RESUMEN
BACKGROUND: This study aimed to investigate the effects of the combination of Epimedii Folium (EF) and Ligustri Lucidi Fructus (LLF) on regulating apoptosis and autophagy in senile osteoporosis (SOP) rats. METHODS: Firstly, we identified the components in the decoction and drug-containing serum of EL (EF&LLF) by Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Secondly, SOP rats were treated with EF, LLF, EL and caltrate to evaluate the advantages of EL. Finally, H2O2-, chloroquine-, and MHY1485-induced osteoblasts were treated with different doses of EL to reveal the molecular mechanism of EL. We detected bone microstructure, oxidative stress levels, ALP activity and the expressions of Bax, Bcl-2, caspase3, P53, Beclin-1, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, mTOR, and LC3 in vivo and in vitro. RESULTS: 36 compounds in EL decoction and 23 in EL-containing serum were identified, including flavonoids, iridoid terpenoids, phenylethanoid glycosides, polyols and triterpenoids. EL could inhibit apoptosis activity and increase ALP activity. In SOP rats and chloroquine-inhibited osteoblasts, EL could improve bone tissue microstructure and osteoblasts functions by upregulating Bcl-2, Beclin1, and LC3-II/LC3-I, while downregulating p53 in all treatment groups. In H2O2-induced osteoblasts, EL could upregulate the protein and mRNA expressions of Bcl-2 while downregulate LC3-II/LC3-I, p53 and Beclin1. Besides, EL was able to down-regulate PI3K/AKT/mTOR pathway which activated in SOP rats and MHY1485-induced osteoblasts. CONCLUSIONS: These findings demonstrate that EL with bone protective effects on SOP rats by regulating autophagy and apoptosis via PI3K/Akt/mTOR signaling pathway, which might be an alternative medicine for the treatment of SOP.
Asunto(s)
Medicamentos Herbarios Chinos , Ligustrum , Osteoporosis , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ligustrum/química , Ligustrum/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Beclina-1/metabolismo , Peróxido de Hidrógeno/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoblastos , Apoptosis , Autofagia , Cloroquina/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismoRESUMEN
Sorghum is a gluten-free cereal commonly used in foods, and its consumption has been associated with the prevention of human chronic conditions such as obesity and cancer, due to the presence of dietary fiber and phenolic compounds. This study aimed to evaluate, for the first time, the antiproliferative, antioxidant, anti-adhesion, anti-invasion, and antimalarial activities of phenolic extracts from toasted white and tannin sorghum flours to understand how different phenolic profiles contribute to sorghum biological activities. Water and 70 % ethanol/water (v/v), eco-friendly solvents, were used to obtain the phenolic extracts of toasted sorghum flours, and their phenolic profile was analyzed by UPLC-MSE. One hundred forty-five (145) phenolic compounds were identified, with 23 compounds common to all extracts. The solvent type affected the phenolic composition, with aqueous extract of both white sorghum (WSA) and tannin sorghum (TSA) containing mainly phenolic acids. White sorghum (WSE) and tannin sorghum (TSE) ethanolic extracts exhibited a higher abundance of flavonoids. WSE demonstrated the lowest IC50 on EA.hy926 (IC50 = 46.6 µg/mL) and A549 cancer cells (IC50 = 33.1 µg/mL), while TSE showed the lowest IC50 (IC50 = 70.8 µg/mL) on HCT-8 cells (human colon carcinoma). Aqueous extracts also demonstrated interesting results, similar to TSE, showing selectivity for cancer cells at higher IC50 concentrations. All sorghum extracts also reduced the adhesion and invasion of HCT-8 cells, suggesting antimetastatic potential. WSE, rich in phenolic acids and flavonoids, exhibited greater toxicity to both the W2 (chloroquine-resistant) and 3D7 (chloroquine-sensitive) strains of Plasmodium falciparum (IC50 = 8 µg GAE/mL and 22.9 µg GAE/mL, respectively). These findings underscore the potential health benefits of toasted sorghum flours, suggesting diverse applications in the food industry as a functional ingredient or even as an antioxidant supplement. Moreover, it is suggested that, besides the phenolic concentration, the phenolic profile is important to understand the health benefits of sorghum flours.
Asunto(s)
Antimaláricos , Sorghum , Humanos , Taninos , Antioxidantes/farmacología , Antioxidantes/análisis , Antimaláricos/farmacología , Extractos Vegetales/farmacología , Grano Comestible/química , Cromatografía Liquida , Espectrometría de Masas en Tándem , Fenoles/análisis , Flavonoides , Solventes , Agua , CloroquinaRESUMEN
This report describes the isolation and characterization of xanthones from Garcinia bancana Miq. and evaluates their antiplasmodial and anticancer activities. Macluraxanthone (1), isojacareubin (2), and gerontoxanthone C (3) were isolated from the stem bark of G. bancana Miq. for the first time. In silico molecular docking studies revealed the hydrogen bonding and steric interactions between xanthones (1-3) and PfLDH/VEGFR2. The in vitro antiplasmodial activity was assayed against the chloroquine-sensitive Plasmodium falciparum strain 3D7 by the lactate dehydrogenase (LDH) method. The anticancer evaluation was evaluated against the A549, MCF-7, HeLa, and B-16 cancer cell lines. Compounds (1) (IC50 8.45-16.71 µM) and (3) (IC50 9.69-14.86 µM) showed more potent anticancer activity than compound (2) (IC50 25.46-31.31 µM), as well for their antiplasmodial activity (4.28 µM, 5.52 µM, 11.45 µM). Our findings indicated the potential of G. bancana Miq. as a natural resource of antiplasmodial and anticancer compounds.
Asunto(s)
Antimaláricos , Garcinia , Xantonas , Antimaláricos/farmacología , Xantonas/farmacología , Simulación del Acoplamiento Molecular , Cloroquina , Plasmodium falciparum , Extractos VegetalesRESUMEN
Malaria is a global health challenge with endemicity in sub-Saharan Africa, where there are multiple drug-resistant strains and limited access to modern health care facilities, especially in rural areas. Studies indicate that African traditional medicine could make a substantial contribution to the reduction of malaria-related deaths and achievement of universal health coverage (UHC), particularly in these regions. Thus, this study evaluated the curative antimalarial effects of Chromolaena odorata leaf extract using mouse model. Forty-five (45) albino mice weighing between 18 and 22 g were grouped into nine groups of 5 animals each. Animals in groups 2-9 were infected with the chloroquine-resistant strain of Plasmodium berghei, while animals in groups 3-9 were subsequently treated with 10 mg/kg chloroquine, a combination of 1.4 mg/kg artemether and 8.75 mg/kg lumefantrine (Coartem), and varying concentrations of the fraction from the aqueous leaf extract of C. odorata at day 3 post-infection. The findings from this study indicate that treatment with 400 mg/kg of the ethanolic fraction of the crude extract resulted in a significant decrease in parasite load (97.6%), which was comparable to the activities of the conventional drugs chloroquine (98.6%) and Coartem (98.8%). The ethyl acetate and ethanolic fractions at 400 mg/kg also ameliorated the significant alterations in the red blood cells, white blood cells, and platelets of the infected animals. The high antimalarial activity displayed by the ethanolic fraction could be due to the presence of quercetin and kaempferol, as detected by high performance liquid chromatography (HPLC) analysis. The findings suggest that the fractions from C. odorata could serve as an alternative source of malaria therapy, particularly in sub-Saharan Africa.
Asunto(s)
Antimaláricos , Chromolaena , Malaria , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Chromolaena/química , Combinación Arteméter y Lumefantrina , Extractos Vegetales/química , Malaria/tratamiento farmacológico , Malaria/parasitología , Cloroquina/farmacologíaRESUMEN
Plasmodium falciparum and Leishmania sp. resistance to antiparasitic drugs has become a major concern in malaria and leishmaniasis control. These diseases are public health problems with significant socioeconomic impacts, and mostly affect disadvantaged populations living in remote tropical areas. This challenge emphasizes the need to search for new chemical scaffolds that preferably possess novel modes of action to contribute to antimalarial and antileishmanial research programs. This study aimed to investigate the antimalarial and antileishmanial properties of a methanol extract (KS-MeOH) of the stem bark of the Cameroonian medicinal plant Khaya senegalensis and its isolated compounds. The purification of KS-MeOH led to the isolation of a new ordered limonoid derivative, 21ß-hydroxybourjotinolone A (1a), together with 15 known compounds (1bc-14) using a repeated column chromatography. Compound 1a was obtained in an epimeric mixture of 21α-melianodiol (1b) and 21ß-melianodiol (1c). Structural characterization of the isolated compounds was achieved with HRMS, and 1D- and 2D-NMR analyses. The extracts and compounds were screened using pre-established in vitro methods against synchronized ring stage cultures of the multidrug-resistant Dd2 and chloroquine-sensitive/sulfadoxine-resistant 3D7 strains of Plasmodium falciparum and the promastigote form of Leishmania donovani (1S(MHOM/SD/62/1S). In addition, the samples were tested for cytotoxicity against RAW 264.7 macrophages. Positive controls consisted of artemisinin and chloroquine for P. falciparum, amphotericin B for L. donovani, and podophyllotoxin for cytotoxicity against RAW 264.7 cells. The extract and fractions exhibited moderate to potent antileishmanial activity with 50% inhibitory concentrations (IC50) ranging from 5.99 ± 0.77 to 2.68 ± 0.42 µg/mL, while compounds displayed IC50 values ranging from 81.73 ± 0.12 to 6.43 ± 0.06 µg/mL. They were weakly active against the chloroquine-sensitive/sulfadoxine-resistant Pf3D7 strain but highly potent toward the multidrug-resistant PfDd2 (extracts, IC50 2.50 ± 0.12 to 4.78 ± 0.36 µg/mL; compounds IC50 2.93 ± 0.02 to 50.97 ± 0.37 µg/mL) with selectivity indices greater than 10 (SIDd2 > 10) for the extract and fractions and most of the derived compounds. Of note, the limonoid mixture [21ß-hydroxylbourjotinolone A (1a) + 21α-melianodiol (1b) + 21ß-melianodiol (1c)] exhibited moderate activity against P. falciparum and L. donovani. This novel antiplasmodial and antileishmanial chemical scaffold qualifies as a promising starting point for further medicinal chemistry-driven development of a dually active agent against two major infectious diseases affecting humans in Africa.
Asunto(s)
Antimaláricos , Antiprotozoarios , Limoninas , Malaria Falciparum , Meliaceae , Humanos , Antimaláricos/química , Limoninas/farmacología , Limoninas/análisis , Extractos Vegetales/química , Sulfadoxina/análisis , Corteza de la Planta/química , Antiprotozoarios/farmacología , Antiprotozoarios/análisis , Cloroquina , Meliaceae/química , Plasmodium falciparumRESUMEN
Malaria prevalence has become medically important and a socioeconomic impediment for the endemic regions, including Purulia, West Bengal. Geo-environmental variables, humidity, altitude, and land use patterns are responsible for malaria. For surveillance of the endemic nature of Purulia's blocks, statistical and spatiotemporal factors analysis have been done here. Also, a novel approach for the Pf malaria treatment using methanolic leaf extract of Morus alba S1 has significantly reduced the parasite load. The EC50 value (1.852) of the methanolic extract of M. alba S1 with P. falciparum 3D7 strain is close to the EC50 value (0.998) of the standard drug chloroquine with the same chloroquine-sensitive strain. Further studies with an in-silico model have shown successful interaction between DHFR and the phytochemicals. Both 1-octadecyne and oxirane interacted favourably, which was depicted through GC-MS analysis. The predicted binary logistic regression model will help the policy makers for epidemiological surveillance in malaria-prone areas worldwide when substantial climate variables create a circumstance favourable for malaria. From the in vitro and in silico studies, it can be concluded that the methanolic extract of M. alba S1 leaves were proven to have promising antiplasmodial activity. Thus, there is a scope for policy-driven approach for discovering and developing these lead compounds and undermining the rising resistance to the frontline anti-malarial drugs in the world.
Asunto(s)
Malaria Falciparum , Malaria , Morus , Malaria/tratamiento farmacológico , Cloroquina , Metanol , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéuticoRESUMEN
In 2022 as in 1884, the clinical presentation of uncomplicated malaria is unspecific: fever of variable intensity, continuous or rhythmic, chills, flu syndrome, headache, respiratory and digestive disorders. At any time, it can evolve into a severe form (ex-pernicious attack or cerebral malaria) or even lethal. By reading again Alphonse Laveran's book on malarial fevers, we realized to what extent the observations made at that time allowed for a methodical and orderly description of the clinical forms of malaria, very close to what we can still observe today. No symptom or sign is pathognomonic of the disease. Only the detection of plasmodia or "malaria microbes" by direct or immuno-chromatographic methods allows for diagnostic confirmation, which is a prerequisite for the implementation of a curative treatment.Serendipity, synthetic chemistry and traditional medicine are the three methods that led to the discovery and large-scale production of antimalarial drugs. Serendipity for quinine, synthetic chemistry for chloroquine, and research conducted around traditional Chinese medicine for artemisinin and its derivatives. The latter have marked a real revolution in the management of malaria, both in its uncomplicated and severe forms. However, as with other antimalarial drugs, its medium- and long-term efficacy is compromised by the emergence and spread of resistance in malaria parasites, particularly P. falciparum. The control and eradication of malaria therefore require continued research in both prevention and therapy.The disease so well described by Alphonse Laveran has not yet said its last word .
Asunto(s)
Antimaláricos , Malaria Cerebral , Plasmodium , Humanos , Antimaláricos/uso terapéutico , Quinina , Cloroquina , Malaria Cerebral/tratamiento farmacológicoRESUMEN
It has been shown that exercise has a direct impact on tumor growth along with functional improvement. Previous studies have shown that exercise decreases the risk of cancer recurrence across various types of cancer. It was indicated that exercise stimulates the immune system to fight cancer. Previous study demonstrated that pulsed-wave ultrasound hyperthermia (pUH) combined with PEGylated liposomal doxorubicin (PLD) and chloroquine (CQ) inhibits 4T1 tumors growth and delays their recurrence. In this study, we investigated if the combinatorial treatment with high-intensity interval training (HIIT) combined with pUH-enhanced PLD delivery and CQ improved the outcome. The mouse experiment composed of three groups, HIIT+PLD+pUH+CQ group, PLD+pUH+CQ group, and the control group. HIIT+PLD+pUH+CQ group received 6 weeks of HIIT (15 min per day, 5 days per week) before 4T1 tumor implantation. Seven days later, they received therapy with PLD (10 mg/kg) + pUH (3 MHz, 50% duty cycle, 0.65 W/cm2, 15min) + CQ (50 mg/kg daily). Results showed that HIIT+PLD+pUH+CQ significantly reduced the tumor volumes and brought about longer survival of tumor-bearing mice than PLD+pUH+CQ did. Blood cell components were analyzed and showed that neutrophil and reticulocytes decreased while lymphocytes increased after exercise.
Asunto(s)
Autofagia , Hipertermia Inducida , Animales , Ratones , Ultrasonografía , CloroquinaRESUMEN
BACKGROUND AND PURPOSE: Itch (pruritus) is a common unpleasant feeling, often accompanied by the urge of scratching the skin. It is the main symptom of many systemic and skin diseases, which can seriously affect the patient's quality of life. Geraniol (GE; trans-3,7-dimethyl-2,6-octadien-1-ol) is a natural monoterpene with diverse effects, including anti-inflammatory, antioxidant, neuroprotective, anti-nociceptive, and anticancer properties. The study aims to examine the effects of GE on acute and chronic itch, and explore the underlying mechanisms. METHODS: Acute itch was investigated by using Chloroquine and compound 48/80 induced model, followed by manifestation of diphenylcyclopropenone (DCP)-induced allergic contact dermatitis and the acetone-ether-water (AEW)-induced dry skin model in mice. The scratching behavior, skin thickness, c-Fos expression, and GRPR protein expression in the spinal cord were subsequently monitored and evaluated by behavioral tests as well as pharmacological and pharmacogenetic technologies. RESULTS: Dose-dependent intraperitoneal injection of GE alleviated the acute itch, induced by chloroquine and compound 48/80, as well as increased the spinal c-Fos expression. Intrathecal administration of GE suppressed the GABAA receptor inhibitor bicuculline-induced itch, GRP-induced itch, and the GABAergic neuron inhibition-induced itch. Furthermore, the subeffective dose of bicuculline blocked the anti-pruritic effect of GE on the chloroquine and compound 48/80 induced acute itch. GE also attenuated DCP and AEW-induced chronic itch, as well as the increase of spinal GRPR expression in DCP mice. CONCLUSION AND IMPLICATIONS: GE alleviates both acute and chronic itch via modulating the spinal GABA/GRPR signaling in mice. Findings of this study reveal that GE may provide promising therapeutic options for itch management. Also, considering the pivotal role of essential oils in aromatherapy, GE has great application potential in aromatherapy for treating skin diseases, and especially the skin with severe pruritus.
Asunto(s)
Antipruriginosos , Calidad de Vida , Ratones , Animales , Antipruriginosos/efectos adversos , Péptido Liberador de Gastrina/metabolismo , Péptido Liberador de Gastrina/farmacología , Bicuculina/efectos adversos , Bicuculina/metabolismo , Prurito/inducido químicamente , Prurito/tratamiento farmacológico , Médula Espinal , Cloroquina/farmacología , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Chloroquine (CQ) and hydroxychloroquine (HCQ) are classical antimalarial drugs, and recently have been used for other applications including coronavirus disease 2019 (COVID-19). Although they are considered safe, cardiomyopathy may associate CQ and HCQ applications particularly at overdoses. The goal of the present study was to evaluate the potential protective effect of the nootropic agent vinpocetine against CQ and HCQ adverse effects with a specific focus on the heart. For this purpose, a mouse model of CQ (0.5 up to 2.5 g/kg)/HCQ (1 up to 2 g/kg) toxicity was used, and the effect of vinpocetine was evaluated by survival, biochemical, as well as histopathological analyses. Survival analysis revealed that CQ and HCQ caused dose-dependent lethality, which was prevented by co-treatment with vinpocetine (100 mg/kg, oral or intraperitoneal). To gain deeper understanding, a dose of 1 g/kg CQ-which did not cause death within the first 24 h after administration-was applied with and without vinpocetine administration (100 mg/kg, intraperitoneal). The CQ vehicle group showed marked cardiotoxicity as evidenced by significant alterations of blood biomarkers including troponione-1, creatine phosphokinase (CPK), creatine kinase-myocardial band (CK-MB), ferritin, and potassium levels. This was confirmed at the tissue level by massive alteration of the heart tissue morphology and coincided with massive oxidative stress. Interestingly, co-administration of vinpocetine strongly ameliorated CQ-induced alterations and restored the antioxidant-defense system of the heart. These data suggest that vinpocetine could be used as an adjuvant therapy together with CQ/HCQ applications.
Asunto(s)
COVID-19 , Cloroquina , Animales , Ratones , Cloroquina/toxicidad , Cardiotoxicidad/prevención & control , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Hidroxicloroquina/toxicidad , Hidroxicloroquina/uso terapéutico , Estrés OxidativoRESUMEN
Borneol has been used successfully for the treatment of itchy skin in traditional Chinese medicine. However, the antipruritic effect of borneol has rarely been studied, and the mechanism is unclear. Here, we showed that topical application of borneol on skin substantially suppressed pruritogen chloroquine- and compound 48/80-induced itching in mice. The potential targets of borneol, including transient receptor potential cation channel subfamily V member 3 (TRPV3), transient receptor potential cation channel subfamily A member 1 (TRPA1), transient receptor potential cation channel subfamily M member 8 (TRPM8), and gamma-aminobutyric acid type A (GABAA) receptor were pharmacologically inhibited or genetically knocked out one by one in mouse. Itching behavior studies demonstrated that the antipruritic effect of borneol is largely independent of TRPV3 and GABAA receptor, and TRPA1 and TRPM8 channels are responsible for a major portion of the effect of borneol on chloroquine-induced nonhistaminergic itching. Borneol activates TRPM8 and inhibits TRPA1 in sensory neurons of mice. Topical co-application of TRPA1 antagonist and TRPM8 agonist mimicked the effect of borneol on chloroquine-induced itching. Intrathecal injection of a group II metabotropic glutamate receptor antagonist partially attenuated the effect of borneol and completely abolished the effect of TRPM8 agonist on chloroquine-induced itching, suggesting that a spinal glutamatergic mechanism is involved. In contrast, the effect of borneol on compound 48/80-induced histaminergic itching occurs through TRPA1-and TRPM8-independent mechanisms. Our work demonstrates that borneol is an effective topical itch reliever, and TRPA1 inhibition and TRPM8 activation in peripheral nerve terminals account for its antipruritic effect.
Asunto(s)
Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Ratones , Animales , Antipruriginosos/farmacología , Antipruriginosos/uso terapéutico , Canal Catiónico TRPA1 , Canales Catiónicos TRPM/fisiología , Prurito/inducido químicamente , Prurito/tratamiento farmacológico , Células Receptoras Sensoriales , Cloroquina/farmacología , Nervios Periféricos , Canales Catiónicos TRPVRESUMEN
BACKGROUND: The plants Aloe weloensis, Lepidium sativum, and Lobelia gibberoa have been used in Ethiopian folklore medicine to treat various diseases including malaria. METHOD: The in vitro anti-plasmodial activity of the three crude extracts was evaluated using parasite lactate dehydrogenase assay against the chloroquine (CQ)-sensitive D10 and the chloroquine (CQ)-resistant W2 strains. RESULT: The methanolic extract of L. gibberoa roots showed the highest in vitro anti-plasmodial effect against both D10 and W2 Plasmodium falciparum strains with IC50 value of 103.83 ± 26.17 µg/mL and 47.11 ± 12.46 µg/mL, respectively. However, the methanolic extract of L. sativum seeds and the leaf latex of A. weloensis were not active with an IC50 value > 200 µg/mL against both D10 and W2 strains. CONCLUSION: The methanolic extract of L. gibberoa roots showed a promising in vitro anti-plasmodial activity against the CQ-sensitive (D10) and CQ-resistant (W2) strains of P. falciparum. Thus, the anti-plasmodial activity of this plant partly justifies and may also support the traditional use against malaria. However, the methanolic extract of L. sativum seeds and the leaf latex of A. weloensis did not exert suppressive activity on the growth of P. falciparum strains.
Asunto(s)
Antimaláricos , Malaria , Plantas Medicinales , Etiopía , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antimaláricos/farmacología , Látex/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/parasitología , Medicina Tradicional , Cloroquina/uso terapéuticoRESUMEN
Antrocaryon klaineanum is traditionally used for the treatment of back pain, malaria, female sterility, chlamydiae infections, liver diseases, wounds, and hemorrhoid. This work aimed at investigating the bioactive compounds with antileishmanial and antiplasmodial activities from A. klaineanum. An unreported glucocerebroside antroklaicerebroside (1) together with five known compounds (2-6) were isolated from the root barks of Antrocaryon klaineanum using chromatographic techniques. The NMR, MS, and IR spectroscopic data in association with previous literature were used for the characterization of all the isolated compounds. Compounds 1-4 are reported for the first time from A. klaineanum. The methanol crude extract (AK-MeOH), the n-hexane fraction (AK-Hex), the dichloromethane fraction (AK-DCM), the ethyl acetate fraction (AK-EtOAc), and compounds 1-6 were all evaluated for their antiparasitic effects against Plasmodium falciparum strains susceptible to chloroquine (3D7), resistant to chloroquine (Dd2), and promastigotes of Leishmania donovani (MHOM/SD/62/1S). The AK-Hex, AK-EtOAc, AK-MeOH, and compound 2 were strongly active against Dd2 strain with IC50 ranging from 2.78 ± 0.06 to 9.30 ± 0.29 µg/mL. Particularly, AK-MeOH was the most active-more than the reference drugs used-with an IC50 of 2.78 ± 0.06 µg/mL. The AK-EtOAc as well as all the tested compounds showed strong antileishmanial activities with IC50 ranging from 4.80 ± 0.13 to 9.14 ± 0.96 µg/mL.
Asunto(s)
Anacardiaceae , Antimaláricos , Antiprotozoarios , Antimaláricos/farmacología , Antimaláricos/química , Anacardiaceae/química , Extractos Vegetales/química , Antiprotozoarios/farmacología , Cloroquina , Plasmodium falciparumRESUMEN
BACKGROUND: Malaria remains one of the major health concerns, especially in tropical countries. Although drugs such as artemisinin-based combinations are efficient for treating Plasmodium falciparum, the growing threat from multi-drug resistance has become a major challenge. Thus, there is a constant need to identify and validate new combinations to sustain current disease control strategies to overcome the challenge of drug resistance in the malaria parasites. To meet this demand, liquiritigenin (LTG) has been found to positively interact in combination with the existing clinically used drug chloroquine (CQ), which has become unfunctional due to acquired drug resistance. PURPOSE: To evaluate the best interaction between LTG and CQ against CQ- resistant strain of P. falciparum. Furthermore, the in vivo antimalarial efficacy and possible mechanism of action of the best combination was also assessed. METHODS: The in vitro anti-plasmodial potential of LTG against CQ- resistant strain K1 of P. falciparum was tested using Giemsa staining method. The behaviour of the combinations was evaluated using the fix ratio method and evaluated the interaction of LTG and CQ by calculating the fractional inhibitory concentration index (FICI). Oral toxicity study was carried out in a mice model. In vivo antimalarial efficacy of LTG alone and in combination with CQ was evaluated using a four-day suppression test in a mouse model. The effect of LTG on CQ accumulation was measured using HPLC and the rate of alkalinization of the digestive vacuole. Cytosolic Ca2+ level, mitochondrial membrane potential, caspase-like activity, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and Annexin V Apoptosis assay to assess anti-plasmodial potential. Proteomics analysis was evaluated by LC-MS/MS analysis. RESULTS: LTG possesses anti-plasmodial activity on its own and it showed to be an adjuvant of CQ. In in vitro studies, LTG showed synergy with CQ only in the ratio (CQ: LTG-1:4) against CQ-resistant strain (K1) of P. falciparum. Interestingly, in vivo studies, LTG in combination with CQ showed higher chemo-suppression and enhanced mean survival time at much lower concentrations compared to individual doses of LTG and CQ against CQ- resistant strain (N67) of Plasmodium yoelli nigeriensis. LTG was found to increase the CQ accumulation into digestive vacuole, reducing the rate of alkalinization, in turn increasing cytosolic Ca2+ level, loss of mitochondrial potential, caspase-3 activity, DNA damage and externalization of phosphatidylserine of the membrane (in vitro). These observations indicate the involvement of apoptosis-like death of P. falciparum that might be due to the accumulation of CQ. CONCLUSION: LTG showed synergy with CQ in the ratio LTG: CQ, 4:1) in vitro and was able to curtail the IC50 of CQ and LTG. Interestingly, in vivo in combination with CQ, LTG showed higher chemo-suppression as well as enhanced mean survival time at a much lower concentrations of both the partners as compared to an individual dose of CQ and LTG. Thus, synergistic drug combination offers the possibility to enhance CQ efficacy in chemotherapy.
Asunto(s)
Antimaláricos , Malaria , Animales , Ratones , Cloroquina/farmacología , Antimaláricos/farmacología , Cromatografía Liquida , Vacuolas , Espectrometría de Masas en Tándem , Malaria/tratamiento farmacológico , Plasmodium falciparum , Apoptosis , Resistencia a Medicamentos , Modelos Animales de EnfermedadRESUMEN
The root extract of Nauclea xanthoxylon (A.Chev.) Aubrév. displayed significant 50 % inhibition concentration (IC50 s) of 0.57 and 1.26â µg/mL against chloroquine resistant and sensitive Plasmodium falciparum (Pf) Dd2 and 3D7 strains, respectively. Bio-guided fractionation led to an ethyl acetate fraction with IC50 s of 2.68 and 1.85â µg/mL and subsequently, to the new quinovic acid saponin named xanthoxyloside (1) with IC50 s of 0.33 and 1.30â µM, respectively against the tested strains. Further compounds obtained from ethyl acetate and hexane fractions were the known clethric acid (2), ursolic acid (3), quafrinoic acid (4), quinovic acid (5), quinovic acid 3-O-ß-D-fucopyranoside (6), oleanolic acid (7), oleanolic acid 3-acetate (8), friedelin (9), ß-sitosterol (10a), stigmasterol (10b) and stigmasterol 3-O-ß-D-glucopyranoside (11). Their structures were characterised with the aid of comprehensive spectroscopic methods (1 and 2D NMR, Mass). Bio-assays were performed using nucleic acid gel stain (SYBR green I)-based fluorescence assay with chloroquine as reference. Extracts and compounds exhibited good selectivity indices (SIs) of >10. Significant antiplasmodial activities measured for the crude extract, the ethyl acetate fraction and xanthoxyloside (1) from that fraction can justify the use of the root of N. xanthoxylon in ethnomedicine to treat malaria.
Asunto(s)
Antimaláricos , Rubiaceae , Saponinas , Antimaláricos/farmacología , Antimaláricos/química , Cloroquina/farmacología , Ácido Oleanólico , Extractos Vegetales/química , Plasmodium falciparum/metabolismo , Rubiaceae/química , Saponinas/química , Saponinas/farmacología , Ácido UrsólicoRESUMEN
Malaria control efforts have been hampered due to the emergence of resistant malaria parasite strains and the coinciding events of Covid-19. The quest for more effective and safe treatment alternatives is driving a slew of new studies that must be accelerated if malaria can be overcome. Due to its reported antimalarial activity, we studied the effects of extract and fractions of Phyllanthus nivosus leaf on Plasmodium lactate dehydrogenase (pLDH) activity using an in vitro assay. This was followed by an anti-plasmodial study using Plasmodium berghei-infected mice and an in silico identification of the plant's phytochemicals with possible pLDH-inhibitory activity. The activity of pLDH was significantly reduced in the presence of ethanol extract and various solvent fractions of Phyllanthus nivosus leaf, with the ethyl acetate fraction having the best inhibitory activity, which was comparable to that of the standard drug (chloroquine). The ethyl acetate fraction at 100 and 200 mg/Kg also suppressed the parasitaemia of Plasmodium berghei-infected mice by 76 and 80% respectively. Among the 53 compounds docked against pLDH, (-)-alpha-Cadinol, (+)-alpha-phellandrene, and spathulenol, all terpenes from the ethyl acetate fraction of P. nivosus leaf extract, demonstrated docking scores comparable to that of chloroquine. The three chemicals, like chloroquine, displayed important molecular interactions with the amino acid residues of the enzyme's NADH-binding site. According to the in silico ADMET study, the three terpenes have suitable drug-like abilities, pharmacokinetic features, and safety profiles. Hence, they could be considered for further development as antimalarial drugs.Communicated by Ramaswamy H. Sarma.
Asunto(s)
Antimaláricos , Malaria , Ratones , Animales , L-Lactato Deshidrogenasa , Extractos Vegetales/farmacología , Extractos Vegetales/química , Malaria/tratamiento farmacológico , Malaria/parasitología , Antimaláricos/química , Cloroquina/farmacología , Plasmodium berghei , Plasmodium falciparumRESUMEN
OBJECTIVE: The present study is an in silico model of platelet amplification potential of Adhatoda vasica, which can be used to treat thrombocytopenia in dengue complications. METHODS: Docking studies have proved to be an essential tool that facilitates the structural diversity of natural products to be harnessed in an organized manner. In the present study, vasicine containing natural anti-dengue potential was subjected to docking studies using Schrodinger glides software (ver.11.1). The docking study was carried out to find out the potential molecular targets for selected protein. The docking was carried out on different ligands, like vasicine, ramatroban, chloroquine, celgosivir, and standard eltrombopag downloaded from PubChem and retrieved to glide software and ligands prepared using lig prep wizard. Docking was performed using the ligand docking wizard of Glide-maestro 2018. RESULTS: The docking score of vasicine (-5.27) is nearly identical to the standard eltrombopag (-6.08), and both ligands bind with one hydrogen bond. The validation score of ramatroban is -12.39, binding with five hydrogen bonds, Celgosivir exhibited a docking score of -7.3 with three hydrogen bonds, and chloroquine displayed no hydrogen bond but had a docking score of -4.6. CONCLUSION: Vasicine was found to be the most suitable target of platelet amplification potential from Adhatoda vasica. However, the molecular docking results are preliminary, and it has been indicated that vasicine could be one of the potential ligands to treat the thrombocytopenia of dengue; experimental evaluation will be carried out in the near future.
Asunto(s)
Dengue , Género Justicia , Preparaciones de Plantas , Trombocitopenia , Humanos , Cloroquina , Género Justicia/química , Simulación del Acoplamiento Molecular , Dengue/complicaciones , Receptores de Tromboxano A2 y Prostaglandina H2 , Trombocitopenia/tratamiento farmacológico , Trombocitopenia/virología , Preparaciones de Plantas/farmacologíaRESUMEN
Since the beginning of the COVID-19 pandemic, therapeutic options for treating COVID-19 have been investigated at different stages of clinical manifestations. Considering the particular impact of COVID-19 in the Americas, this document aims to present recommendations for the pharmacological treatment of COVID-19 specific to this population. Fifteen experts, members of the Brazilian Society of Infectious Diseases (SBI) and the Pan-American Association of Infectious Diseases (API) make up the panel responsible for developing this guideline. Questions were formulated regarding prophylaxis and treatment of COVID-19 in outpatient and inpatient settings. The outcomes considered in decision-making were mortality, hospitalisation, need for mechanical ventilation, symptomatic COVID-19 episodes, and adverse events. In addition, a systematic review of randomised controlled trials was conducted. The quality of evidence assessment and guideline development process followed the GRADE system. Nine technologies were evaluated, and ten recommendations were made, including the use of tixagevimab + cilgavimab in the prophylaxis of COVID-19, tixagevimab + cilgavimab, molnupiravir, nirmatrelvir + ritonavir, and remdesivir in the treatment of outpatients, and remdesivir, baricitinib, and tocilizumab in the treatment of hospitalised patients with severe COVID-19. The use of hydroxychloroquine or chloroquine and ivermectin was discouraged. This guideline provides recommendations for treating patients in the Americas following the principles of evidence-based medicine. The recommendations present a set of drugs that have proven effective in the prophylaxis and treatment of COVID-19, emphasising the strong recommendation for the use of nirmatrelvir/ritonavir in outpatients as the lack of benefit from the use of hydroxychloroquine and ivermectin
Asunto(s)
Humanos , SARS-CoV-2/efectos de los fármacos , COVID-19/tratamiento farmacológico , Antivirales/uso terapéutico , Cloroquina/uso terapéutico , Hidroxicloroquina/uso terapéutico , Anticuerpos Monoclonales/uso terapéuticoRESUMEN
INTRODUCTION: Malaria is a significant global health concern and adversely affects people in developing countries including Bangladesh. The causative agent Plasmodium falciparum is resistant to several currently available anti-malarial drugs, such as mefloquine, chloroquine, and artemisinin-based combination therapy (ACT), and this has been a major global challenge towards the control of the disease. There is urgent need for novel anti-malarial chemotherapeutic agents. METHODOLOGY: The present study aimed to evaluate antimalarial activity of methanolic extracts of three Bangladeshi medicinal plants- Acorus calamus, Dichapetalum gelonioides and Leucas aspera - against both chloroquine sensitive (3D7) and resistant (Dd2) strains of P. falciparum. Histidine-rich protein 2 (HRP2) based ELISA was used to evaluate the in vitro inhibitory activity of the extracts. RESULTS: D. gelonioides extract showed moderate (IC50 = 19.15 µg/mL) and promising activity (IC50 = 10.43 µg/mL) against 3D7 and Dd2 strains respectively. A. calamus remained inactive against both 3D7 (IC50 = 72.29 µg/mL) and Dd2 strain (IC50 = 67.81 µg/mL). L. aspera initially remained inactive against 3D7 strain (IC50 = 60.51 µg/mL), but displayed promising activity (IC50 = 7.693) against Dd2 strain. CONCLUSIONS: This is the first time these plant materials have been assessed for their in vitro antimalarial properties. It is pivotal to conduct further phytochemical analysis of D. gelonioides and L. aspera to evaluate the presence of potential novel antimalarial drug compounds.
Asunto(s)
Acorus , Antimaláricos , Malaria Falciparum , Humanos , Antimaláricos/farmacología , Plasmodium falciparum , Cloroquina , Malaria Falciparum/tratamiento farmacológicoRESUMEN
BACKGROUND: Danshen injection (DSI) is an agent extracted from the Salvia miltiorrhiza Bunge, a natural drug commonly used to alleviate kidney diseases. However, the material basis and therapeutic effects of DSI on nephrotic syndrome (NS) remain unclear. PURPOSE: To investigate the material basis of DSI and the therapeutic effects and underlying mechanisms of NS. METHODS: NS models were established using adriamycin-induced BALB/c mice and lipopolysaccharide-induced mouse podocytes (MPC-5). Following DSI and prednisone administration, kidney coefficients, 24 h urine protein, blood urea nitrogen, and serum creatinine levels were tested. Histomorphology was observed by periodic acid-Schiff staining and hematoxylin and eosin staining of the kidney sections. The glomerular basement membrane and autophagosomes of the kidneys were observed using transmission electron microscopy. Nephrin and desmin levels in the glomeruli were tested using immunohistochemistry. The viability of MPC-5 cells was tested using cell counting kit-8 after chloroquine and rapamycin administration in combination with DSI. The in vivo and in vitro protein levels of phosphatidylinositol 3-kinase (PI3K), AKT, phosphorylated AKT (Ser473), mammalian target of rapamycin (mTOR), microtubule-associated protein light chain 3 (LC3), beclin1, cleaved caspase-3, and caspase-3 were detected using western blotting. RESULTS: Our results showed that DSI contained nine main components: caffeic acid, danshensu, lithospermic acid, rosmarinic acid, salvianolic acid A, salvianolic acid B, salvianolic acid C, salvianolic acid D, and 3, 4-Dihydroxybenzaldehyde. In in vivo studies, the NS mice showed renal function and pathological impairment. Podocytes were damaged, with decreased levels of autophagy and apoptosis, accompanied by inhibition of the PI3K/AKT/mTOR signaling. DSI administration resulted in improved renal function and pathology in NS mice, with the activation of autophagy and PI3K/AKT/mTOR signaling in the kidneys. Additionally, podocytes were less damaged and intracellular autophagosomes were markedly increased. In vitro studies have shown that DSI activated MPC-5 autophagy and reduced apoptosis via the PI3K/AKT/mTOR pathway. CONCLUSION: Collectively, this study demonstrated that DSI activated podocyte autophagy and reduced apoptosis via the PI3K/AKT/mTOR signaling, ultimately attenuating NS. Our study clarified the main components of DSI and elucidated its therapeutic effects and potential mechanisms for NS, providing new targets and agents for the clinical treatment of NS.