Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Agric Food Chem ; 68(37): 10109-10117, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32829629

RESUMEN

Linalool is abundant in tea leaves and contributes greatly to tea aroma. The two isomers of linalool, (R)-linalool and (S)-linalool, exist in tea leaves. Our study found that (R)-linalool was the minor isomer in nine of Camellia sinensis var. sinensis cultivars. The (R)-linalool synthase of tea plant CsRLIS was identified subsequently. It is a chloroplast-located protein and specifically catalyzes the formation of (R)-linalool in vitro and in vivo. CsRLIS was observed to be a stress-responsive gene and caused the accumulation of internal (R)-linalool during oolong tea manufacture, mechanical wounding, and insect attack. Further study demonstrated that the catalytic efficiency of CsRLIS was much lower than that of (S)-linalool synthase CsSLIS, which might explain the lower (R)-linalool proportion in C. sinensis var. sinensis cultivars. The relative expression levels of CsRLIS and CsSLIS may also affect the (R)-linalool proportions among C. sinensis var. sinensis cultivars. This information will help us understand differential distributions of chiral aroma compounds in tea.


Asunto(s)
Monoterpenos Acíclicos/química , Camellia sinensis/enzimología , Hidroliasas/metabolismo , Proteínas de Plantas/metabolismo , Monoterpenos Acíclicos/metabolismo , Biocatálisis , Camellia sinensis/química , Camellia sinensis/genética , Camellia sinensis/metabolismo , Cloroplastos/enzimología , Cloroplastos/genética , Cloroplastos/metabolismo , Hidroliasas/química , Hidroliasas/genética , Odorantes/análisis , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estereoisomerismo , Té/química
2.
Planta ; 249(6): 1963-1975, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30900084

RESUMEN

MAIN CONCLUSION: Plastid genome engineering is an effective method to generate drought-resistant potato plants accumulating glycine betaine in plastids. Glycine betaine (GB) plays an important role under abiotic stress, and its accumulation in chloroplasts is more effective on stress tolerance than that in cytosol of transgenic plants. Here, we report that the codA gene from Arthrobacter globiformis, which encoded choline oxidase to catalyze the conversion of choline to GB, was successfully introduced into potato (Solanum tuberosum) plastid genome by plastid genetic engineering. Two independent plastid-transformed lines were isolated and confirmed as homoplasmic via Southern-blot analysis, in which the mRNA level of codA was much higher in leaves than in tubers. GB accumulated in similar levels in both leaves and tubers of codA-transplastomic potato plants (referred to as PC plants). The GB content was moderately increased in PC plants, and compartmentation of GB in plastids conferred considerably higher tolerance to drought stress compared to wild-type (WT) plants. Higher levels of relative water content and chlorophyll content under drought stress were detected in the leaves of PC plants compared to WT plants. Moreover, PC plants presented a significantly higher photosynthetic performance as well as antioxidant enzyme activities during drought stress. These results suggested that biosynthesis of GB by chloroplast engineering was an effective method to increase drought tolerance.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Arthrobacter/enzimología , Betaína/metabolismo , Solanum tuberosum/enzimología , Oxidorreductasas de Alcohol/genética , Arthrobacter/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cloroplastos/enzimología , Cloroplastos/genética , Sequías , Ingeniería Genética , Fotosíntesis , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Plastidios/enzimología , Plastidios/genética , Solanum tuberosum/genética , Solanum tuberosum/fisiología , Estrés Fisiológico
3.
Plant Physiol ; 172(2): 1200-1208, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27516532

RESUMEN

Plastid intramembrane proteases in Arabidopsis (Arabidopsis thaliana) are involved in jasmonic acid biosynthesis, chloroplast development, and flower morphology. Here, we show that Ammonium-Overly-Sensitive1 (AMOS1), a member of the family of plastid intramembrane proteases, plays an important role in the maintenance of phosphate (P) homeostasis under P stress. Loss of function of AMOS1 revealed a striking resistance to P starvation. amos1 plants displayed retarded root growth and reduced P accumulation in the root compared to wild type (Col-0) under P-replete control conditions, but remained largely unaffected by P starvation, displaying comparable P accumulation and root and shoot growth under P-deficient conditions. Further analysis revealed that, under P-deficient conditions, the cell wall, especially the pectin fraction of amos1, released more P than that of wild type, accompanied by a reduction of the abscisic acid (ABA) level and an increase in ethylene production. By using an ABA-insensitive mutant, abi4, and applying ABA and ACC exogenously, we found that ABA inhibits cell wall P remobilization while ethylene facilitates P remobilization from the cell wall by increasing the pectin concentration, suggesting ABA can counteract the effect of ethylene. Furthermore, the elevated ABA level and the lower ethylene production also correlated well with the mimicked P deficiency in amos1 Thus, our study uncovers the role of AMOS1 in the maintenance of P homeostasis through ABA-antagonized ethylene signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimología , Homeostasis , Metaloproteasas/metabolismo , Fosfatos/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pared Celular/efectos de los fármacos , Pared Celular/genética , Pared Celular/metabolismo , Cloroplastos/genética , Etilenos/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metaloproteasas/genética , Mutación , Pectinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico
4.
PLoS One ; 11(7): e0158159, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27391785

RESUMEN

Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant in China. Flavonoids are the dominant active medical compounds. UDP-glycosyltransferase plays an essential role in the biosynthesis and storage of flavonoids in safflower. In this study, 45 UGT unigenes were screened from our transcriptomic database of safflower. Among them, 27 UGT unigenes were predicted to own a complete open reading frame with various pI and Mw. The phylogenetic tree showed that CtUGT3 and CtUGT16 were classified under the UGT71 subfamily involved in metabolite process, whereas CtUGT25 has high identities with PoUGT both catalyzing the glycosylation of flavonoids and belonging to the UGT90 subfamily. cDNA microarray exhibited that the three UGT genes displayed temporal difference in two chemotype safflower lines. To functionally characterize UGT in safflower, CtUGT3, CtUGT16 and CtUGT25 were cloned and analyzed. Subcellular localization suggested that the three UGTs might be located in the cell cytoplasm and chloroplast. The expression pattern showed that the three UGTs were all suppressed in two lines responsive to methyl jasmonate induction. The co-expression relation of expression pattern and metabolite accumulation demonstrated that CtUGT3 and CtUGT25 were positively related to kaempferol-3-O-ß-D-glucoside and CtUGT16 was positively related to quercetin-3-O-ß-D-glucoside in yellow line, whereas CtUGT3 and CtUGT25 were positively related to quercetin-3-O-ß-D-glucoside in white line. This study indicates that the three CtUGTs play a significant and multiple role in flavonoids biosynthesis with presenting different functional characterization in two safflower lines.


Asunto(s)
Carthamus tinctorius/genética , Flavonoides/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucuronosiltransferasa/genética , Uridina Difosfato/química , Carthamus tinctorius/enzimología , Cloroplastos/enzimología , Citoplasma/enzimología , ADN Complementario/metabolismo , Flores/enzimología , Genes de Plantas , Glucuronosiltransferasa/metabolismo , Glicosilación , Quempferoles/metabolismo , Monosacáridos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Especificidad de la Especie , Transcriptoma
5.
Plant Physiol ; 170(4): 2024-39, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26884484

RESUMEN

Lipid-derived reactive carbonyl species (RCS) possess electrophilic moieties and cause oxidative stress by reacting with cellular components. Arabidopsis (Arabidopsis thaliana) has a chloroplast-localized alkenal/one oxidoreductase (AtAOR) for the detoxification of lipid-derived RCS, especially α,ß-unsaturated carbonyls. In this study, we aimed to evaluate the physiological importance of AtAOR and analyzed AtAOR (aor) mutants, including a transfer DNA knockout, aor (T-DNA), and RNA interference knockdown, aor (RNAi), lines. We found that both aor mutants showed smaller plant sizes than wild-type plants when they were grown under day/night cycle conditions. To elucidate the cause of the aor mutant phenotype, we analyzed the photosynthetic rate and the respiration rate by gas-exchange analysis. Subsequently, we found that both wild-type and aor (RNAi) plants showed similar CO2 assimilation rates; however, the respiration rate was lower in aor (RNAi) than in wild-type plants. Furthermore, we revealed that phosphoenolpyruvate carboxylase activity decreased and starch degradation during the night was suppressed in aor (RNAi). In contrast, the phenotype of aor (RNAi) was rescued when aor (RNAi) plants were grown under constant light conditions. These results indicate that the smaller plant sizes observed in aor mutants grown under day/night cycle conditions were attributable to the decrease in carbon utilization during the night. Here, we propose that the detoxification of lipid-derived RCS by AtAOR in chloroplasts contributes to the protection of dark respiration and supports plant growth during the night.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Carbono/metabolismo , Cloroplastos/enzimología , Oscuridad , Oxidorreductasas Actuantes sobre Donantes de Grupos Aldehído u Oxo/metabolismo , Oxidorreductasas/metabolismo , Hojas de la Planta/enzimología , Supresión Genética , Acroleína/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Respiración de la Célula/efectos de la radiación , Clorofila/metabolismo , Cloroplastos/efectos de la radiación , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Mutación/genética , Nitrógeno/metabolismo , Oxidorreductasas Actuantes sobre Donantes de Grupos Aldehído u Oxo/genética , Fenotipo , Fotosíntesis , Extractos Vegetales/metabolismo , Hojas de la Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Almidón/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 41(20): 3727-3732, 2016 Oct.
Artículo en Chino | MEDLINE | ID: mdl-28929648

RESUMEN

The tocopherol cyclase was one of the key enzymes in plant vitamin E biosynthesis pathway. According to the study of Carthamus tinctorius transcriptome data,the Tocopherol cyclase gene was obtained using RT-PCR techniques and named CtTC . Bioinformatics analysis showed theopen reading frame (ORF)of CtTC was 1 524 bp. The putative protein contained 507 amino acids with a predicted molecular mass of 62.9 kDa and theoretically isoelectric point was 5.01.Signal peptide analysis showed that it was a non secretory protein, and there was no signal peptide. The subcellular localization showed that the CtTC protein was located in the chloroplast. The expression of CtTC gene in safflower seeds at different development stages was determined by quantitative real-time PCR, it was found that the highest expression level of CtTC gene was detected in 50 DAF.Quantitative RT-PCR analysis suggested that expression of CtTC is induced and strengthened by drought stresses. This research provided a candidate gene for metabolic engineering of vitamin E and resisting stress.


Asunto(s)
Carthamus tinctorius/enzimología , Transferasas Intramoleculares/genética , Proteínas de Plantas/genética , Proteínas de Unión al ARN/genética , Carthamus tinctorius/genética , Cloroplastos/enzimología , Clonación Molecular , Semillas/enzimología , Vitamina E/biosíntesis
7.
Plant Biotechnol J ; 14(3): 976-85, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26285603

RESUMEN

We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm-expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch-free background and with the wild-type plants. Each of the maize-derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more-than-trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Biomasa , Aceites de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Almidón/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Cloroplastos/enzimología , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Fenotipo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/metabolismo , Transformación Genética , Transgenes , Zea mays/metabolismo
8.
BMC Biotechnol ; 15: 3, 2015 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-25887674

RESUMEN

BACKGROUND: CuZn-Superoxide dismutase (SOD) is a unique enzyme, which can catalyzes the dismutation of inevitable metabolic product i.e.; superoxide anion into molecular oxygen and hydrogen peroxide. The enzyme has gained wide interest in pharmaceutical industries due to its highly acclaimed antioxidative properties. The recombinant expression of this protein in its enzymatically active and stable form is highly desired and hence optimization of culture conditions and characterization of the related biochemical properties are essential to explore the significance of the enzyme in physiological, therapeutic, structural and transgenic research. RESULTS: High-level expression of the chloroplastic isoform of Pisum sativum CuZn-SOD was achieved at 18°C, upon isopropyl ß-D-1-thiogalactopyranoside induction and the process was optimized for maximum recovery of the protein in its soluble (enzymatically active) form. Both crude and purified protein fractions display significant increase in activity following supplementation of defined concentration Cu (CuSO4) and Zn (ZnSO4). Yield of the purified recombinant protein was ~ 4 mg L(-1) of culture volume and the bacterial biomass was ~ 4.5 g L(-1). The recombinant pea chloroplastic SOD was found to possess nearly 6 fold higher superoxide dismutase activity and the peroxidase activity was also 5 fold higher as compared to commercially available CuZn-superoxide dismutase. The computational, spectroscopic and biochemical characterization reveals that the protein harbors all the characteristics features of this class of enzyme. The enzyme was found to be exceptionally stable as evident from pH and temperature incubation studies and maintenance of SOD activity upon prolonged storage. CONCLUSIONS: Overexpression and purification strategy presented here describes an efficient protocol for the production of a highly active and stable CuZn-superoxide dismutase in its recombinant form in E. coli system. The strategy can be utilized for the large-scale preparation of active CuZn-superoxide dismutase and thus it has wide application in pharmaceutical industries and also for elucidating the potential of this protein endowed with exceptional stability and activity.


Asunto(s)
Cloroplastos/enzimología , Pisum sativum/enzimología , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Cloroplastos/química , Cloroplastos/genética , Dicroismo Circular , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Pisum sativum/química , Pisum sativum/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Superóxido Dismutasa/genética , Temperatura , Tiogalactósidos/metabolismo
9.
Indian J Exp Biol ; 52(9): 898-904, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25241590

RESUMEN

Stevia rebaudiana (Bert.) Bertoni is an important medicinal plant used as noncaloric commercial sweetener. Plants regenerated with higher levels of copper sulphate in the medium exhibited enhanced activity of peroxidase and polyphenoloxidase (PPO) enzymes. Transmission electron microscopy (TEM) revealed increase in size and number of electron dense inclusions in the chloroplasts of plants regenerated at optimised level of copper sulphate (0.5 microM) in the medium. There was decrease in chlorogenic acid (CGA) content. Chl-a-fluorescence transient pattern (OJIP) showed that the photosynthesis process was more efficient at 0.5 microM CuSO4 in the medium.


Asunto(s)
Cloroplastos/efectos de los fármacos , Cloroplastos/ultraestructura , Sulfato de Cobre/farmacología , Fotosíntesis/efectos de los fármacos , Stevia/efectos de los fármacos , Cloroplastos/enzimología , Cloroplastos/metabolismo , Stevia/enzimología , Stevia/fisiología
10.
New Phytol ; 202(3): 920-928, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24506824

RESUMEN

Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.


Asunto(s)
Beta vulgaris/enzimología , Cloroplastos/enzimología , FMN Reductasa/metabolismo , Beta vulgaris/efectos de los fármacos , Beta vulgaris/fisiología , Cloroplastos/efectos de los fármacos , Concentración de Iones de Hidrógeno , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Hierro/farmacología , Deficiencias de Hierro , Péptidos/metabolismo , Vesículas Transportadoras/efectos de los fármacos , Vesículas Transportadoras/metabolismo
11.
Plant Physiol ; 157(4): 1987-99, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21984727

RESUMEN

The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.


Asunto(s)
Cloroplastos/enzimología , Oryza/enzimología , Oryza/inmunología , Fosfolipasa D/metabolismo , Enfermedades de las Plantas/inmunología , Animales , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Ciclopentanos/farmacología , Resistencia a la Enfermedad , Etilenos/análisis , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Hemípteros/fisiología , Herbivoria , Lepidópteros/fisiología , Aceites Volátiles/análisis , Aceites Volátiles/metabolismo , Oryza/genética , Oryza/metabolismo , Oxilipinas/análisis , Oxilipinas/metabolismo , Oxilipinas/farmacología , Fosfolipasa D/genética , Enfermedades de las Plantas/parasitología , Aceites de Plantas/análisis , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , ARN sin Sentido , Transducción de Señal , Ácido alfa-Linolénico/análisis , Ácido alfa-Linolénico/metabolismo
12.
Phytochemistry ; 72(9): 888-96, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21459393

RESUMEN

To investigate the regulation of sulphur (S)-assimilation in onion further at the biochemical level, the pungent cultivar W202A and the milder cultivar Texas Grano 438 PVP (TG) have been grown in S-sufficient (S(+); 4meqS(-1)) or S-deficient (S(-); 0.1meqS(-1)) growth conditions, and tissues excised at the seedling stage (pre-bulbing; ca. 10-weeks-old) and at the mature stage (bulbing; ca. 16-weeks-old). S-supply negatively influenced adenosine-5'-phosphosulphate (APS) reductase (APR) enzyme activity in both cultivars at bulbing only, and a higher abundance of APR was observed in both cultivars at bulbing in response to low S-supply. In contrast, S-supply significantly influenced ATP sulphurylase (ATPS) activity in leaf tissues of W202A only, and only at bulbing, while an increase in abundance in response to high S-supply was observed for both cultivars at bulbing. To investigate the regulation of the ATPS enzyme activity and accumulation further, activity was shown to decrease significantly in roots at bulbing in the S-deficient treatment in both cultivars, a difference that was only supported by western analyses in W202A. Phylogenetic analysis revealed that AcATPS1 groups in a broad monocot clade with the closest sequences identified in Sorghum bicolour, Zea mays and Oryza sativa, but with some support for a divergence of AcATPS1. Detection of ATPS in leaf extracts after two dimensional gel electrophoresis (2-DE) revealed that the protein may undergo post-translational modification with a differential pattern of ATPS accumulation detected in both cultivars over the developmental progression from the seedling to the bulbing stage. Treatment of leaf extracts of W202A to dephosphorylate proteins resulted in the loss of immuno-recognised ATPS spots after 2-DE separation, although enzyme activity was not influenced. These results are discussed in terms of the tiers of control that operate at the biochemical level in the reductive S-assimilation pathway in a S-accumulating species particularly during the high-S-demanding bulbing stage.


Asunto(s)
Genotipo , Cebollas/enzimología , Sulfato Adenililtransferasa/genética , Azufre/metabolismo , Cloroplastos/enzimología , Isoenzimas/genética , Isoenzimas/metabolismo , Cebollas/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Filogenia , Procesamiento Proteico-Postraduccional , Sulfato Adenililtransferasa/metabolismo
13.
Plant Biol (Stuttg) ; 13(3): 453-61, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21489096

RESUMEN

The distinguishing structural and functional domains of plant acyl-acyl carrier protein (ACP) thioesterases and their complex interaction with the ACP-linked fatty acid substrate complex have remained elusive. E. coli based heterologous expression and characterisation of many plant thioesterases reported so far have not been extended and linked to in silico modelling studies to explain the diversity in plant thioesterase substrate specificities. In this study, a thioesterase cDNA isolated from immature seed tissues of Jatropha curcas was found to be type B and specific to stearoyl acyl ACP when expressed in E. coli K27fadD88, a lipid utilisation mutant. Homology modelling and molecular docking of a selected region of the isolated JcFatB protein predicted that it had high affinity towards both stearate (18:0) and palmitate (16:0). Structural analysis of the sequence confirmed the presence of a transit peptide that is processed in multiple steps. The enzyme is localised in the chloroplasts and has an N-terminal inner chloroplast transmembrane domain characteristic of type B plant thioesterases. Docking of ligands with JcFatB and its comparison with a modelled Jatropha thioesterase type A provided further evidence for native substrate preferences of Jatropha thioesterases. This study provides essential clues to develop future methods for large-scale bacterial production of free fatty acids and for design of strategies to modulate the seed oil composition in this important non-edible, seed oil plant.


Asunto(s)
Jatropha/enzimología , Semillas/enzimología , Tioléster Hidrolasas/metabolismo , Secuencia de Aminoácidos , Cloroplastos/enzimología , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Escherichia coli/enzimología , Escherichia coli/genética , Regulación de la Expresión Génica de las Plantas , Jatropha/genética , Modelos Moleculares , Datos de Secuencia Molecular , Ácido Palmítico/metabolismo , Semillas/genética , Ácidos Esteáricos/metabolismo , Especificidad por Sustrato , Tioléster Hidrolasas/biosíntesis , Tioléster Hidrolasas/química , Tioléster Hidrolasas/genética
14.
J Agric Food Chem ; 59(5): 2049-55, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21319806

RESUMEN

The new olive cultivar 'Sikitita' was obtained from a cross between the 'Picual' and 'Arbequina' varieties. 'Sikitita' was selected for its features, making it particularly suited to high-density olive hedgerow orchards. From the standpoint of chloroplast pigment metabolism, the fruits of the 'Picual' and 'Arbequina' varieties have significant differences. It is therefore extremely interesting to analyze the descendants of both cultivars. With regard to chlorophyll catabolism, 'Sikitita' has proven to be a cultivar with low pigmentation and low levels of chlorophyllase activity. This is contrary to the findings obtained to date, where varieties with low pigmentation are a consequence of high chlorophyllase activity ('Arbequina') and highly pigmented fruits are due to low chlorophyllase activity ('Picual'). 'Arbequina' was, until recently, the only cultivar described that had developed a carotenogenic process, despite its anthocyanic ripening. However, from its father ('Arbequina'), the 'Sikitita' cultivar has inherited the pool of enzymes necessary to esterify xanthophylls at the chromoplast level. This makes 'Sikitita' a very interesting cultivar, with potential chemotaxonomic differences (such as esterified xanthophylls in the olive oils), and demonstrates the interest in genetic improvement programs for olive cultivars with different organoleptic characteristics.


Asunto(s)
Cruzamiento/métodos , Frutas/metabolismo , Olea/genética , Olea/metabolismo , Pigmentos Biológicos/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Cloroplastos/enzimología , Cruzamientos Genéticos , Frutas/química , Frutas/crecimiento & desarrollo , Aceite de Oliva , Pigmentos Biológicos/análisis , Aceites de Plantas/química , Especificidad de la Especie
15.
BMC Plant Biol ; 10: 133, 2010 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-20584316

RESUMEN

BACKGROUND: Oxygenic photosynthesis is accompanied by the formation of reactive oxygen species (ROS), which damage proteins, lipids, DNA and finally limit plant yield. The enzymes of the chloroplast antioxidant system are exclusively nuclear encoded. During evolution, plastid and mitochondrial genes were post-endosymbiotically transferred to the nucleus, adapted for eukaryotic gene expression and post-translational protein targeting and supplemented with genes of eukaryotic origin. RESULTS: Here, the genomes of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana were screened for ORFs encoding chloroplast peroxidases. The identified genes were compared for their amino acid sequence similarities and gene structures. Stromal and thylakoid-bound ascorbate peroxidases (APx) share common splice sites demonstrating that they evolved from a common ancestral gene. In contrast to most cormophytes, our results predict that chloroplast APx activity is restricted to the stroma in Chlamydomonas and to thylakoids in Physcomitrella. The moss gene is of retrotransposonal origin.The exon-intron-structures of 2CP genes differ between chlorophytes and streptophytes indicating an independent evolution. According to amino acid sequence characteristics only the A-isoform of Chlamydomonas 2CP may be functionally equivalent to streptophyte 2CP, while the weakly expressed B- and C-isoforms show chlorophyte specific surfaces and amino acid sequence characteristics. The amino acid sequences of chloroplast PrxII are widely conserved between the investigated species. In the analyzed streptophytes, the genes are unspliced, but accumulated four introns in Chlamydomonas. A conserved splice site indicates also a common origin of chlorobiont PrxQ.The similarity of splice sites also demonstrates that streptophyte glutathione peroxidases (GPx) are of common origin. Besides a less related cysteine-type GPx, Chlamydomonas encodes two selenocysteine-type GPx. The latter were lost prior or during streptophyte evolution. CONCLUSION: Throughout plant evolution, there was a strong selective pressure on maintaining the activity of all three investigated types of peroxidases in chloroplasts. APx evolved from a gene, which dates back to times before differentiation of chlorobionts into chlorophytes and streptophytes, while Prx and presumably also GPx gene patterns may have evolved independently in the streptophyte and chlorophyte branches.


Asunto(s)
Arabidopsis , Bryopsida , Chlamydomonas reinhardtii , Cloroplastos/enzimología , Peroxidasas/genética , Peroxidasas/metabolismo , Selaginellaceae , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Ascorbato Peroxidasas , Bryopsida/enzimología , Bryopsida/genética , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/genética , Minería de Datos , Bases de Datos de Proteínas , Exones/genética , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Glutatión Peroxidasa/química , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Intrones/genética , Modelos Moleculares , Datos de Secuencia Molecular , Peroxidasas/química , Peroxirredoxinas/química , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Filogenia , Estructura Terciaria de Proteína , Semillas/genética , Semillas/metabolismo , Selaginellaceae/enzimología , Selaginellaceae/genética , Alineación de Secuencia
16.
Plant Physiol ; 153(2): 655-65, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20382895

RESUMEN

One of the drawbacks in improving the aroma properties of tomato (Solanum lycopersicum) fruit is the complexity of this organoleptic trait, with a great variety of volatiles contributing to determine specific quality features. It is well established that the oxylipins hexanal and (Z)-hex-3-enal, synthesized through the lipoxygenase pathway, are among the most important aroma compounds and impart in a correct proportion some of the unique fresh notes in tomato. Here, we confirm that all enzymes responsible for the synthesis of these C6 compounds are present and active in tomato fruit. Moreover, due to the low odor threshold of (Z)-hex-3-enal, small changes in the concentration of this compound could modify the properties of the tomato fruit aroma. To address this possibility, we have overexpressed the omega-3 fatty acid desaturases FAD3 and FAD7 that catalyze the conversion of linoleic acid (18:2) to linolenic acid (18:3), the precursor of hexenals and its derived alcohols. Transgenic OE-FAD tomato plants exhibit altered fatty acid composition, with an increase in the 18:3/18:2 ratio in leaves and fruits. These changes provoke a clear variation in the C6 content that results in a significant alteration of the (Z)-hex-3-enal/hexanal ratio that is particularly important in ripe OE-FAD3FAD7 fruits. In addition to this effect on tomato volatile profile, OE-FAD tomato plants are more tolerant to chilling. However, the different behaviors of OE-FAD plants underscore the existence of separate fatty acid fluxes to ensure plant survival under adverse conditions.


Asunto(s)
Frío , Ácido Graso Desaturasas/metabolismo , Hexobarbital/metabolismo , Odorantes , Solanum lycopersicum/enzimología , Brassica napus/enzimología , Cloroplastos/enzimología , Retículo Endoplásmico/enzimología , Ácido Graso Desaturasas/genética , Ácido Linoleico/metabolismo , Solanum lycopersicum/genética , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , ARN de Planta/genética , Solanum tuberosum/enzimología , Transformación Genética , Ácido alfa-Linolénico/metabolismo
17.
Physiol Plant ; 138(4): 520-33, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20059737

RESUMEN

Plants synthesize compatible solutes such as glycinebetaine (GB) in response to abiotic stresses. To evaluate the synergistic and protective effect of GB, transgenic potato plants expressing superoxide dismutase (SOD) and ascorbate peroxidase (APX) targeting to chloroplasts (referred to as SSA plants) were retransformed with a bacterial choline oxidase (codA) gene to synthesize GB in chloroplast in naturally occurring non-accumulator potato plants (including SSA) under the control of the stress-inducible SWPA2 promoter (referred to as SSAC plants). GB accumulation resulted in enhanced protection of these SSAC plants and lower levels of H(2)O(2) compared with SSA and non-transgenic (NT) plants after methyl viologen (MV)-mediated oxidative stress. Additionally, SSAC plants demonstrated synergistically enhanced tolerance to salt and drought stresses at the whole-plant level. GB accumulation in SSAC plants helped to maintain higher activities of SOD, APX and catalase following oxidative, salt and drought stress treatments than is observed in SSA and NT plants. Conclusively, GB accumulation in SSAC plants along with overexpression of antioxidant genes rendered the plants tolerant to multiple environmental stresses in a synergistic fashion.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Cloroplastos/enzimología , Peroxidasas/metabolismo , Solanum tuberosum/enzimología , Superóxido Dismutasa/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Oxidorreductasas de Alcohol/genética , Ascorbato Peroxidasas , Betaína/metabolismo , Western Blotting , Cloroplastos/genética , Sequías , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Paraquat/farmacología , Peroxidasas/genética , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cloruro de Sodio/farmacología , Solanum tuberosum/genética , Superóxido Dismutasa/genética , Agua/farmacología
18.
Proc Natl Acad Sci U S A ; 107(1): 502-7, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-20018655

RESUMEN

The PII protein is a signal integrator involved in the regulation of nitrogen metabolism in bacteria and plants. Upon sensing of cellular carbon and energy availability, PII conveys the signal by interacting with target proteins, thereby modulating their biological activity. Plant PII is located to plastids; therefore, to identify new PII target proteins, PII-affinity chromatography of soluble extracts from Arabidopsis leaf chloroplasts was performed. Several proteins were retained only when Mg-ATP was present in the binding medium and they were specifically released from the resin by application of a 2-oxoglutarate-containing elution buffer. Mass spectroscopy of SDS/PAGE-resolved protein bands identified the biotin carboxyl carrier protein subunits of the plastidial acetyl-CoA carboxylase (ACCase) and three other proteins containing a similar biotin/lipoyl-binding motif as putative PII targets. ACCase is a key enzyme initiating the synthesis of fatty acids in plastids. In in vitro reconstituted assays supplemented with exogenous ATP, recombinant Arabidopsis PII inhibited chloroplastic ACCase activity, and this was completely reversed in the presence of 2-oxoglutarate, pyruvate, or oxaloacetate. The inhibitory effect was PII-dose-dependent and appeared to be PII-specific because ACCase activity was not altered in the presence of other tested proteins. PII decreased the V(max) of the ACCase reaction without altering the K(m) for acetyl-CoA. These data show that PII function has evolved between bacterial and plant systems to control the carbon metabolism pathway of fatty acid synthesis in plastids.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Proteínas de Arabidopsis/metabolismo , Biotina/metabolismo , Cloroplastos/enzimología , Ácidos Cetoglutáricos/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Subunidades de Proteína/metabolismo , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/genética , Arabidopsis/citología , Arabidopsis/enzimología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Datos de Secuencia Molecular , Proteínas PII Reguladoras del Nitrógeno/genética , Hojas de la Planta/enzimología , Hojas de la Planta/ultraestructura , Subunidades de Proteína/química , Subunidades de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
19.
Plant Physiol ; 151(2): 905-24, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19710229

RESUMEN

A prominent enzyme in organellar RNA metabolism is the exoribonuclease polynucleotide phosphorylase (PNPase), whose reversible activity is governed by the nucleotide diphosphate-inorganic phosphate ratio. In Chlamydomonas reinhardtii, PNPase regulates chloroplast transcript accumulation in response to phosphorus (P) starvation, and PNPase expression is repressed by the response regulator PSR1 (for PHOSPHORUS STARVATION RESPONSE1) under these conditions. Here, we investigated the role of PNPase in the Arabidopsis (Arabidopsis thaliana) P deprivation response by comparing wild-type and pnp mutant plants with respect to their morphology, metabolite profiles, and transcriptomes. We found that P-deprived pnp mutants develop aborted clusters of lateral roots, which are characterized by decreased auxin responsiveness and cell division, and exhibit cell death at the root tips. Electron microscopy revealed that the collapse of root organelles is enhanced in the pnp mutant under P deprivation and occurred with low frequency under P-replete conditions. Global analyses of metabolites and transcripts were carried out to understand the molecular bases of these altered P deprivation responses. We found that the pnp mutant expresses some elements of the deprivation response even when grown on a full nutrient medium, including altered transcript accumulation, although its total and inorganic P contents are not reduced. The pnp mutation also confers P status-independent responses, including but not limited to stress responses. Taken together, our data support the hypothesis that the activity of the chloroplast PNPase is involved in plant acclimation to P availability and that it may help maintain an appropriate balance of P metabolites even under normal growth conditions.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/fisiología , Cloroplastos/enzimología , Mutación/genética , Fósforo/deficiencia , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , División Celular/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Cloroplastos/genética , ADN Bacteriano/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Mutagénesis Insercional/efectos de los fármacos , Fenotipo , Fósforo/metabolismo , Fósforo/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
20.
Plant Cell ; 21(6): 1669-92, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19525416

RESUMEN

The plastid ClpPR protease complex in Arabidopsis thaliana consists of five catalytic ClpP and four noncatalytic ClpR subunits. An extensive analysis of the CLPR family and CLPP5 is presented to address this complexity. Null alleles for CLPR2 and CLPR4 showed delayed embryogenesis and albino embryos, with seedling development blocked in the cotyledon stage; this developmental block was overcome under heterotrophic conditions, and seedlings developed into small albino to virescent seedlings. By contrast, null alleles for CLPP5 were embryo lethal. Thus, the ClpPR proteins make different functional contributions. To further test for redundancies and functional differences between the ClpR proteins, we overexpressed full-length cDNAs for ClpR1, R2, R3, R4 in clpr1, clpr2 and clpr4 mutants. This showed that overexpression of ClpR3 can complement for the loss of ClpR1, but not for the loss of ClpR2 or ClpR4, indicating that ClpR3 can functionally substitute ClpR1. By contrast, ClpR1, R2 and R4 could not substitute each other. Double mutants of weak CLPR1 and 2 alleles were seedling lethal, showing that a minimum concentration of different ClpR proteins is essential for Clp function. Microscopy and large-scale comparative leaf proteome analyses of a CLPR4 null allele demonstrate a central role of Clp protease in chloroplast biogenesis and protein homeostasis; substrates are discussed. Lack of transcriptional and translational feedback regulation within the CLPPR gene family indicates that regulation of Clp activity occurs through Clp complex assembly and substrate delivery.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Endopeptidasa Clp/fisiología , Plastidios/enzimología , Subunidades de Proteína/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cloroplastos/enzimología , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Endopeptidasa Clp/genética , Silenciador del Gen , Prueba de Complementación Genética , Microscopía Electrónica de Transmisión , Mutación , Fenotipo , Extractos Vegetales/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/ultraestructura , Subunidades de Proteína/genética , Proteómica , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/enzimología , Semillas/crecimiento & desarrollo , Semillas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA