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36096317

RESUMEN

At high exposure levels, organophosphorus insecticides (OPs) exert their toxicity in mammals through the inhibition of brain acetylcholinesterase (AChE) leading to the accumulation of acetylcholine in cholinergic synapses and hyperactivity of the nervous system. Currently, there is a concern that low-level exposure to OPs induces negative impacts in developing children and the chemical most linked to these issues is chlorpyrifos (CPF). Our laboratory has observed that a difference in the susceptibility to repeated exposure to CPF exists between juvenile mice and rats with respect to the inhibition of brain AChE. The basis for this difference is unknown but differences in the levels of the detoxification mechanisms could play a role. To investigate this, 10-day old rat and mice pups were exposed daily for 7 days to either corn oil or a range of dosages of CPF via oral gavage. Four hours following the last administration of CPF on day 16, brain, blood, and liver were collected. The inhibition of brain AChE activity was higher in juvenile rats as compared to juvenile mice. The levels of activity of the detoxification enzymes and the impact of CPF exposure on their activity were determined in the two species at this age. In blood and liver, the enzyme paraoxonase-1 (PON1) hydrolyzes the active metabolite of CPF (CPF-oxon), and the enzymes carboxylesterase (CES) and cholinesterase (ChE) act as alternative binding sites for CPF-oxon removing it from circulation and providing protection. Both species had similar levels of PON1 activity in the liver and serum. Mice had higher ChE activity in liver and serum than rats but, following CPF exposure, the percentage inhibition was similar between species at an equivalent dosage. Even though rats had slightly higher liver CES activity than mice, the level of inhibition following exposure was higher in rats. In serum, juvenile mice had an 8-fold higher CES activity than rats, and exposure to a CPF dosage that almost eliminated CES activity in rats only resulted in 22% inhibition in mice suggesting that the high serum CES activity in mice as compared to rats is a key component in this species difference. In addition, there was a species difference in the sensitivity of CES to inhibition by CPF-oxon with rats having a lower IC50 in both liver and serum as compared to mice. This greater enzyme sensitivity suggests that saturation of CES would occur more rapidly in juvenile rats than in mice, resulting in more CPF reaching the brain to inhibit AChE in rats.


Asunto(s)
Cloropirifos , Insecticidas , Acetilcolina , Acetilcolinesterasa/metabolismo , Animales , Arildialquilfosfatasa , Carboxilesterasa/metabolismo , Cloropirifos/análogos & derivados , Cloropirifos/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Colinesterasas/metabolismo , Aceite de Maíz , Insecticidas/metabolismo , Insecticidas/toxicidad , Mamíferos/metabolismo , Ratones , Ratas , Ratas Sprague-Dawley
14.
J Environ Sci Health B ; 57(9): 745-755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36048024

RESUMEN

In order to investigate the effect of diazinon and chlorpyrifos on agricultural workers exposed to pesticides, urinary metabolites 2-Isopropyl-6-methyl-4-pyrimidinol (IMPy) and 3,5,6-Trichloro-2-pyridinol (TPCy) in farm workers, sprayer operators, and non-exposed people as a control group were measured. The modified QuEChERS method was applied to extract samples and was measured using a gas chromatograph/nitrogen-phosphorus detector. The obtained results showed that the median concentrations of TCPy were 36.92-547.7 and 7.7-49.58 ng/mL for sprayer operators and farm workers, respectively. Moreover, the median concentrations of IMPy were 81.66-593.1 ng/mL for sprayer operators and 40.6-66.1 ng/mL for farm workers. The control group had no measurable metabolites. The IMPy level of 60% of sprayer operators was significantly higher (P ˂ 0.05) than the TCPy level. The analysis of variance highlighted the significant relationship (P ˂ 0.05) between the levels of each metabolite and the use of safety gloves, respiratory masks, safety goggles, working time per week, and type of insecticide exposure. Our findings revealed the need to measure the urinary metabolites of these insecticides in other exposed workers. Also, workers should be taught the impact of using personal protective equipment.


Asunto(s)
Cloropirifos , Insecticidas , Plaguicidas , Solanum tuberosum , Cloropirifos/análisis , Diazinón/análisis , Agricultores , Granjas , Humanos , Insecticidas/análisis , Insecticidas/toxicidad , Nitrógeno , Plaguicidas/análisis , Fósforo
15.
Aging (Albany NY) ; 15(3): 675-688, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36152060

RESUMEN

Chlorpyrifos (CPF), as an extensively used organophosphorus pesticide, often remains on food surfaces or contaminates water sources. CPF can cause many toxic effects on human production and life. As an additional product of non-medicinal parts of ginseng, the pharmacological activity of ginseng stem and leaf total saponin (GSLS) has been verified and applied in recent years. This study aimed to evaluate the protective effect of GSLS on CPF-induced liver damage in mice. Experimental results in vivo demonstrate that GSLS can reduce the accumulation of oxidation product MDA by relieving CPF-induced liver function indicators in mice and enhancing the antioxidant enzyme SOD and CAT activities of mice. With the decrease in mRNA expression of BAX, NF-KB, and TIMP in liver tissues, the mRNA expression of Nrf-2, HO-1, and XIAP increased. Through anti-inflammatory, antioxidant, anti-inflammatory and other effects, cpf-induced hepatotoxicity can be alleviated by GSLS. In vitro experiments have proved that GSLS can show the ability to scavenge DPPH free radicals and hydroxyl radicals. In addition, GSLS can alleviate chlorpyrifos-induced ROS accumulation in L02 cells, alleviating cytokinetic potential reduction. In summary, by fighting oxidative stress, GSLS can alleviate liver damage caused by CPF.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Cloropirifos , Ginsenósidos , Insecticidas , Panax , Plaguicidas , Saponinas , Ratones , Humanos , Animales , Cloropirifos/toxicidad , Antioxidantes/farmacología , Antioxidantes/metabolismo , Insecticidas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ginsenósidos/farmacología , Saponinas/farmacología , Panax/metabolismo , Compuestos Organofosforados/farmacología , Plaguicidas/farmacología , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , ARN Mensajero/metabolismo
16.
Sci Rep ; 12(1): 15542, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109661

RESUMEN

In this work a simple, rapid, and environmentally friendly method has been established for the determination of chlorpyrifos residue in green tea by dispersive liquid-liquid microextraction and gas chromatography-flame photometric detection. Some experimental parameters that influence extraction efficiency, such as the kind and volume of disperser solvents and extraction solvents, extraction time, addition of salt and pH, were investigated. And the optimal experimental conditions were obtained, quantitative analysis was carried out using external standard method. The correlation coefficient of the calibration curves was 0.999 with in 0.05 mg/kg to 5 mg/kg. The results showed that under the optimum conditions, the enrichment factors of the chlorpyrifos was about 554.51, the recoveries for standard addition fell in the range from 91.94 to 104.70% and the relative standard deviations was 4.61%. The limit of quantification of chlorpyrifos in green tea was 0.02 µg/mL at the signal/noise ratio of 3.


Asunto(s)
Cloropirifos , Microextracción en Fase Líquida , Cromatografía de Gases/métodos , Microextracción en Fase Líquida/métodos , Solventes ,
17.
Food Chem Toxicol ; 169: 113423, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36113784

RESUMEN

The balance between excitatory and inhibitory neurotransmitters is essential for proper brain development. An imbalance between these two systems has been associated with neurodevelopmental disorders. On the other hand, literature also associates the massive use of pesticides with the increase of these disorders, with a particular focus on chlorpyrifos (CPF) a world-wide used organophosphate pesticide. This study was aimed at assessing social autistic-like behaviors on mice pre or postnatally exposed to CPF (0 or 1 mg/kg/day), in both sexes. In prenatal exposure, C57BL/6J pregnant mice were exposed to CPF through the diet, between gestational days (GD) 12 and 18, while a positive control group for some autistic behaviors was exposed to valproic acid (VPA) on GD 12 and 13. To assess postnatal exposure, C57BL/6J mice were orally exposed to the vehicle (corn oil) or CPF, from postnatal days (PND) 10-15. Social behavior and gene expression analysis were assessed on PND 45. Results showed social alterations only in males prenatally treated. GABA system was upregulated in CPF-treated females, whereas an increase in both systems was observed in both treated males. These findings suggest that males are more sensitive to prenatal CPF exposure, favoring the sex bias observed in ASD.


Asunto(s)
Conducta Animal , Cloropirifos , Plaguicidas , Efectos Tardíos de la Exposición Prenatal , Conducta Social , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Conducta Animal/efectos de los fármacos , Cloropirifos/toxicidad , Aceite de Maíz , Ácido gamma-Aminobutírico , Ratones Endogámicos C57BL , Plaguicidas/toxicidad , Ácido Valproico/toxicidad , Factores Sexuales
18.
J Sep Sci ; 45(18): 3582-3593, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35964286

RESUMEN

A combination of modified quick easy cheap effective rugged and safe extraction approach with carbon nano-onions-based dispersive solid-phase extraction and dispersive liquid-liquid microextraction was developed for the extraction of several pesticides (diazinon, chlorpyrifos, tebuconazole, deltamethrin, permethrin, haloxyfop-methyl, penconazole, and cyhalothrin) from grape before their analysis by gas chromatography-flame ionization detection. In the extraction approach, an aliquot of grape sample is chopped and after separating its juice, the pesticides that remained in the refuse are extracted by the quick, easy, cheap, effective, rugged, and safe extraction method. The obtained acetonitrile phase is mixed with juice and the analytes are extracted by the carbon nano-onions-based dispersive solid-phase extraction. The analytes are concentrated using the microextraction procedure to obtain high enrichment factors. The results showed low limits of detection (0.5-1.6 ng/g) and quantification (1.8-5.4 ng/g) with satisfactory linearity of the calibration curves (determination coefficient, r2 ≥ 0.994). The precision of the developed method expressed as relative standard deviations was good (≤7.2%). The method provided high enrichment factors (350-410) and extraction recoveries (70-82%). Finally, seven grape samples were analyzed successfully.


Asunto(s)
Cloropirifos , Microextracción en Fase Líquida , Plaguicidas , Vitis , Acetonitrilos , Carbono/análisis , Cloropirifos/análisis , Diazinón/análisis , Microextracción en Fase Líquida/métodos , Cebollas , Permetrina/análisis , Plaguicidas/análisis , Extracción en Fase Sólida/métodos
19.
Front Public Health ; 10: 872125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774575

RESUMEN

The present interventional study aimed to assess the impact of micronutrient supplementation on pesticide-residues concentrations, vitamins, minerals, acetylcholinesterase activity and oxidative stress among 129 farm children (9-12 years, n = 66 and 13-15 years, n = 63) involved in farming activities in Ranga Reddy district, Telangana, India. Our data showed the presence of five organophosphorus pesticide residues (chlorpyrifos, diazinon, malathion, monocrotophos, and phosalone) among children before-supplementation (both age-groups); while post-supplementation, only two pesticide residues (chlorpyrifos and diazinon) were detected indicating improved metabolic rate. Vitamin E, copper, magnesium and zinc levels were also improved in both the age-groups and manganese levels were significantly increased only among children of 13-15 years age group. Further, post-supplementation also showed an improvement in acetylcholinesterase activity and a decrease in lipid peroxidation among both the age groups of children. However, further research for ascertaining the ameliorating effect of micronutrients in preventing adverse effects of organophosphorus pesticides must be conducted.


Asunto(s)
Cloropirifos , Residuos de Plaguicidas , Plaguicidas , Acetilcolinesterasa , Adolescente , Niño , Cloropirifos/análisis , Cloropirifos/química , Diazinón/análisis , Diazinón/química , Suplementos Dietéticos , Granjas , Humanos , Micronutrientes , Compuestos Organofosforados/análisis , Compuestos Organofosforados/química , Estrés Oxidativo , Residuos de Plaguicidas/análisis
20.
Sci Total Environ ; 848: 157703, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35908700

RESUMEN

The hydrophobicity of persistent organic pollutants (POPs) makes them adsorb on microplastics in the marine environment, affecting their distribution, persistence, or their transfer to the trophic chain. Fragrances and non-polar pesticides can be adsorbed by microplastics in the marine environment because of their physico-chemical characteristics. In this work, the adsorption of two pesticides (α-endosulfan and chlorpyrifos) and 6 musk fragrances (musk xylene, musk ketone, musk moskene, galaxolide, tonalide, and celestolide) on polyamide (PA6) (a petroleum based polymer) and on polyhydroxybutyrate (PHB) (biopolymer) in seawater was studied, considering also the effect of water temperature and plastic weathering. Results show higher adsorption of the selected pollutants for PHB than PA, being PA more affected by the water temperature and the plastic weathering. The highest percentage of adsorption was achieved in most cases at 24 h. In addition, this process was irreversible, as it showed the leaching assays. Besides, this work revealed that plastics mitigate the degradation of α-endosulfan in aquatic media (hydrolysis), showing that plastics can act as inhibitors of degradation of POPs, increasing its persistence in the environment.


Asunto(s)
Cloropirifos , Cosméticos , Perfumes , Plaguicidas , Petróleo , Contaminantes Químicos del Agua , Adsorción , Endosulfano , Microplásticos , Nylons , Perfumes/análisis , Contaminantes Orgánicos Persistentes , Plásticos , Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA