Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Plant Signal Behav ; 16(1): 1844509, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33210985

RESUMEN

Nicotinamide adenine dinucleotide (NAD)/NAD phosphate (NADPH) is essential for numerous redox reactions and serve as co-factors in multiple metabolic processes in all organisms. NAD kinase (NADK) is an enzyme involved in the synthesis of NADP+ from NAD+ and ATP. Arabidopsis NADK2 (AtNADK2) is a chloroplast-localizing enzyme that provides recipients of reducing power in photosynthetic electron transfer. When Arabidopsis plants were grown on MS medium supplemented with 5 mM MgSO4, an AtNADK2-overexpressing line exhibited higher glutathione and total sulfur accumulation than control plants. Metabolomic analysis of major amino acids and organic acids using capillary electrophoresis-mass spectrometry demonstrated that overexpression of AtNADK2 affected a range of metabolic processes in response to MgSO4 supplementation.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Sulfato de Magnesio/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
2.
Plant Cell Environ ; 43(9): 2033-2053, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32281116

RESUMEN

Phosphorus (P) is an essential mineral nutrient for plants. Nevertheless, excessive P accumulation in leaf mesophyll cells causes necrotic symptoms in land plants; this phenomenon is termed P toxicity. However, the detailed mechanisms underlying P toxicity in plants have not yet been elucidated. This study aimed to investigate the molecular mechanism of P toxicity in rice. We found that under excessive inorganic P (Pi) application, Rubisco activation decreased and photosynthesis was inhibited, leading to lipid peroxidation. Although the defence systems against reactive oxygen species accumulation were activated under excessive Pi application conditions, the Cu/Zn-type superoxide dismutase activities were inhibited. A metabolic analysis revealed that excessive Pi application led to an increase in the cytosolic sugar phosphate concentration and the activation of phytic acid synthesis. These conditions induced mRNA expression of genes that are activated under metal-deficient conditions, although metals did accumulate. These results suggest that P toxicity is triggered by the attenuation of both photosynthesis and metal availability within cells mediated by phytic acid accumulation. Here, we discuss the whole phenomenon of P toxicity, beginning from the accumulation of Pi within cells to death in land plants.


Asunto(s)
Oryza/metabolismo , Fósforo/toxicidad , Ácido Fítico/metabolismo , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ascorbato Peroxidasas/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oryza/efectos de los fármacos , Fósforo/metabolismo , Fotosíntesis/efectos de los fármacos , Fotosíntesis/fisiología , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
3.
Biomolecules ; 10(4)2020 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-32290389

RESUMEN

Soil and water contamination from heavy metals and metalloids is one of the most discussed and caused adverse effects on food safety and marketability, crop growth due to phytotoxicity, and environmental health of soil organisms. A hydroponic investigation was executed to evaluate the influence of citric acid (CA) on copper (Cu) phytoextraction potential of jute (Corchorus capsularis L.). Three-weeks-old seedlings of C. capsularis were exposed to different Cu concentrations (0, 50, and 100 µM) with or without the application of CA (2 mM) in a nutrient growth medium. The results revealed that exposure of various levels of Cu by 50 and 100 µM significantly (p < 0.05) reduced plant growth, biomass, chlorophyll contents, gaseous exchange attributes, and damaged ultra-structure of chloroplast in C. capsularis seedlings. Furthermore, Cu toxicity also enhanced the production of malondialdehyde (MDA) which indicated the Cu-induced oxidative damage in the leaves of C. capsularis seedlings. Increasing the level of Cu in the nutrient solution significantly increased Cu uptake by the roots and shoots of C. capsularis seedlings. The application of CA into the nutrient medium significantly alleviated Cu phytotoxicity effects on C. capsularis seedlings as seen by plant growth and biomass, chlorophyll contents, gaseous exchange attributes, and ultra-structure of chloroplast. Moreover, CA supplementation also alleviated Cu-induced oxidative stress by reducing the contents of MDA. In addition, application of CA is helpful in increasing phytoremediation potential of the plant by increasing Cu concentration in the roots and shoots of the plants which is manifested by increasing the values of bioaccumulation (BAF) and translocation factors (TF) also. These observations depicted that application of CA could be a useful approach to assist Cu phytoextraction and stress tolerance against Cu in C. capsularis seedlings grown in Cu contaminated sites.


Asunto(s)
Cloroplastos/ultraestructura , Ácido Cítrico/farmacología , Cobre/toxicidad , Corchorus/crecimiento & desarrollo , Corchorus/fisiología , Plantones/fisiología , Estrés Fisiológico/efectos de los fármacos , Antioxidantes/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Biomasa , Clorofila/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Corchorus/efectos de los fármacos , Corchorus/ultraestructura , Gases/metabolismo , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Análisis de Componente Principal , Plantones/efectos de los fármacos , Plantones/ultraestructura
4.
Plant Physiol Biochem ; 137: 84-92, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30769236

RESUMEN

This study focused on the idea that the toxic effect of zearalenone (ZEA) and the protective actions of the brassinosteroid - 24-epibrassinolide (EBR) as well as selenium are dependent on its accumulation in chloroplasts to a high degree. These organelles were isolated from the leaves of oxidative stress-sensitive and stress-tolerant wheat cultivars that had been grown from grains that had been incubated in a solution of ZEA (30 µM), Na2SeO4 (Se, 10 µM), EBR (0.1 µM) or in a mixture of ZEA with Se or EBR. Ultra-high performance liquid chromatography techniques indicated that ZEA was adsorbed in higher amounts in the chloroplasts in the sensitive rather than tolerant cultivar. Although the brassinosteroids and Se were also accumulated in the chloroplasts, higher levels were only found in the tolerant cultivar. The application of EBR increased the homocastasterone content, especially in the chloroplasts of the tolerant plant and after the addition of ZEA. The presence of both protectants caused a decrease in the ZEA content in studied organelles and resulted in diminishing of the oxidative stress (i.e. changes in the activity of the antioxidative enzymes). Moreover, a recovery of photosystem II and decrease in the negative impact of ZEN on Hsp90 transcript accumulation was observed in plants.


Asunto(s)
Brasinoesteroides/farmacología , Estrés Oxidativo/efectos de los fármacos , Selenio/farmacología , Esteroides Heterocíclicos/farmacología , Triticum/efectos de los fármacos , Zearalenona/toxicidad , Antioxidantes/metabolismo , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacocinética , Carotenoides/metabolismo , Clorofila A/metabolismo , Cloroplastos/efectos de los fármacos , Enzimas/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas de Plantas/genética , Selenio/farmacocinética , Esteroides Heterocíclicos/farmacocinética , Triticum/metabolismo , Zearalenona/farmacocinética
5.
Planta ; 244(6): 1303-1313, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27541495

RESUMEN

MAIN CONCLUSION: Based on the effects of inorganic salts on chloroplast Fe uptake, the presence of a voltage-dependent step is proposed to play a role in Fe uptake through the outer envelope. Although iron (Fe) plays a crucial role in chloroplast physiology, only few pieces of information are available on the mechanisms of chloroplast Fe acquisition. Here, the effect of inorganic salts on the Fe uptake of intact chloroplasts was tested, assessing Fe and transition metal uptake using bathophenantroline-based spectrophotometric detection and plasma emission-coupled mass spectrometry, respectively. The microenvironment of Fe was studied by Mössbauer spectroscopy. Transition metal cations (Cd2+, Zn2+, and Mn2+) enhanced, whereas oxoanions (NO3-, SO42-, and BO33-) reduced the chloroplast Fe uptake. The effect was insensitive to diuron (DCMU), an inhibitor of chloroplast inner envelope-associated Fe uptake. The inorganic salts affected neither Fe forms in the uptake assay buffer nor those incorporated into the chloroplasts. The significantly lower Zn and Mn uptake compared to that of Fe indicates that different mechanisms/transporters are involved in their acquisition. The enhancing effect of transition metals on chloroplast Fe uptake is likely related to outer envelope-associated processes, since divalent metal cations are known to inhibit Fe2+ transport across the inner envelope. Thus, a voltage-dependent step is proposed to play a role in Fe uptake through the chloroplast outer envelope on the basis of the contrasting effects of transition metal cations and oxoaninons.


Asunto(s)
Transporte Biológico Activo/fisiología , Cloroplastos/metabolismo , Hierro/metabolismo , Beta vulgaris/metabolismo , Beta vulgaris/fisiología , Transporte Biológico Activo/efectos de los fármacos , Cadmio/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/fisiología , Diurona/farmacología , Herbicidas/farmacología , Manganeso/metabolismo , Espectroscopía de Mossbauer , Zinc/metabolismo
6.
Protoplasma ; 253(6): 1449-1462, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26497693

RESUMEN

Terminalia arjuna (Ta) bark contains various natural antioxidants and has been used to protect animal cells against oxidative stress. In the present study, we have examined alleviating effects of Ta bark aqueous extract against Ni toxicity in rice (Oryza sativa L.). When rice seedlings were raised for 8 days in hydroponics in Yoshida nutrient medium containing 200 µM NiSO4, a decline in height, reduced biomass, increased Ni uptake, loss of root plasma membrane integrity, increase in the level of O2˙-, H2O2 and ˙OH, increased lipid peroxidation, decline in photosynthetic pigments, increase in the level of antioxidative enzymes superoxide dismutase, catalase and glutathione peroxidase and alterations in their isoenzyme profile patterns were observed. Transmission electron microscopy (TEM) showed damage to chloroplasts marked by disorganised enlarged starch granules and disrupted thylakoids under Ni toxicity. Exogenously adding Ta bark extract (3.2 mg ml-1) to the growth medium considerably alleviated Ni toxicity in the seedlings by reducing Ni uptake, suppressing generation of reactive oxygen species, reducing lipid peroxidation, restoring level of photosynthesis pigments and ultrastructure of chloroplasts, and restoring levels of antioxidative enzymes. Results suggest that Ta bark extract considerably alleviates Ni toxicity in rice seedlings by preventing Ni uptake and reducing oxidative stress in the seedlings.


Asunto(s)
Antioxidantes/metabolismo , Níquel/toxicidad , Oryza/metabolismo , Corteza de la Planta/química , Extractos Vegetales/farmacología , Plantones/metabolismo , Terminalia/química , Carotenoides/metabolismo , Catalasa/metabolismo , Membrana Celular/metabolismo , Clorofila/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Oryza/efectos de los fármacos , Peroxidasa/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Plantones/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Agua/metabolismo
7.
Sci Rep ; 5: 12696, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26235534

RESUMEN

Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on the plant fresh weight and dry weight, whilst 0.5 g L(-1) K2SiO3 · nH2O addition obviously improved the plant growth. Although Na(+) concentration in plant organs was drastically increased with increasing salinity, higher levels of K(+)/Na(+) ratio was obtained after K2SiO3 · nH2O addition. Salinity stress induced the destruction of the chloroplast envelope; however, K2SiO3 · nH2O addition counteracted the adverse effect by salinity on the structure of the photosynthetic apparatus. K2SiO3 · nH2O addition also enhanced the activities of superoxide dismutase and catalase. To sum up, exogenous Si plays a key role in enhancing its resistance to salt stresses in physiological base, thereby improving the growth and CGA production of Honeysuckle plant.


Asunto(s)
Lonicera/efectos de los fármacos , Ácido Silícico/farmacología , Cloruro de Sodio , Estrés Fisiológico/efectos de los fármacos , Catalasa/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Cloroplastos/ultraestructura , Lonicera/fisiología , Lonicera/ultraestructura , Fotosíntesis/efectos de los fármacos , Plantas Medicinales/efectos de los fármacos , Superóxido Dismutasa/efectos de los fármacos
8.
Sci Rep ; 5: 11618, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26108166

RESUMEN

This study focused on determining the phytotoxic mechanism of CeO2 nanoparticles (NPs): destroying chloroplasts and vascular bundles and altering absorption of nutrients on conventional and Bt-transgenic cottons. Experiments were designed with three concentrations of CeO2 NPs including: 0, 100 and 500 mg·L(-1), and each treatment was three replications. Results indicate that absorbed CeO2 nanoparticles significantly reduced the Zn, Mg, Fe, and P levels in xylem sap compared with the control group and decreased indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations in the roots of conventional cotton. Transmission electron microscopy (TEM) images revealed that CeO2 NPs were absorbed into the roots and subsequently transported to the stems and leaves of both conventional and Bt-transgenic cotton plants via xylem sap. In addition, the majority of aggregated CeO2 NPs were attached to the external surface of chloroplasts, which were swollen and ruptured, especially in Bt-transgenic cotton. The vascular bundles were destroyed by CeO2 nanoparticles, and more damage was observed in transgenic cotton than conventional cotton.


Asunto(s)
Cerio/toxicidad , Cloroplastos/efectos de los fármacos , Gossypium/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Xilema/efectos de los fármacos , Ácido Abscísico/metabolismo , Transporte Biológico , Cerio/química , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Gossypium/genética , Gossypium/metabolismo , Ácidos Indolacéticos/metabolismo , Hierro/metabolismo , Magnesio/metabolismo , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Fósforo/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Brotes de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Xilema/metabolismo , Xilema/ultraestructura , Zinc/metabolismo
9.
Food Chem ; 176: 27-39, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25624203

RESUMEN

Proteins were extracted from G. bicolor that had been treated with 1-methylcyclopropene and ethephon and then stored at room temperature for 1, 3 and 7days. More than 300 protein spots were detected by 2-DE and 38 differentially abundant spots (P<0.05) were excised and analysed by using MALDI-TOF/TOF. Thirty-three proteins were finally confidently identified. According to the Clusters of Orthologous Groups of proteins, the proteins identified were classified into those responsible for metabolism (75.8%), information storage and processing (9.1%) and cellular processes and signaling (12.1%). Compared with ethephon and control treatments, 1-methylcyclopropene specifically increased the abundances of superoxide dismutase, peroxidase, carbonic anhydrase, nucleoside diphosphate kinases, glyceraldehyde 3-phosphate dehydrogenase, RuBisCO and ribulose bisphosphate carboxylase/oxygenase activase. 1-Methylcyclopropene protected leaf chloroplast and cells by enhancing stress response and defense, and delayed senescence by inhibiting substance and energy metabolisms. Therefore, 1-methylcyclopropene allowed better self-defense and delayed senescence of G. bicolor leaf.


Asunto(s)
Asteraceae/efectos de los fármacos , Asteraceae/metabolismo , Ciclopropanos/farmacología , Compuestos Organofosforados/farmacología , Proteínas de Plantas/metabolismo , Asteraceae/química , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Ciclopropanos/química , Compuestos Organofosforados/química , Extractos Vegetales/química , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteómica/métodos
10.
Protoplasma ; 252(3): 885-99, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25388000

RESUMEN

Salinity is a major stress that adversely affects plant growth and crop production. Understanding the cellular responses and molecular mechanisms by which plants perceive and adopt salinity stress is of fundamental importance. In this work, some of the cellular signaling events including cell death, reactive oxygen species (ROS) generation, and the behaviors of organelles were analyzed in a salt-tolerant species (Keyuan-1) of peppermint (Mentha × piperita L.) under NaCl treatment. Our results showed that 200 mM NaCl treatment elicited a distinct progress of cell death with chromatin condensation and caspase-3-like activation and a dramatic burst of ROS which was required for the execution of cell death. The major ROS accumulation occurred in the mitochondria and chloroplasts, which were the sources of ROS production under NaCl stress. Moreover, mitochondrial activity and photosynthetic capacity also exhibited the obvious decrease in the ROS-dependent manner under 200 mM NaCl stress. Furthermore, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), and dehydroascorbate reductase (DHAR) as well as the contents of ascorbate and glutathione changed in the concentration-dependent manner under NaCl stress. Altogether, our data showed the execution of programmed cell death (PCD), the ROS dynamics, and the behaviors of organelles especially mitochondria and chloroplasts in the cellular responses of peppermint to NaCl stress which can be used for the tolerance screening, and contributed to the understanding of the cellular responses and molecular mechanisms of peppermint to salinity stress, providing the theoretic basis for the further development and utilization of peppermint in saline areas.


Asunto(s)
Mentha piperita/fisiología , Salinidad , Cloruro de Sodio/farmacología , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Cromatina/metabolismo , Activación Enzimática/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Malondialdehído/metabolismo , Mentha piperita/citología , Mentha piperita/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fotosíntesis/efectos de los fármacos , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factores de Tiempo
11.
Int J Mol Sci ; 15(12): 21803-24, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25431925

RESUMEN

Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si) supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L.) were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis) revealed a high sensitivity of multiprotein complex proteins (MCPs) such as photosystems I (PSI) and II (PSII) to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs) were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome expression after silicon supplementation.


Asunto(s)
Cloroplastos/fisiología , Proteómica/métodos , Salinidad , Silicio/farmacología , Solanum lycopersicum/metabolismo , Estrés Fisiológico/efectos de los fármacos , Biomasa , Carotenoides/metabolismo , Clorofila/metabolismo , Cloroplastos/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Modelos Biológicos , Electroforesis en Gel de Poliacrilamida Nativa , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Sodio/metabolismo , Cloruro de Sodio/farmacología , Tilacoides/efectos de los fármacos , Tilacoides/metabolismo
12.
Indian J Exp Biol ; 52(9): 898-904, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25241590

RESUMEN

Stevia rebaudiana (Bert.) Bertoni is an important medicinal plant used as noncaloric commercial sweetener. Plants regenerated with higher levels of copper sulphate in the medium exhibited enhanced activity of peroxidase and polyphenoloxidase (PPO) enzymes. Transmission electron microscopy (TEM) revealed increase in size and number of electron dense inclusions in the chloroplasts of plants regenerated at optimised level of copper sulphate (0.5 microM) in the medium. There was decrease in chlorogenic acid (CGA) content. Chl-a-fluorescence transient pattern (OJIP) showed that the photosynthesis process was more efficient at 0.5 microM CuSO4 in the medium.


Asunto(s)
Cloroplastos/efectos de los fármacos , Cloroplastos/ultraestructura , Sulfato de Cobre/farmacología , Fotosíntesis/efectos de los fármacos , Stevia/efectos de los fármacos , Cloroplastos/enzimología , Cloroplastos/metabolismo , Stevia/enzimología , Stevia/fisiología
13.
New Phytol ; 202(3): 920-928, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24506824

RESUMEN

Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.


Asunto(s)
Beta vulgaris/enzimología , Cloroplastos/enzimología , FMN Reductasa/metabolismo , Beta vulgaris/efectos de los fármacos , Beta vulgaris/fisiología , Cloroplastos/efectos de los fármacos , Concentración de Iones de Hidrógeno , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Hierro/farmacología , Deficiencias de Hierro , Péptidos/metabolismo , Vesículas Transportadoras/efectos de los fármacos , Vesículas Transportadoras/metabolismo
14.
Molecules ; 18(9): 10648-70, 2013 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-24002140

RESUMEN

In this study, a series of twenty-five ring-substituted 4-arylamino-7-chloroquinolinium chlorides were prepared and characterized. The compounds were tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts and also primary in vitro screening of the synthesized compounds was performed against mycobacterial species. 4-[(2-Bromophenyl)amino]-7-chloroquinolinium chloride showed high biological activity against M. marinum, M. kansasii, M. smegmatis and 7-chloro-4-[(2-methylphenyl)amino]quinolinium chloride demonstrated noteworthy biological activity against M. smegmatis and M. avium subsp. paratuberculosis. The most effective compounds demonstrated quite low toxicity (LD50 > 20 µmol/L) against the human monocytic leukemia THP-1 cell line within preliminary in vitro cytotoxicity screening. The tested compounds were found to inhibit PET in photosystem II. The PET-inhibiting activity expressed by IC50 value of the most active compound 7-chloro-4-[(3-trifluoromethylphenyl)amino]quinolinium chloride was 27 µmol/L and PET-inhibiting activity of ortho-substituted compounds was significantly lower than this of meta- and para-substituted ones. The structure-activity relationships are discussed for all compounds.


Asunto(s)
Antituberculosos/farmacología , Compuestos de Quinolinio/farmacología , Antituberculosos/síntesis química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cloruros/síntesis química , Cloruros/farmacología , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Evaluación Preclínica de Medicamentos , Transporte de Electrón/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Mycobacterium/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Compuestos de Quinolinio/síntesis química , Solubilidad , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/metabolismo , Relación Estructura-Actividad
15.
New Phytol ; 194(1): 206-219, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22269069

RESUMEN

• Overexpression of AtPAP2, a purple acid phosphatase (PAP) with a unique C-terminal hydrophobic motif in Arabidopsis, resulted in earlier bolting and a higher seed yield. Metabolite analysis showed that the shoots of AtPAP2 overexpression lines contained higher levels of sugars and tricarboxylic acid (TCA) metabolites. Enzyme assays showed that sucrose phosphate synthase (SPS) activity was significantly upregulated in the overexpression lines. The higher SPS activity arose from a higher level of SPS protein, and was independent of SnRK1. • AtPAP2 was found to be targeted to both plastids and mitochondria via its C-terminal hydrophobic motif. Ectopic expression of a truncated AtPAP2 without this C-terminal motif in Arabidopsis indicated that the subcellular localization of AtPAP2 is essential for its biological actions. • Plant PAPs are generally considered to mediate phosphorus acquisition and redistribution. AtPAP2 is the first PAP shown to modulate carbon metabolism and the first shown to be dual-targeted to both plastids and mitochondria by a C-terminal targeting signal. • One PAP-like sequence carrying a hydrophobic C-terminal motif could be identified in the genome of the smallest free-living photosynthetic eukaryote, Ostreococcus tauri. This might reflect a common ancestral function of AtPAP2-like sequences in the regulation of carbon metabolism.


Asunto(s)
Fosfatasa Ácida/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Carbono/metabolismo , Glicoproteínas/metabolismo , Semillas/crecimiento & desarrollo , Fosfatasa Ácida/química , Secuencias de Aminoácidos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Western Blotting , Carbohidratos/farmacología , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Secuencia Conservada , ADN Bacteriano/genética , Pruebas de Enzimas , Glicoproteínas/química , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Metabolómica , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Fenotipo , Fósforo/farmacología , Fotosíntesis/efectos de los fármacos , Plantas Modificadas Genéticamente , Plastidios/efectos de los fármacos , Plastidios/metabolismo , Transporte de Proteínas/efectos de los fármacos , Semillas/efectos de los fármacos , Solubilidad/efectos de los fármacos
16.
PLoS One ; 6(12): e28401, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174798

RESUMEN

Eukaryotic cells are compartmentalized into distinct sub-cellular organelles by lipid bilayers, which are known to be involved in numerous cellular processes. The wide repertoire of lipids, synthesized in the biogenic membranes like the endoplasmic reticulum and bacterial cytoplasmic membranes are initially localized in the cytosolic leaflet and some of these lipids have to be translocated to the exoplasmic leaflet for membrane biogenesis and uniform growth. It is known that phospholipid (PL) translocation in biogenic membranes is mediated by specific membrane proteins which occur in a rapid, bi-directional fashion without metabolic energy requirement and with no specificity to PL head group. A recent study reported the existence of biogenic membrane flippases in plants and that the mechanism of plant membrane biogenesis was similar to that found in animals. In this study, we demonstrate for the first time ATP independent and ATP dependent flippase activity in chloroplast membranes of plants. For this, we generated proteoliposomes from Triton X-100 extract of intact chloroplast, envelope membrane and thylakoid isolated from spinach leaves and assayed for flippase activity using fluorescent labeled phospholipids. Half-life time of flipping was found to be 6 ± 1 min. We also show that: (a) intact chloroplast and envelope membrane reconstituted proteoliposomes can flip fluorescent labeled analogs of phosphatidylcholine in ATP independent manner, (b) envelope membrane and thylakoid reconstituted proteoliposomes can flip phosphatidylglycerol in ATP dependent manner, (c) Biogenic membrane ATP independent PC flipping activity is protein mediated and (d) the kinetics of PC translocation gets affected differently upon treatment with protease and protein modifying reagents.


Asunto(s)
Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Detergentes/farmacología , Membranas Intracelulares/metabolismo , Fosfolípidos/metabolismo , Proteolípidos/metabolismo , Spinacia oleracea/metabolismo , Adenosina Trifosfato/metabolismo , Pruebas de Enzimas , Colorantes Fluorescentes/metabolismo , Membranas Intracelulares/efectos de los fármacos , Cinética , Octoxinol/farmacología , Proteínas de Transferencia de Fosfolípidos/metabolismo , Extractos Vegetales/metabolismo , Reproducibilidad de los Resultados , Spinacia oleracea/efectos de los fármacos , Tripsina/metabolismo
17.
Aquat Toxicol ; 102(1-2): 87-94, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21371616

RESUMEN

The function of selenium in an organism is mediated mostly by selenoproteins including glutathione peroxidase. Glutathione peroxidase is a potent anti-oxidative enzyme, scavenging a variety of peroxides. The green alga Scenedesmus quadricauda was used to investigate the relationship between the toxicity of selenium and the glutathione peroxidase activity. Selenium resistant strains SeIV and SeVI were synchronized and grown in high concentrations of Se (selenite or selenate). As a measure of selenium toxicity the EC(50) values were determined. During growth of the untreated wild type, glutathione peroxidase activity increased slightly and then declined gradually until the end of the cell cycle. A similar pattern was observed in untreated resistant strains and when resistant strains were grown in the presence of selenium in the oxidation state to which they were resistant. In the wild type cultivated with 50 mg Se L(-1) (selenite or selenate), activity increased to a high level and slowly declined until the end of the cell cycle. Similarly, activity increased in strains SeIV and SeVI when grown in the presence of selenium in the oxidation state to which they were not resistant. We followed the effect of selenium on the ultrastructure of S. quadricauda. After exposure to selenite, the chloroplast membranes of wild type were reorganized into thick bundles of thylakoids and the stroma became granulose. When selenate was added, the chloroplast of wild type had a fingerprint-like appearance, the stroma became less dense and starch production increased. In selenium resistant strains, when treated with the selenium form to which they were resistant, the chloroplast was affected, but not to such an extent as in the wild type. The activity of glutathione peroxidase in Scenedesmus was affected by selenium in an oxidation state-dependent manner. The most apparent effects of selenium on the ultrastructure involved impairment of the chloroplast and the overproduction of starch.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Scenedesmus/efectos de los fármacos , Scenedesmus/enzimología , Selenio/toxicidad , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Técnicas de Cultivo , Relación Dosis-Respuesta a Droga , Plantas Modificadas Genéticamente , Scenedesmus/citología , Scenedesmus/fisiología , Ácido Selénico , Selenio/administración & dosificación , Selenio/análisis , Compuestos de Selenio/administración & dosificación , Compuestos de Selenio/toxicidad , Selenito de Sodio/administración & dosificación , Selenito de Sodio/toxicidad , Estrés Fisiológico , Pruebas de Toxicidad
18.
J Plant Physiol ; 167(1): 28-33, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19682767

RESUMEN

Selenium appears to be an important protective agent that decreases cadmium-induced toxic effects in animals and plants. The aim of these studies was to investigate the changes of properties of chloroplast membranes obtained from Cd-treated rape seedlings caused by Se additions. Chloroplasts were isolated from leaves of 3-week-old rape plants cultured on Murashige-Skoog media supplied with 2 microM Na(2)SeO(4) and/or 400 microM CdCl(2) under in vitro conditions. The following physicochemical characteristics of chloroplasts were chosen as indicators of Se-effects: average size, zeta potential, ultrastructure, lipid and fatty acid composition and fluidity of envelope membrane. The results suggest that Se can partly counterbalance the destructive effects of Cd. This protective action led to an increase of chloroplast size reduced by Cd treatment and rebuilt, to some extent, the chloroplast ultrastructure. Lipid and fatty acid composition of chloroplast envelopes modified by Cd showed a decrease in digalactosyl-diacylglycerol content and an increase of content of monogalactosyl-diacylglycerol and phospholipid fractions, as well as an increase of fatty acid saturation of all lipids studied. The change in fatty acid saturation correlated well with a decrease of membrane fluidity and with a diminishing of absolute values of zeta potential. The presence of selenium in cultured media caused a partial reversal of the detected changes, which was especially visible in properties related to the hydrophobic part of an envelope, i.e. fatty acid saturation and fluidity.


Asunto(s)
Brassica napus/efectos de los fármacos , Brassica napus/fisiología , Cadmio/toxicidad , Cloroplastos/efectos de los fármacos , Cloroplastos/fisiología , Selenio/farmacología , Brassica napus/crecimiento & desarrollo , Brassica napus/ultraestructura , Cloroplastos/ultraestructura , Medios de Cultivo/farmacología , Ácidos Grasos/análisis , Polarización de Fluorescencia , Luz , Tamaño de los Orgánulos/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/ultraestructura , Dispersión del Ángulo Pequeño , Difracción de Rayos X
19.
Plant Physiol ; 151(2): 905-24, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19710229

RESUMEN

A prominent enzyme in organellar RNA metabolism is the exoribonuclease polynucleotide phosphorylase (PNPase), whose reversible activity is governed by the nucleotide diphosphate-inorganic phosphate ratio. In Chlamydomonas reinhardtii, PNPase regulates chloroplast transcript accumulation in response to phosphorus (P) starvation, and PNPase expression is repressed by the response regulator PSR1 (for PHOSPHORUS STARVATION RESPONSE1) under these conditions. Here, we investigated the role of PNPase in the Arabidopsis (Arabidopsis thaliana) P deprivation response by comparing wild-type and pnp mutant plants with respect to their morphology, metabolite profiles, and transcriptomes. We found that P-deprived pnp mutants develop aborted clusters of lateral roots, which are characterized by decreased auxin responsiveness and cell division, and exhibit cell death at the root tips. Electron microscopy revealed that the collapse of root organelles is enhanced in the pnp mutant under P deprivation and occurred with low frequency under P-replete conditions. Global analyses of metabolites and transcripts were carried out to understand the molecular bases of these altered P deprivation responses. We found that the pnp mutant expresses some elements of the deprivation response even when grown on a full nutrient medium, including altered transcript accumulation, although its total and inorganic P contents are not reduced. The pnp mutation also confers P status-independent responses, including but not limited to stress responses. Taken together, our data support the hypothesis that the activity of the chloroplast PNPase is involved in plant acclimation to P availability and that it may help maintain an appropriate balance of P metabolites even under normal growth conditions.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/fisiología , Cloroplastos/enzimología , Mutación/genética , Fósforo/deficiencia , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , División Celular/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Cloroplastos/genética , ADN Bacteriano/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Mutagénesis Insercional/efectos de los fármacos , Fenotipo , Fósforo/metabolismo , Fósforo/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
20.
Plant Cell Rep ; 27(2): 399-409, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17899096

RESUMEN

In this study, we examined the modulation of Cu toxicity-induced oxidative stress by excess supply of iron in Zea mays L. plants. Plants receiving excess of Cu (100 microM) showed decreased water potential and simultaneously showed wilting in the leaves. Later, the young leaves exhibited chlorosis and necrotic scorching of lamina. Excess of Cu suppressed growth, decreased concentration of chloroplastic pigments and fresh and dry weight of plants. The activities of peroxidase (EC 1.11.1.7; POD), ascorbate peroxidase (EC 1.11.1.11; APX) and superoxide dismutase (EC 1.15.1.1; SOD) were increased in plants supplied excess of Cu. However, activity of catalase (EC 1.11.1.6; CAT), was depressed in these plants. In gel activities of isoforms of POD, APX and SOD also revealed upregulation of these enzymes. Excess (500 microM)-Fe-supplemented Cu-stressed plants, however, looked better in their phenotypic appearance, had increased concentration of chloroplastic pigments, dry weight, and improved leaf tissue water status in comparison to the plants supplied excess of Cu. Moreover, activities of antioxidant enzymes including CAT were further enhanced and thiobarbituric acid reactive substance (TBARS) and H(2)O(2) concentrations decreased in excess-Fe-supplemented Cu-stressed plants. In situ accumulation of H(2)O(2), contrary to that of O(2)(*-) radical, increased in both leaf and roots of excess-Cu-stressed plants, but Cu-excess plants supplied with excess-Fe showed reduced accumulation H(2)O(2) and little higher of O(2)(*-) in comparison to excess-Cu plants. It is, therefore, concluded that excess-Cu (100 microM) induces oxidative stress by increasing production of H(2)O(2) despite of increased antioxidant protection and that the excess-Cu-induced oxidative damage is minimized by excess supply of Fe.


Asunto(s)
Cobre/toxicidad , Hierro/farmacología , Estrés Oxidativo/efectos de los fármacos , Zea mays/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA