Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Más filtros

Intervalo de año de publicación
1.
Zhongguo Zhen Jiu ; 44(3): 295-302, 2024 Mar 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38467504

RESUMEN

OBJECTIVES: To explore the effect and mechanism of acupuncture at "Feishu" (BL 13) and "Dingchuan" (EX-B 1), and "Kongzui" (LU 6) and "Yuji" (LU 10) for relaxing the airway smooth muscle in the rats during acute asthma attack and compare the effect among the two pairs of acupoints and the acupoints combination. METHODS: Forty SD male rats with SPF grade were randomly divided into a blank group, a model group, a pair-point A group (acupuncture at "Feishu" [BL 13] and "Dingchuan" [EX-B 1]), a pair-point B group (acupuncture at "Kongzui" [LU 6] and "Yuji" [LU 10]) and a point combination group (acupuncture at "Feishu" [BL 13] , "Dingchuan" [EX-B 1], "Kongzui" [LU 6] and "Yuji" [LU 10]), with 8 rats in each group. Except the rats in the blank group, the model of acute asthma attack was induced by ovalbumin (OVA) combined with aluminum hydroxide gel in the rest groups. Started on the 15th day of modeling, except in the blank group and the model group, acupuncture was delivered in the other groups, 30 min in each intervention, once daily, for 14 days. In each group, the latent period of asthma inducing was measured; the lung resistance (LR) and dynamic lung compliance (Cdyn) were determined using lung function detector; the levels of endothelin-1 (ET-1), tumor necrosis factor-α (TNF-α), cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in serum and bronchoalveolar lavage fluid (BALF) were measured by ELISA; with Masson staining and electron microscopy adopted, the morphology and ultrastructure of airway smooth muscle of the rats were observed; the mRNA and protein expressions of ET-1 and beta-2 adrenergic receptor (ß2-AR) were detected by quantitative real-time fluorescence and Western blot, respectively. RESULTS: Compared with the blank group, the latent period of asthma inducing was shortened (P<0.05), RL increased and Cdyn decreased (P<0.05) with the different concentrations of methacholine (0.025 mg/kg, 0.05 mg/kg, 0.1 mg/kg, 0.2 mg/kg) in the model group. In the pair-point A group, the pair-point B group and the point combination group, the latent period of asthma inducing was prolonged (P<0.05), RL decreased and Cdyn increased (P<0.05) with different concentrations of methacholine when compared with those in the model group; and the latent period of asthma inducing in the point combination group was longer than that in the pair-point A group (P<0.05). Compared with the blank group, the levels of ET-1, TNF-α and cGMP in the serum and BALF were elevated (P<0.05), and those of cAMP reduced (P<0.05) in the model group. The levels of ET-1, TNF-α and cGMP in the serum and BALF were reduced (P<0.05), and those of cAMP elevated (P<0.05) in the pair-point A group, the pair-point B group and the point combination group when compared with those in the model group. In the blank group, the lung tissue was normal structurally. In the model group, the collagen fibers were proliferated increasingly, the smooth muscle was thickened, the mitochondria were swollen, and their cristae disrupted and reduced massively. In the pair-point B group, the collagen fibers were proliferated, the smooth muscle was thicker compared with that in the blank group, the mitochondria were mildly swollen and their cristae disrupted partially. In the pair-point A group and the point combination group, the lung tissue changes were obviously alleviated in comparison with the model group, the mitochondria were slightly swollen and their cristae disrupted occasionally. Compared with the blank group, the mRNA and protein expression of ET-1 increased and that of ß2-AR decreased in the lung tissue of the model group (P<0.05). In the pair-point A group, the pair-point B group and the point combination group, the mRNA and protein expression of ET-1 was reduced and that of ß2-AR elevated in the lung tissue when compared with those in the model group (P<0.05). In comparison with the pair-point A group, the mRNA expression of ß2-AR was elevated in the point combination group (P<0.05). When compared with the pair-point B group, the mRNA expression of ß2-AR increased, the protein expression of ET-1 decreased (P<0.05) in the point combination group. CONCLUSIONS: Acupuncture at "Feishu" (BL 13) and "Dingchuan" (EX-B 1), "Kongzui" (LU 6) and "Yuji" (LU 10), two pairs of acupoints relieves the airway smooth muscle spasm in the rats during acute asthma attack, which may be related to inhibiting the mRNA and protein expression of ET-1 to reduce the excretion of ET-1 and TNF-α; while enhancing the mRNA and protein expression of ß2-AR to balance the levels of cAMP and cGMP. The effect is optimal when acupuncture is delivered at two pairs of acupoints simultaneously.


Asunto(s)
Terapia por Acupuntura , Asma , Ratas , Masculino , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Cloruro de Metacolina/metabolismo , Asma/terapia , Asma/metabolismo , Pulmón , ARN Mensajero/metabolismo , Colágeno/metabolismo
2.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(2): 101-119, 2024 Feb 12.
Artículo en Chino | MEDLINE | ID: mdl-38309959

RESUMEN

The methacholine challenge test (MCT) is a standard evaluation method of assessing airway hyperresponsiveness (AHR) and its severity, and has significant clinical value in the diagnosis and treatment of bronchial asthma. A consensus working group consisting of experts from the Pulmonary Function and Clinical Respiratory Physiology Committee of the Chinese Association of Chest Physicians, the Task Force for Pulmonary Function of the Chinese Thoracic Society, and the Pulmonary Function Group of Respiratory Branch of the Chinese Geriatric Society jointly developed this consensus. Based on the "Guidelines for Pulmonary Function-Bronchial Provocation Test" published in 2014, the issues encountered in its use, and recent developments, the group has updated the Standard technical specifications of methacholine chloride (methacholine) bronchial challenge test (2023). Through an extensive collection of expert opinions, literature reviews, questionnaire surveys, and multiple rounds of online and offline discussions, the consensus addressed the eleven core issues in MCT's clinical practice, including indications, contraindications, preparation of provocative agents, test procedures and methods, quality control, safety management, interpretation of results, and reporting standards. The aim was to provide clinical pulmonary function practitioners in healthcare institutions with the tools to optimize the use of this technique to guide clinical diagnosis and treatment.Summary of recommendationsQuestion 1: Who is suitable for conducting MCT? What are contraindications for performing MCT?Patients with atypical symptoms and a clinical suspicion of asthma, patients diagnosed with asthma requiring assessment of the severity of airway hyperresponsiveness, individuals with allergic rhinitis who are at risk of developing asthma, patients in need of evaluating the effectiveness of asthma treatment, individuals in occupations with high safety risks due to airway hyperresponsiveness, patients with chronic diseases prone to airway hyperresponsiveness, others requiring assessment of airway reactivity.Absolute contraindications: (1) Patients who are allergic to methacholine (MCh) or other parasympathomimetic drugs, with allergic reactions including rash, itching/swelling (especially of the face, tongue, and throat), severe dizziness, and dyspnea; (2) Patients with a history of life-threatening asthma attacks or those who have required mechanical ventilation for asthma attacks in the past three months; (3) Patients with moderate to severe impairment of baseline pulmonary function [Forced Expiratory Volume in one second (FEV1) less than 60% of the predicted value or FEV1<1.0 L]; (4) Severe urticaria; (5) Other situations inappropriate for forced vital capacity (FVC) measurement, such as myocardial infarction or stroke in the past three months, poorly controlled hypertension, aortic aneurysm, recent eye surgery, or increased intracranial pressure.Relative contraindications: (1) Moderate or more severe impairment of baseline lung function (FEV1%pred<70%), but individuals with FEV1%pred>60% may still be considered for MCT with strict observation and adequate preparation; (2) Experiencing asthma acute exacerbation; (3) Poor cooperation with baseline lung function tests that do not meet quality control requirements; (4) Recent respiratory tract infection (<4 weeks); (5) Pregnant or lactating women; (6) Patients currently using cholinesterase inhibitors (for the treatment of myasthenia gravis); (7) Patients who have previously experienced airway spasm during pulmonary function tests, with a significant decrease in FEV1 even without the inhalation of provocative.Question 2: How to prepare and store the challenge solution for MCT?Before use, the drug must be reconstituted and then diluted into various concentrations for provocation. The dilution concentration and steps for MCh vary depending on the inhalation method and provocation protocol used. It is important to follow specific steps. Typically, a specified amount of diluent is added to the methacholine reagent bottle for reconstitution, and the mixture is shaken until the solution becomes clear. The diluent is usually physiological saline, but saline with phenol (0.4%) can also be used. Phenol can reduce the possibility of bacterial contamination, and its presence does not interfere with the provocation test. After reconstitution, other concentrations of MCh solution are prepared using the same diluent, following the dilution steps, and then stored separately in sterile containers. Preparers should carefully verify and label the concentration and preparation time of the solution and complete a preparation record form. The reconstituted and diluted MCh solution is ready for immediate use without the need for freezing. It can be stored for two weeks if refrigerated (2-8 ℃). The reconstituted solution should not be stored directly in the nebulizer reservoir to prevent crystallization from blocking the capillary opening and affecting aerosol output. The temperature of the solution can affect the production of the nebulizer and cause airway spasms in the subject upon inhaling cold droplets. Thus, refrigerated solutions should be brought to room temperature before use.Question 3: What preparation is required for subjects prior to MCT?(1) Detailed medical history inquiry and exclusion of contraindications.(2) Inquiring about factors and medications that may affect airway reactivity and assessing compliance with medication washout requirements: When the goal is to evaluate the effectiveness of asthma treatment, bronchodilators other than those used for asthma treatment do not need to be discontinued. Antihistamines and cromolyn have no effect on MCT responses, and the effects of a single dose of inhaled corticosteroids and leukotriene modifiers are minimal, thus not requiring cessation before the test. For patients routinely using corticosteroids, whether to discontinue the medication depends on the objective of the test: if assisting in the diagnosis of asthma, differential diagnosis, aiding in step-down therapy for asthma, or exploring the effect of discontinuing anti-inflammatory treatment, corticosteroids should be stopped before the provocation test; if the patient is already diagnosed with asthma and the objective is to observe the level of airway reactivity under controlled medication conditions, then discontinuation is not necessary. Medications such as IgE monoclonal antibodies, IL-4Rα monoclonal antibodies, traditional Chinese medicine, and ethnic medicines may interfere with test results, and clinicians should decide whether to discontinue these based on the specific circumstances.(3) Explaining the test procedure and potential adverse reactions, and obtaining informed consent if necessary.Question 4: What are the methods of the MCT? And which ones are recommended in current clinical practice?Commonly used methods for MCT in clinical practice include the quantitative nebulization method (APS method), Forced Oscillalion method (Astograph method), 2-minute tidal breathing method (Cockcroft method), hand-held quantitative nebulization method (Yan method), and 5-breath method (Chai 5-breath method). The APS method allows for precise dosing of inhaled Methacholine, ensuring accurate and reliable results. The Astograph method, which uses respiratory resistance as an assessment indicator, is easy for subjects to perform and is the simplest operation. These two methods are currently the most commonly used clinical practice in China.Question 5: What are the steps involved in MCT?The MCT consists of the following four steps:(1) Baseline lung function test: After a 15-minute rest period, the subjects assumes a seated position and wear a nose clip for the measurement of pulmonary function indicators [such as FEV1 or respiratory resistance (Rrs)]. FEV1 should be measured at least three times according to spirometer quality control standards, ensuring that the best two measurements differ by less than 150 ml and recording the highest value as the baseline. Usually, if FEV1%pred is below 70%, proceeding with the challenge test is not suitable, and a bronchodilation test should be considered. However, if clinical assessment of airway reactivity is necessary and FEV1%pred is between 60% and 70%, the provocation test may still be conducted under close observation, ensuring the subject's safety. If FEV1%pred is below 60%, it is an absolute contraindication for MCT.(2) Inhalation of diluent and repeat lung function test for control values: the diluent, serving as a control for the inhaled MCh, usually does not significantly impact the subject's lung function. the higher one between baseline value and the post-dilution FEV1 is used as the reference for calculating the rate of FEV1 decline. If post-inhalation FEV1 decreases, there are usually three scenarios: ①If FEV1 decreases by less than 10% compared to the baseline, the test can proceed, continue the test and administer the first dose of MCh. ②If the FEV1 decreases by≥10% and<20%, indicating a heightened airway reactivity to the diluent, proceed with the lowest concentration (dose) of the provoking if FEV1%pred has not yet reached the contraindication criteria for the MCT. if FEV1%pred<60% and the risk of continuing the challenge test is considerable, it is advisable to switch to a bronchodilation test and indicate the change in the test results report. ③If FEV1 decreases by≥20%, it can be directly classified as a positive challenge test, and the test should be discontinued, with bronchodilators administered to alleviate airway obstruction.(3) Inhalation of MCh and repeat lung function test to assess decline: prepare a series of MCh concentrations, starting from the lowest and gradually increasing the inhaled concentration (dose) using different methods. Perform pulmonaryfunction tests at 30 seconds and 90 seconds after completing nebulization, with the number of measurements limited to 3-4 times. A complete Forced Vital Capacity (FVC) measurement is unnecessary during testing; only an acceptable FEV1 measurement is required. The interval between two consecutive concentrations (doses) generally should not exceed 3 minutes. If FEV1 declines by≥10% compared to the control value, reduce the increment of methacholine concentration (dose) and adjust the inhalation protocol accordingly. If FEV1 declines by≥20% or more compared to the control value or if the maximum concentration (amount) has been inhaled, the test should be stopped. After inhaling the MCh, close observation of the subject's response is necessary. If necessary, monitor blood oxygen saturation and auscultate lung breath sounds. The test should be promptly discontinued in case of noticeable clinical symptoms or signs.(4) Inhalation of bronchodilator and repeat lung function test to assess recovery: when the bronchial challenge test shows a positive response (FEV1 decline≥20%) or suspiciously positive, the subject should receive inhaled rapid-acting bronchodilators, such as short-acting beta-agonists (SABA) or short-acting muscarinic antagonists (SAMA). Suppose the subject exhibits obvious symptoms of breathlessness, wheezing, or typical asthma manifestations, and wheezing is audible in the lungs, even if the positive criteria are not met. In that case, the challenge test should be immediately stopped, and rapid-acting bronchodilators should be administered. Taking salbutamol as an example, inhale 200-400 µg (100 µg per puff, 2-4 puffs, as determined by the physician based on the subject's condition). Reassess pulmonary function after 5-10 minutes. If FEV1 recovers to within 10% of the baseline value, the test can be concluded. However, if there is no noticeable improvement (FEV1 decline still≥10%), record the symptoms and signs and repeat the bronchodilation procedure as mentioned earlier. Alternatively, add Ipratropium bromide (SAMA) or further administer nebulized bronchodilators and corticosteroids for intensified treatment while keeping the subject under observation until FEV1 recovers to within 90% of the baseline value before allowing the subject to leave.Question 6: What are the quality control requirements for the APS and Astograph MCT equipment?(1) APS Method Equipment Quality Control: The APS method for MCT uses a nebulizing inhalation device that requires standardized flowmeters, compressed air power source pressure and flow, and nebulizer aerosol output. Specific quality control methods are as follows:a. Flow and volume calibration of the quantitative nebulization device: Connect the flowmeter, an empty nebulization chamber, and a nebulization filter in sequence, attaching the compressed air source to the bottom of the chamber to ensure airtight connections. Then, attach a 3 L calibration syringe to the subject's breathing interface and simulate the flow during nebulization (typically low flow:<2 L/s) to calibrate the flow and volume. If calibration results exceed the acceptable range of the device's technical standards, investigate and address potential issues such as air leaks or increased resistance due to a damp filter, then recalibrate. Cleaning the flowmeter or replacing the filter can change the resistance in the breathing circuit, requiring re-calibration of the flow.b. Testing the compressed air power source: Regularly test the device, connecting the components as mentioned above. Then, block the opening of the nebulization device with a stopper or hand, start the compressed air power source, and test its pressure and flow. If the test results do not meet the technical standards, professional maintenance of the equipment may be required.c. Verification of aerosol output of the nebulization chamber: Regularly verify all nebulization chambers used in provocation tests. Steps include adding a certain amount of saline to the chamber, weighing and recording the chamber's weight (including saline), connecting the nebulizer to the quantitative nebulization device, setting the nebulization time, starting nebulization, then weighing and recording the post-nebulization weight. Calculate the unit time aerosol output using the formula [(weight before nebulization-weight after nebulization)/nebulization time]. Finally, set the nebulization plan for the provocation test based on the aerosol output, considering the MCh concentration, single inhalation nebulization duration, number of nebulization, and cumulative dose to ensure precise dosing of the inhaled MCh.(2) Astograph method equipment quality control: Astograph method equipment for MCT consists of a respiratory resistance monitoring device and a nebulization medication device. Perform zero-point calibration, volume calibration, impedance verification, and nebulization chamber checks daily before tests to ensure the resistance measurement system and nebulization system function properly. Calibration is needed every time the equipment is turned on, and more frequently if there are significant changes in environmental conditions.a. Zero-point calibration: Perform zero-point calibration before testing each subject. Ensure the nebulization chamber is properly installed and plugged with no air leaks.b. Volume calibration: Use a 3 L calibration syringe to calibrate the flow sensor at a low flow rate (approximately 1 L/s).c. Resistance verification: Connect low impedance tubes (1.9-2.2 cmH2O·L-1·s-1) and high impedance tubes (10.2-10.7 cmH2O·L-1·s-1) to the device interface for verification.d. Bypass check: Start the bypass check and record the bypass value; a value>150 ml/s is normal.e. Nebulization chamber check: Check each of the 12 nebulization chambers daily, especially those containing bronchodilators, to ensure normal spraying. The software can control each nebulization chamber to produce spray automatically for a preset duration (e.g., 2 seconds). Observe the formation of water droplets on the chamber walls, indicating normal spraying. If no nebulization occurs, check for incorrect connections or blockages.Question 7: How to set up and select the APS method in MCT?The software program of the aerosol provocation system in the quantitative nebulization method can independently set the nebulizer output, concentration of the methacholine agent, administration time, and number of administrations and combine these parameters to create the challenge test process. In principle, the concentration of the methacholine agent should increase from low to high, and the dose should increase from small to large. According to the standard, a 2-fold or 4-fold incremental challenge process is generally used. In clinical practice, the dose can be simplified for subjects with good baseline lung function and no history of wheezing, such as using a recommended 2-concentration, 5-step method (25 and 50 g/L) and (6.25 and 25 g/L). Suppose FEV1 decreases by more than 10% compared to the baseline during the test to ensure subject safety. In that case, the incremental dose of the methacholine agent can be reduced, and the inhalation program can be adjusted appropriately. If the subject's baseline lung function declines or has recent daytime or nighttime symptoms such as wheezing or chest tightness, a low concentration, low dose incremental process should be selected.Question 8: What are the precautions for the operation process of the Astograph method in MCT?(1) Test equipment: The Astograph method utilizes the forced oscillation technique, applying a sinusoidal oscillating pressure at the mouthpiece during calm breathing. Subjects inhale nebulized MCh of increasing concentrations while continuous monitoring of respiratory resistance (Rrs) plots the changes, assessing airway reactivity and sensitivity. The nebulization system employs jet nebulization technology, comprising a compressed air pump and 12 nebulization cups. The first cup contains saline, cups 2 to 11 contain increasing concentrations of MCh, and the 12th cup contains a bronchodilator solution.(2) Provocation process: Prepare 10 solutions of MCh provocant with gradually increasing concentrations.(3) Operational procedure: The oscillation frequency is usually set to 3 Hz (7 Hz for children) during the test. The subject breathes calmly, inhales saline solution nebulized first, and records the baseline resistance value (if the subject's baseline resistance value is higher than 10 cmH2O·L-1·s-1, the challenge test should not be performed). Then, the subject gradually inhales increasing concentrations of methacholine solution. Each concentration solution is inhaled for 1 minute, and the nebulization system automatically switches to the next concentration for inhalation according to the set time. Each nebulizer cup contains 2-3 ml of solution, the output is 0.15 ml/min, and each concentration is inhaled for 1 minute. The dose-response curve is recorded automatically. Subjects should breathe tidally during the test, avoiding deep breaths and swallowing. Continue until Rrs significantly rises to more than double the baseline value, or if the subject experiences notable respiratory symptoms or other discomfort, such as wheezing in both lungs upon auscultation. At this point, the inhalation of the provocant should be stopped and the subject switchs to inhaling a bronchodilator until Rrs returns to pre-provocation levels. If there is no significant increase in Rrs, stop the test after inhaling the highest concentration of MCh.Question 9: How to interpret the results of the MCT?The method chosen for the MCT determines the specific indicators used for interpretation. The most commonly used indicator is FEV1, although other parameters such as Peak Expiratory Flow (PEF) and Rrs can also be used to assess airway hyperresponsiveness.Qualitative judgment: The test results can be classified as positive, suspiciously positive, or negative, based on a combination of the judgment indicators and changes in the subject's symptoms. If FEV1 decreases by≥20% compared to the baseline value after not completely inhaling at the highest concentration, the result can be judged as positive for Methacholine bronchial challenge test. If the patient has obvious wheezing symptoms or wheezing is heard in both lungs, but the challenge test does not meet the positive criteria (the highest dose/concentration has been inhaled), and FEV1 decreases between 10% and 20% compared to the baseline level, the result can also be judged as positive. If FEV1 decreases between 15% and 20% compared to the baseline value without dyspnea or wheezing attacks, the result can be judged as suspiciously positive. Astograph method: If Rrs rises to 2 times or more of the baseline resistance before reaching the highest inhalation concentration, or if the subject's lungs have wheezing and severe coughing, the challenge test can be judged as positive. Regardless of the result of the Methacholine bronchial challenge test, factors that affect airway reactivity, such as drugs, seasons, climate, diurnal variations, and respiratory tract infections, should be excluded.Quantitative judgment: When using the APS method, the severity of airway hyperresponsiveness can be graded based on PD20-FEV1 or PC20-FEV1. Existing evidence suggests that PD20 shows good consistency when different nebulizers, inhalation times, and starting concentrations of MCh are used for bronchial provocation tests, whereas there is more variability with PC20. Therefore, PD20 is often recommended as the quantitative assessment indicator. The threshold value for PD20 with the APS method is 2.5 mg.The Astograph method often uses the minimum cumulative dose (Dmin value, in Units) to reflect airway sensitivity. Dmin is the minimum cumulative dose of MCh required to produce a linear increase in Rrs. A dose of 1 g/L of the drug concentration inhaled for 1-minute equals 1 unit. It's important to note that with the continuous increase in inhaled provocant concentration, the concept of cumulative dose in the Astograph method should not be directly compared to other methods. Most asthma patients have a Dmin<10 Units, according to Japanese guidelines. The Astograph method, having been used in China for over twenty years, suggests a high likelihood of asthma when Dmin≤6 Units, with a smaller Dmin value indicating a higher probability. When Dmin is between 6 and 10 Units, further differential diagnosis is advised to ascertain whether the condition is asthma.Precautions:A negative methacholine challenge test (MCT) does not entirely rule out asthma. The test may yield negative results due to the following reasons:(1) Prior use of medications that reduce airway responsiveness, such as ß2 agonists, anticholinergic drugs, antihistamines, leukotriene receptor antagonists, theophylline, corticosteroids, etc., and insufficient washout time.(2) Failure to meet quality control standards in terms of pressure, flow rate, particle size, and nebulization volume of the aerosol delivery device.(3) Poor subject cooperation leads to inadequate inhalation of the methacholine agent.(4) Some exercise-induced asthma patients may not be sensitive to direct bronchial challenge tests like the Methacholine challenge and require indirect bronchial challenge tests such as hyperventilation, cold air, or exercise challenge to induce a positive response.(5) A few cases of occupational asthma may only react to specific antigens or sensitizing agents, requiring specific allergen exposure to elicit a positive response.A positive MCT does not necessarily indicate asthma. Other conditions can also present with airway hyperresponsiveness and yield positive results in the challenge test, such as allergic rhinitis, chronic bronchitis, viral upper respiratory infections, allergic alveolitis, tropical eosinophilia, cystic fibrosis, sarcoidosis, bronchiectasis, acute respiratory distress syndrome, post-cardiopulmonary transplant, congestive heart failure, and more. Furthermore, factors like smoking, air pollution, or exercise before the test may also result in a positive bronchial challenge test.Question 10: What are the standardized requirements for the MCT report?The report should include: (1) basic information about the subject; (2) examination data and graphics: present baseline data, measurement data after the last two challenge doses or concentrations in tabular form, and the percentage of actual measured values compared to the baseline; flow-volume curve and volume-time curve before and after challenge test; dose-response curve: showing the threshold for positive challenge; (3) opinions and conclusions of the report: including the operator's opinions, quality rating of the examination, and review opinions of the reviewing physician.Question 11: What are the adverse reactions and safety measures of MCT?During the MCT, the subject needs to repeatedly breathe forcefully and inhale bronchial challenge agents, which may induce or exacerbate bronchospasm and contraction and may even cause life-threatening situations. Medical staff should be fully aware of the indications, contraindications, medication use procedures, and emergency response plans for the MCT.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , Rinitis Alérgica , Niño , Humanos , Femenino , Anciano , Cloruro de Metacolina/farmacología , Pruebas de Provocación Bronquial/métodos , Broncodilatadores , Ruidos Respiratorios , Lactancia , Aerosoles y Gotitas Respiratorias , Asma/diagnóstico , Asma/terapia , Disnea , Corticoesteroides , Anticuerpos Monoclonales , Antagonistas de los Receptores Histamínicos , Fenoles
3.
Life Sci ; 308: 120931, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36084760

RESUMEN

AIMS: Recently, the European Association of Urology recommended hexane-extracted fruit of Serenoa repens (HESr) in their guidelines on management of non-neurogenic male lower urinary tracts symptoms (LUTS). Despite previously lacking recommendations, Permixon® is the most investigated HESr in clinical trials, where it proved effective for male LUTS. In contrast, underlying mechanisms were rarely addressed and are only marginally understood. We therefore investigated effects of Permixon® on human prostate and detrusor smooth muscle contraction and on growth-related functions in prostate stromal cells. MAIN METHODS: Permixon® capsules were dissolved using n-hexane. Contractions of human prostate and detrusor tissues were induced in organ bath. Proliferation (EdU assay), growth (colony formation), apoptosis and cell death (flow cytometry), viability (CCK-8) and actin organization (phalloidin staining) were studied in cultured human prostate stromal cells (WPMY-1). KEY FINDINGS: Permixon® inhibited α1-adrenergic and thromboxane-induced contractions in prostate tissues, and methacholine-and thromboxane-induced contractions in detrusor tissues. Endothelin-1-induced contractions were not inhibited. Neurogenic contractions were inhibited in both tissues in a concentration-dependent manner. In WPMY-1 cells, Permixon® caused concentration-dependent breakdown of actin polymerization, inhibited colony formation, reduced cell viability, and proliferation, without showing cytotoxic or pro-apoptotic effects. SIGNIFICANCE: Our results provide a novel basis that allows, for the first time, to fully explain the ubiquitous beneficial effects of HESr in clinical trials. HESr may inhibit at least neurogenic, α1-adrenergic and thromboxane-induced smooth muscle contraction in the prostate and detrusor, and in parallel, prostate stromal cell growth. Together, this may explain symptom improvements by Permixon® in previous clinical trials.


Asunto(s)
Hiperplasia Prostática , Serenoa , Actinas/metabolismo , Adrenérgicos/farmacología , Endotelina-1/metabolismo , Hexanos/metabolismo , Hexanos/farmacología , Hexanos/uso terapéutico , Humanos , Masculino , Cloruro de Metacolina/metabolismo , Contracción Muscular , Músculo Liso , Faloidina/metabolismo , Faloidina/farmacología , Faloidina/uso terapéutico , Extractos Vegetales/uso terapéutico , Próstata/metabolismo , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/metabolismo , Sincalida/metabolismo , Células del Estroma/metabolismo , Tromboxanos/metabolismo , Vejiga Urinaria/metabolismo
4.
Toxicol Appl Pharmacol ; 450: 116154, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35798068

RESUMEN

Workers involved in oil exploration and production in the upstream petroleum industry are exposed to crude oil vapor (COV). COV levels in the proximity of workers during production tank gauging and opening of thief hatches can exceed regulatory standards, and several deaths have occurred after opening thief hatches. There is a paucity of information regarding the effects of COV inhalation in the lung. To address these knowledge gaps, the present hazard identification study was undertaken to investigate the effects of an acute, single inhalation exposure (6 h) or a 28 d sub-chronic exposure (6 h/d × 4 d/wk × 4 wks) to COV (300 ppm; Macondo well surrogate oil) on ventilatory and non-ventilatory functions of the lung in a rat model 1 and 28 d after acute exposure, and 1, 28 and 90 d following sub-chronic exposure. Basal airway resistance was increased 90 d post-sub-chronic exposure, but reactivity to methacholine (MCh) was unaffected. In the isolated, perfused trachea preparation the inhibitory effect of the airway epithelium on reactivity to MCh was increased at 90 d post-exposure. Efferent cholinergic nerve activity regulating airway smooth muscle was unaffected by COV exposure. Acute exposure did not affect basal airway epithelial ion transport, but 28 d after sub-chronic exposure alterations in active (Na+ and Cl¯) and passive ion transport occurred. COV treatment did not affect lung vascular permeability. The findings indicate that acute and sub-chronic COV inhalation does not appreciably affect ventilatory properties of the rat, but transient changes in airway epithelium occur.


Asunto(s)
Petróleo , Resistencia de las Vías Respiratorias , Animales , Exposición por Inhalación/efectos adversos , Pulmón , Cloruro de Metacolina/farmacología , Petróleo/toxicidad , Ratas
5.
Biomed Pharmacother ; 134: 111001, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33341053

RESUMEN

Asthma is a chronic airway inflammatory disease and acupuncture is frequently used in patients suffering from asthma in clinic. However, the regulatory mechanism of acupuncture treatment in asthma is not fully elucidated. We sought to investigate the effectiveness of acupuncture on asthma and the associated regulatory mechanism. An ovalbumin (OVA)-induced mouse asthma model was established and the effect of acupuncture on airway hyperresponsiveness (AHR), mucus hypersecretion and inflammation was assessed. Tandem mass tag (TMT)-based quantitative proteomics analysis of lung tissue and bioinformatics analysis were performed. Our results revealed that the OVA-induced mouse asthma model was successfully established with the significantly elevated AHR to methacholine (Mch), and acupuncture was effective in attenuation of AHR to Mch, peribronchial and perivascular inflammation and mucus production. The inflammatory cells around the airways, mucous secretion as well as levels of IgE, CCL5, CCL11, IL-17A in bronchoalveolar lavage fluid (BALF) and IL-4, IL-5 and IL-13 levels in serum were siginificantly inhibited by acupuncture. TMT-based quantitative proteomics analysis found that a total of 6078 quantifiable proteins were identified, and 564 (334 up-regulated and 230 down regulated) differentially expressed proteins (DEPs) were identified in OVA-induced asthma model group (A) versus normal control group (NC). Acupuncture treatment resulted in 667 DEPs (416 up-regulated and 251 down regulated) compared with A group, and 86 overlapping DEPs were identified in NC, A and AA groups. Among the 86 overlapping DEPs, we identified 41 DEPs regulated by acupuncture. Based on the above data, we performed a systematic bioinformatics analysis of the 41 DEPs, and results showed that these 41 DEPs were predominantly related to 4 KEGG pathways including SNARE interactions in vesicular transport, ferroptosis, endocrine and other factor-regulated calcium reabsorption, and protein digestion and absorption. DEPs of SLC3A2 and ATP1A3 expression levels were verified by immumohistochemical staining. Mice in OVA-induced asthma model group had elevated SLC3A2 and ATP1A3 expression and acupuncture had the ability to downregulate SLC3A2 and ATP1A3 protein expression. Furthermore, acupuncture reduced the MDA level and increased the GSH and SOD levels in the lung tissue. Taken together, our data suggested that acupuncture was effective in treating asthma by attenuation of AHR, mucus secretion and airway inflammation, and the mechanism was associated with regulation of ferroptosis, SLC3A2 and ATP1A3 protein expression as well as oxidative stress. Results from our experiments revealed the anti-inflammatory effect of acupuncture in OVA-induced mouse asthma model, leading to a more effective approach to be chosen by patients in clinic.


Asunto(s)
Terapia por Acupuntura/métodos , Asma/terapia , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Inflamación/terapia , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Asma/metabolismo , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Inflamación/metabolismo , Pulmón/metabolismo , Cloruro de Metacolina/metabolismo , Ratones , Ratones Endogámicos BALB C , Moco/metabolismo , Ovalbúmina/efectos adversos , Proteómica , Hipersensibilidad Respiratoria/terapia
6.
Am J Respir Cell Mol Biol ; 64(3): 357-367, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33296297

RESUMEN

Vitamin D (VitD) has pleiotropic effects. VitD deficiency is closely involved with obesity and may contribute to the development of lung fibrosis and aggravation of airway hyperresponsiveness (AHR). We evaluated the causal relationship between VitD deficiency and the lung pathologies associated with obesity. In vivo effects of VitD supplementation were analyzed using high-fat diet (HFD)-induced obese mice and TGF-ß1 (transforming growth factor-ß1) triple transgenic mice. Effects of VitD supplementation were also evaluated in both BEAS-2B and primary lung cells from the transgenic mice. Obese mice had decreased 25-OH VitD and VitD receptor expressions with increases of insulin resistance, renin and angiotensin-2 system (RAS) activity, and leptin. In addition, lung pathologies such as a modest increase in macrophages, enhanced TGF-ß1, IL-1ß, and IL-6 expression, lung fibrosis, and AHR were found. VitD supplementation to HFD-induced obese mice recovered these findings. TGF-ß1-overexpressing transgenic mice enhanced macrophages in BAL fluid, lung expression of RAS, epithelial-mesenchymal transition markers, AHR, and lung fibrosis. VitD supplementation also attenuated these findings in addition to the attenuation of the expressions of TGF-ß1, and phosphorylated Smad-2/3 in lung. Supplementing in vitro-stimulated BEAS-2B and primary lung cells with VitD inhibited TGF-ß1 expression, supporting the suppressive effect of VitD for TGF-ß1 expression. These results suggest that obesity leads to VitD deficiency and worsens insulin resistance while enhancing the expression of leptin, RAS, TGF-ß1, and proinflammatory cytokines. These changes may contribute to the development of lung fibrosis and AHR. VitD supplementation rescues these changes and may have therapeutic potential for asthma with obesity.


Asunto(s)
Obesidad/complicaciones , Fibrosis Pulmonar/etiología , Hipersensibilidad Respiratoria/etiología , Deficiencia de Vitamina D/etiología , Animales , Biomarcadores/metabolismo , Peso Corporal/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Dieta Alta en Grasa , Suplementos Dietéticos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Inflamación/patología , Insulina/metabolismo , Leptina/sangre , Pulmón/metabolismo , Pulmón/patología , Masculino , Cloruro de Metacolina , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/sangre , Fibrosis Pulmonar/sangre , Receptores de Calcitriol/metabolismo , Renina/sangre , Sistema Renina-Angiotensina/efectos de los fármacos , Hipersensibilidad Respiratoria/sangre , Factor de Crecimiento Transformador beta1/metabolismo , Vitamina D/análogos & derivados , Vitamina D/sangre , Vitamina D/farmacología , Deficiencia de Vitamina D/sangre
7.
Molecules ; 25(18)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899766

RESUMEN

Allergic rhinitis and asthma are common chronic allergic diseases of the respiratory tract, which are accompanied by immunoglobulin E (IgE)-mediated inflammation and the involvement of type 2 T helper cells, mast cells, and eosinophils. Cordyceps sinensis (Berk.) Sacc is a fungal parasite on the larva of Lepidoptera. It has been considered to be a health-promoting food and, also, one of the best-known herbal remedies for the treatment of airway diseases, such as asthma and lung inflammation. In the present study, we demonstrated the antiallergic rhinitis effect of Cs-4, a water extract prepared from the mycelium culture of Cordyceps sinensis (Berk) Sacc, on ovalbumin (OVA)-induced allergic rhinitis in mice and the anti-asthmatic effect of Cs-4 in a rat model of asthma. Treatment with Cs-4 suppressed the nasal symptoms induced in OVA-sensitized and challenged mice. The inhibition was associated with a reduction in IgE/OVA-IgE and interleukin (IL)-4/IL-13 levels in the nasal fluid. Cs-4 treatment also decreased airway responsiveness and ameliorated the scratching behavior in capsaicin-challenged rats. It also reduced plasma IgE levels, as well as IgE and eosinophil peroxidase levels, in the bronchoalveolar fluid. Cs-4 treatment completely suppressed the increases in IL-4, IL-5, and IL-13 levels in rat lung tissue. In conclusion, our results suggest that Cs-4 has the potential to alleviate immune hypersensitivity reactions in allergic rhinitis and asthma.


Asunto(s)
Antiinflamatorios/uso terapéutico , Asma/tratamiento farmacológico , Cordyceps/química , Micelio/química , Rinitis Alérgica/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Asma/sangre , Asma/complicaciones , Asma/fisiopatología , Peso Corporal/efectos de los fármacos , Bronquios/efectos de los fármacos , Hiperreactividad Bronquial/sangre , Hiperreactividad Bronquial/complicaciones , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/fisiopatología , Líquido del Lavado Bronquioalveolar , Capsaicina/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Peroxidasa del Eosinófilo/metabolismo , Femenino , Liberación de Histamina/efectos de los fármacos , Inmunización , Inmunoglobulina E/sangre , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Cloruro de Metacolina/farmacología , Ratones Endogámicos BALB C , Lavado Nasal (Proceso) , Ovalbúmina/inmunología , Ratas Sprague-Dawley , Rinitis Alérgica/sangre , Rinitis Alérgica/complicaciones , Piel/efectos de los fármacos , Piel/patología , Bazo/efectos de los fármacos , Bazo/patología , Tráquea/efectos de los fármacos , beta-N-Acetilhexosaminidasas/metabolismo
8.
Int J Vitam Nutr Res ; 90(1-2): 141-150, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30789805

RESUMEN

Anti-inflammatory effect of Curcuma longa (C. longa) was shown previously. In the present study, the effect of the plant on tracheal responsiveness and lung pathological features in ovalbumin-sensitized rats was evaluated. Six groups of rats including control (C), ovalbumin (OVA)-sensitized (S), S groups treated with C. longa (CL; 0.75, 1.50, and 3.00 mg/ml equal to 150, 300 and 600 mg/kg/day) and dexamethasone (D; 1.25 µg/ml) were studied (n=8 in each group). The extract of C. longa and dexamethasone were administered with daily drinking water of animals during sensitization period (for 21 days). Following the treatment period, tracheal responsiveness to methacholine and ovalbumin and lung pathological features was investigated. Tracheal responsiveness to methacholine and OVA and lung pathological scores were increased in group S compared to controls (p<0.01 to p<0.001); however, these parameters in groups treated with dexamethasone and two higher concentrations of C. longa were significantly decreased compared to group S (p<0.05 to p<0.001). Tracheal responsiveness to methacholine was decreased from 50 to 400% due to the extract treatment. All concentrations of C. longa significantly decreased interstitial fibrosis compared to group S (p<0.05 to p<0.001). Treatment with the extract resulted to improvement of pathological changes from 20 to 70%. These results showed a preventive effect for C. longa extract on tracheal responsiveness and lung pathological insults in sensitized rats which were similar or even more than those of dexamethasone at used concentrations.


Asunto(s)
Curcuma , Pulmón/efectos de los fármacos , Cloruro de Metacolina/farmacología , Extractos Vegetales , Tráquea/efectos de los fármacos , Animales , Pulmón/patología , Cloruro de Metacolina/química , Ovalbúmina , Extractos Vegetales/farmacología , Ratas , Tráquea/patología
9.
J Asthma ; 57(1): 11-20, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30634874

RESUMEN

Objective: New treatments are needed for cases of asthma that are refractory to traditional therapies. In this study, we examined the effect of oral nintedanib, an intracellular inhibitor of tyrosine kinases, on airway hyper-responsiveness (AHR) and airway smooth muscle cells, using a mouse model of experimental asthma. Methods: Asthma was experimentally induced in mice via subcutaneous injection of ovalbumin (OVA). A group of saline-injected mice served as a control group. The OVA mice were then divided into four treatment groups according to the dose of nintedanib. AHR was examined via exposure to vaporized methacholine. Airway inflammation was assessed via bronchoalveolar lavage fluid (BALF) cell counts and Th2 cytokine concentrations. Results: Baseline levels of AHR and airway inflammation were higher in OVA mice than in the control group. Treatment with nintedanib lowered AHR, BALF cell counts and BALF cytokine levels in a dose-dependent fashion. The effect of nintedanib was comparable to that of dexamethasone. In particular, treatment with nintedanib lowered the expression of transforming growth factor-ß1 and inhibited the expression and phosphorylation of platelet-derived growth factor receptor-ß, vascular endothelial growth factor receptor 1 (VEGFR1), VEGFR2, fibroblast growth factor receptor 2 (FGFR2), FGFR3, and extracellular signal-regulated kinase. Conclusions: Nintedanib lowered AHR and the expression of factors associated with airway inflammation and remodeling in a mouse model of experimental asthma. Our results suggest that nintedanib may be useful in the treatment of asthma.


Asunto(s)
Antiasmáticos/administración & dosificación , Asma/tratamiento farmacológico , Bronquios/efectos de los fármacos , Indoles/administración & dosificación , Mediadores de Inflamación/metabolismo , Enfermedad Aguda/terapia , Administración por Inhalación , Administración Oral , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Resistencia de las Vías Respiratorias/efectos de los fármacos , Resistencia de las Vías Respiratorias/inmunología , Animales , Asma/diagnóstico , Asma/inmunología , Bronquios/inmunología , Bronquios/metabolismo , Líquido del Lavado Bronquioalveolar/citología , Broncoconstrictores/administración & dosificación , Dexametasona/administración & dosificación , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Glucocorticoides/administración & dosificación , Humanos , Mediadores de Inflamación/análisis , Cloruro de Metacolina/administración & dosificación , Ratones , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología
10.
Eur Respir J ; 54(6)2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31515409

RESUMEN

INTRODUCTION: There are few data on the usefulness of different tests to diagnose asthma in children. AIM: We assessed the contribution of a detailed history and a variety of diagnostic tests for diagnosing asthma in children. METHODS: We studied children aged 6-16 years referred consecutively for evaluation of suspected asthma to two pulmonary outpatient clinics. Symptoms were assessed by parental questionnaire. The clinical evaluation included skin-prick tests, measurement of exhaled nitric oxide fraction (F eNO), spirometry, bronchodilator reversibility and bronchial provocation tests (BPT) by exercise, methacholine and mannitol. Asthma was diagnosed by the physicians at the end of the visit. We assessed diagnostic accuracy of symptoms and tests by calculating sensitivity, specificity, positive and negative predictive values and area under the curve (AUC). RESULTS: Of the 111 participants, 80 (72%) were diagnosed with asthma. The combined sensitivity and specificity was highest for reported frequent wheeze (more than three attacks per year) (sensitivity 0.44, specificity 0.90), awakening due to wheeze (0.41, 0.90) and wheeze triggered by pollen (0.46, 0.83) or by pets (0.29, 0.99). Of the diagnostic tests, the AUC was highest for F eNO measurement (0.80) and BPT by methacholine (0.81) or exercise (0.74), and lowest for forced expiratory volume in 1 s (FEV1) (0.62) and FEV1/forced vital capacity ratio (0.66), assessed by spirometry. CONCLUSION: This study suggests that specific questions about triggers and severity of wheeze, measurement of F eNO and BPT by methacholine or exercise contribute more to the diagnosis of asthma in school-aged children than spirometry, bronchodilator reversibility and skin-prick tests.


Asunto(s)
Asma/diagnóstico , Anamnesis , Ruidos Respiratorios/diagnóstico , Adolescente , Asma/fisiopatología , Pruebas de Provocación Bronquial , Broncodilatadores/uso terapéutico , Niño , Espiración , Femenino , Volumen Espiratorio Forzado , Humanos , Masculino , Manitol/administración & dosificación , Cloruro de Metacolina/administración & dosificación , Óxido Nítrico/metabolismo , Polen/inmunología , Ruidos Respiratorios/fisiopatología , Pruebas Cutáneas , Espirometría , Capacidad Vital
11.
Drug Chem Toxicol ; 42(3): 286-294, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29683006

RESUMEN

The anti-inflammatory and antioxidant effects of Ocimum basilicum (O. basilicum) was shown previously. In the present study, the effect of O. basilicum on tracheal responsiveness (TR) to methacholine and ovalbumin (OVA), bronchoalveolar lavage fluid (BALF) levels of oxidant-antioxidant biomarkers as well as total and differential white blood cell (WBC) in sensitized rats was examined. Six groups of rats including control (group C), sensitized rats to OVA (group S), S groups treated with three concentrations of O. basilicum (0.75, 1.50, and 3.00 mg/ml) and one concentration of dexamethasone (1.25 µg/ml) (n = 8 for all groups) were studied. TR to methacholine and OVA, total WBC count, percentages of eosinophils, monocytes, neutrophils, and levels of oxidant biomarkers were significantly increased but other measured parameters were significantly decreased in group S compared to group C. TR to methacholine and OVA, percentages of eosinophils, monocytes, neutrophils, and levels of oxidant biomarkers were significantly decreased but lymphocytes and antioxidant biomarkers were significantly increased in S groups treated with dexamethasone and at least two higher concentrations of the extract compared to group S. Total WBC count was also decreased in treated S groups with dexamethasone and high extract concentration. The effect of extract on most measured parameters was significantly lower than dexamethasone treatment. The effects of two higher concentrations of the extract on most variables were significantly higher than the effect of low extract concentration. These results showed the concentration-dependent effect of O. basilicum on tracheal responses, lung inflammatory cells, and oxidant-antioxidant parameters in sensitized rats.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Pulmón/efectos de los fármacos , Ocimum basilicum/química , Extractos Vegetales/uso terapéutico , Hipersensibilidad Respiratoria/tratamiento farmacológico , Tráquea/efectos de los fármacos , Animales , Antiinflamatorios/aislamiento & purificación , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Líquido del Lavado Bronquioalveolar/citología , Recuento de Leucocitos , Leucocitos/efectos de los fármacos , Pulmón/citología , Pulmón/inmunología , Cloruro de Metacolina/inmunología , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/inmunología , Ovalbúmina/inmunología , Oxidantes/metabolismo , Extractos Vegetales/aislamiento & purificación , Ratas Wistar , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/metabolismo , Tráquea/inmunología
12.
J Asthma ; 56(1): 1-10, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29437496

RESUMEN

OBJECTIVE: Croton zehntneri Pax et Hoffm. is a Euphorbiaceae species, popularly known as "canela de cunhã," a native plant of northeastern Brazil, whose essential oil (EOCZ) shows relatively specific myorelaxant action for the smooth muscle of the airways and in the respiratory tract. Based on this information, EOCZ figures as a candidate for testing in the treatment of asthma, and the present study investigated the benefits of using EOCZ in an ovalbumin-induced asthma model. METHODS: 48 male BALB/c mice were divided into six groups (n = 8). In the ST, SO100, and SO300 groups, mice were sensitized and challenged with saline, and then treated with 200 µL of 0.1% Tween 80, 100 mg/kg EOCZ and 300 mg/kg EOCZ, respectively. In the OT, OO100, and OO300 groups, mice were sensitized and challenged with OVA, and then treated with 200 µL of 0.1% Tween 80, 100 mg/kg EOCZ and 300 mg/kg EOCZ, respectively. RESULTS: Our results demonstrated significant changes in all respiratory mechanics variables analyzed between the OO300 and OT groups demonstrating the effectiveness of EOCZ to attenuate the OVA-induced lung injury. In addition, the use of EOCZ at a dose of 300 mg/kg showed an antioxidant effect and decreased inflammatory cells in the pulmonary parenchyma. In conclusion, our results demonstrated that EOCZ was able to improve the lesion in the respiratory system of mice subjected to OVA-induced asthma. CONCLUSIONS: The antioxidant action of EOCZ was likely the main mechanism of action in the reversal of this lesion, so more tests should be performed for its confirmation.


Asunto(s)
Asma/tratamiento farmacológico , Croton , Lesión Pulmonar/tratamiento farmacológico , Aceites Volátiles/farmacología , Mecánica Respiratoria/efectos de los fármacos , Animales , Asma/inducido químicamente , Asma/patología , Brasil , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Masculino , Cloruro de Metacolina/farmacología , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/farmacología , Fitoterapia , Hojas de la Planta
13.
Biomed Pharmacother ; 102: 1221-1228, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29710541

RESUMEN

BACKGROUND: Lavandula angustifolia (L. angustifolia) Mill. (Common name Lavender) is used in traditional and folk medicines for the treatment of various diseases including respiratory disorders worldwide. The relaxant effect of the plant on the smooth muscle of some tissues was shown previously. The present study has investigated the role of different receptors and pathways in the relaxant effect of L. angustifolia on tracheal smooth muscle. METHODS: Cumulative concentrations of the hydro-ethanolic extract of L. angustifolia flowers (0.5, 1, 2 and 4 mg/ml) were added on pre-contracted tracheal smooth muscle by methacholine (10 µM) or KCl (60 mM) on non-preincubated or preincubated tissues with atropine, chlorpheniramine, propranolol, diltiazem, glibenclamide, indomethacin, ω-nitro-L-arginine methyl ester (L-NAME) and papaverine. The results compared with of theophylline (0.2, 0.4, 0.6 and 0.8 mM) as positive control and saline (1 ml) as negative control. RESULTS: The extract showed concentration-dependent relaxant effects in non-preincubated tracheal smooth muscle contracted by KCl and methacholine (p < 0.05 to p < 0.001). The relaxant effect ofL. angustifolia was not significantly different between non-preincubated and preincubated tissues with chlorpheniramine, propranolol, diltiazem, glibenclamide, and papaverine. However, two higher concentrations of L. angustifolia in preincubated tissues with L-NAME (p < 0.01), indomethacin (p < 0.05 to p < 0.001) and atropine (p < 0.05) showed significantly lower relaxant effects than non-preincubated tissues. The EC50 values of L. angustifolia in tissues preincubated with indomethacin was significantly higher than non-preincubated trachea (p < 0.05). The effects of three first concentrations of the extract on KCl and methacholine-induced muscle contraction were significantly lower than those of theophylline (p < 0.05 to p < 0.001). CONCLUSIONS: These results indicated a relatively potent relaxant effect ofL. angustifolia that was lower than the effect of theophylline. The possible mechanisms of relaxant effect of this plant on tracheal smooth muscle are muscarinic receptors blockade, inhibition of cyclooxygenase pathways and/or involvement of nitric oxide production. Its clinical applications should be investigated in further studies.


Asunto(s)
Lavandula/química , Relajación Muscular , Músculo Liso/fisiología , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Receptores Muscarínicos/metabolismo , Tráquea/fisiología , Animales , Etanol/química , Femenino , Flores/química , Masculino , Cloruro de Metacolina , Modelos Biológicos , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Cloruro de Potasio/farmacología , Ratas Wistar , Transducción de Señal , Agua/química
14.
Pharmacol Rep ; 70(1): 119-125, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29355815

RESUMEN

BACKGROUND: Rosmarinic acid (RA) as an active component of several medicinal plants, has shown anti-inflammatory and anti-oxidant effects. In this study, the effect of RA on tracheal responsiveness (TR), lung inflammatory cells, oxidant biomarkers in sensitized rats were evaluated. METHODS: TR to methacholine and ovalbumin (OVA) as well as total and differential white blood cell (WBC) count and levels of nitrogen dioxide, nitrate, malondialdehyde, thiol, superoxide dismutase, and catalase in bronchoalveolar lavage fluid were measured in control (group C) rats, sensitized animals to OVA and given drinking water alone (group S), S groups receiving drinking water containing three concentrations of RA (0.125, 0.250 and 0.500 mg/mL) and dexamethasone (1.25 µg/mL), (n = 6 in each group). RESULTS: Increased TR to methacholine and OVA, total WBC count, percentages of eosinophils, monocytes, neutrophils and levels of oxidant biomarkers but decreased other measured parameters were observed in group S compared to group C. Percentages of lymphocytes and antioxidant biomarkers were significantly increased but other measured parameters were significantly decreased in S group treated with dexamethasone and in rats treated with the two higher concentrations of RA compared to S group. The effect of RA medium concentration on percentage of eosinophils and RA high concentration on total WBC count and percentages of eosinophils and lymphocytes, were significantly higher than those of dexamethasone. CONCLUSION: These results showed the concentration-dependent effect of RA on tracheal responses, lung inflammatory cells and oxidant-antioxidant parameters which was comparable to that of dexamethasone at used concentrations in sensitized rats.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Cinamatos/farmacología , Depsidos/farmacología , Leucocitos/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Hipersensibilidad Respiratoria/prevención & control , Tráquea/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Líquido del Lavado Bronquioalveolar/química , Dexametasona/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Leucocitos/metabolismo , Cloruro de Metacolina , Músculo Liso/metabolismo , Músculo Liso/fisiopatología , Ovalbúmina , Ratas Wistar , Hipersensibilidad Respiratoria/sangre , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/fisiopatología , Tráquea/metabolismo , Tráquea/fisiopatología , Ácido Rosmarínico
15.
Pharm Biol ; 55(1): 2248-2258, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29169285

RESUMEN

CONTEXT: Turmeric is a spice obtained from the root of Curcuma longa L. (Zingiberaceae) with anti-aging, anticancer, anti-Alzheimer's disease, antioxidant and other medicinal properties. OBJECTIVE: The relaxant effect of C. longa on rat tracheal smooth muscle and its possible mechanisms were investigated in this study. MATERIALS AND METHODS: The relaxant effects of four cumulative concentrations of hydro-ethanol extract of C. longa (6.25, 12.5, 25, 50 mg/mL) were studied on tracheal smooth muscle precontracted by methacholine or KCl in non-incubated or incubated with different substances including propranolol, diltiazem, L-NAME, glibenclamide, atropine, chlorpheniramine, indomethacin and papaverine. The duration of the study was 84 days. RESULTS: In non-incubated tracheal smooth muscle, the extract of C. longa showed significant concentration-dependent relaxant effects (p < 0.001 for all concentrations on both KCl and methacholine-induced contraction). There was no significant difference in the relaxant effects between C. longa and theophylline in both methacholine and KCl-induced contraction conditions. In tissues incubated with propranolol, diltiazem, L-NAME and glibenclamide on methacholine-induced contraction and in tissues incubated with atropine, chlorpheniramine, indomethacin and papaverine on KCl-induced contraction, the extract also showed significant concentration-dependent relaxant effects (p < 0.001). EC50 values of C. longa between non-incubated (16.22 ± 0.62) and incubated tissues (atropine: 13.03 ± 0.55, chlorpheniramine: 12.94 ± 0.68, indomethacin: 14.80 ± 0.57 and papaverine: 16.16 ± 1.42) were not significantly different. CONCLUSIONS: Tracheal smooth muscle relaxant effects of C. longa, were comparable to those of theophylline, which could be due to the presence of methylxanthines or its possible interaction with non-adrenergic non-cholinergic nervous system.


Asunto(s)
Curcuma/química , Músculo Liso/efectos de los fármacos , Extractos Vegetales/farmacología , Tráquea/efectos de los fármacos , Animales , Broncodilatadores/farmacología , Relación Dosis-Respuesta a Droga , Etanol/química , Masculino , Cloruro de Metacolina/farmacología , Contracción Muscular/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Músculo Liso/metabolismo , Extractos Vegetales/administración & dosificación , Raíces de Plantas , Cloruro de Potasio/farmacología , Ratas , Ratas Wistar , Teofilina/farmacología , Tráquea/metabolismo
16.
Eur J Med Chem ; 126: 550-560, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-27915170

RESUMEN

We describe the synthesis of analogs of XHE-III-74, a selective α4ß3γ2 GABAAR ligand, shown to relax airway smooth muscle ex vivo and reduce airway hyperresponsiveness in a murine asthma model. To improve properties of this compound as an asthma therapeutic, a series of analogs with a deuterated methoxy group in place of methoxy group at C-8 position was evaluated for isotope effects in preclinical assays; including microsomal stability, cytotoxicity, and sensorimotor impairment. The deuterated compounds were equally or more metabolically stable than the corresponding non-deuterated analogs and increased sensorimotor impairment was observed for some deuterated compounds. Thioesters were more cytotoxic in comparison to other carboxylic acid derivatives of this compound series. The most promising compound 16 identified from the in vitro screens also strongly inhibited smooth muscle constriction in ex vivo guinea pig tracheal rings. Smooth muscle relaxation, determined by reduction of airway hyperresponsiveness with a murine ovalbumin sensitized and challenged model, showed that 16 was efficacious at low methacholine concentrations. However, this effect was limited due to suboptimal pharmacokinetics of 16. Based on these findings, further analogs of XHE-III-74 will be investigated to improve in vivo metabolic stability while retaining the efficacy at lung tissues involved in asthma pathology.


Asunto(s)
Asma/tratamiento farmacológico , Benzodiazepinas/farmacología , Receptores de GABA-A/metabolismo , Animales , Benzodiazepinas/química , Benzodiazepinas/uso terapéutico , Constricción Patológica/tratamiento farmacológico , Deuterio/farmacología , Evaluación Preclínica de Medicamentos , Estabilidad de Medicamentos , Cobayas , Cloruro de Metacolina/farmacología , Ratones , Hipersensibilidad Respiratoria/tratamiento farmacológico , Relación Estructura-Actividad , Ésteres del Ácido Sulfúrico/farmacología , Tráquea/efectos de los fármacos , Tráquea/patología
17.
Artículo en Inglés | WPRIM | ID: wpr-114696

RESUMEN

PURPOSE: Recent data indicate that sensitization to mold contributes to the severity and persistence of asthma. In this study, we investigated the relationships between sensitization to mold and lung function parameters in children with asthma. METHODS: We retrospectively reviewed clinical data from 551 asthmatic subjects. We selected subjects who met clinical diagnostic criteria of asthma. Their spirometry, methacholine challenge tests, and measurements of blood eosinophils, serum IgE, eosinophil cationic protein (ECP) and fractional exhaled nitric oxide (FeNO) results were included. Skin prick testing (SPT) results with 13 common aeroallergens in Korea including house dust mites, animal dander, pollen, cockroach and mold were reviewed. Subjects were divided into 3 groups according to their SPT results. Subjects who showed no positive result to any aeroallergen were designated as group 1 (non-sensitized). Group 2 represented subjects who were sensitized to aeroallergens other than mold (other allergen-sensitized) and group 3 included subjects who were sensitized to mold allergens (mold-sensitized). RESULTS: Among the 551 asthmatic subjects, 67 (12.2%) were sensitized to mold and 366 (66.4%) were sensitized to other aeroallergens. The log mean IgE levels were higher in groups 2 (5.96±1.14 IU/mL) and 3 (5.81±0.97 IU/mL) compared to group 1 (3.88±1.68 IU/mL). Blood eosinophils, ECP and FeNO concentrations were significantly higher in groups 2 and 3, but no significant difference was found between the 2 groups. The mean FEV1 value was significantly lower in group 3 (86.9±12.1%pred) than in groups 2 (92.0±14.8%pred) and 1 (93.4±15.4%pred). The log mean methacholine PC20 was significantly lower in group 3 (0.08±1.91 mg/mL) than in groups 2 (1.31±1.69 mg/mL) and 1 (2.29±1.66 mg/mL). CONCLUSIONS: We observed a differential association between mold and other aeroallergen sensitization, and severity of asthma. Sensitization to mold is associated with lower lung function and increased airway hyper-responsiveness in children with asthma. Mold sensitization could be an important factor determining asthma severity particularly airflow limitation in children.


Asunto(s)
Animales , Niño , Humanos , Alérgenos , Asma , Cucarachas , Alérgenos Animales , Proteína Catiónica del Eosinófilo , Eosinófilos , Hongos , Inmunoglobulina E , Corea (Geográfico) , Pulmón , Cloruro de Metacolina , Óxido Nítrico , Polen , Pyroglyphidae , Hipersensibilidad Respiratoria , Estudios Retrospectivos , Piel , Espirometría
18.
Am J Physiol Heart Circ Physiol ; 311(6): H1431-H1436, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27765750

RESUMEN

Oxidative stress is a key driver of vascular dysfunction in diabetes mellitus. Ebselen is a glutathione peroxidase mimetic. A single-site, randomized, double-masked, placebo-controlled, crossover trial was carried out in 26 patients with type 1 or type 2 diabetes to evaluate effects of high-dose ebselen (150 mg po twice daily) administration on oxidative stress and endothelium-dependent vasodilation. Treatment periods were in random order of 4 wk duration, with a 4-wk washout between treatments. Measures of oxidative stress included nitrotyrosine, plasma 8-isoprostanes, and the ratio of reduced to oxidized glutathione. Vascular ultrasound of the brachial artery and plethysmographic measurement of blood flow were used to assess flow-mediated and methacholine-induced endothelium-dependent vasodilation of conduit and resistance vessels, respectively. Ebselen administration did not affect parameters of oxidative stress or conduit artery or forearm arteriolar vascular function compared with placebo treatment. There was no difference in outcome by diabetes type. Ebselen, at the dose and duration evaluated, does not improve the oxidative stress profile, nor does it affect endothelium-dependent vasodilation in patients with diabetes mellitus.


Asunto(s)
Antioxidantes/farmacología , Azoles/farmacología , Arteria Braquial/efectos de los fármacos , Diabetes Mellitus/fisiopatología , Endotelio Vascular/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Estrés Oxidativo/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Adulto , Arteria Braquial/diagnóstico por imagen , Arteria Braquial/fisiopatología , Estudios de Casos y Controles , Estudios Cruzados , Diabetes Mellitus/metabolismo , Dinoprost/análogos & derivados , Dinoprost/metabolismo , Método Doble Ciego , Endotelio Vascular/fisiopatología , Femenino , Antebrazo/irrigación sanguínea , Glutatión/efectos de los fármacos , Glutatión/metabolismo , Humanos , Isoindoles , Masculino , Cloruro de Metacolina/farmacología , Persona de Mediana Edad , Parasimpaticomiméticos/farmacología , Pletismografía , Tirosina/análogos & derivados , Tirosina/efectos de los fármacos , Tirosina/metabolismo , Ultrasonografía
19.
J Physiol ; 594(12): 3439-52, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-26846374

RESUMEN

KEY POINTS: Endothelin-1 (ET-1) is a potent endothelial-derived vasoconstrictor that may modulate cholinergic cutaneous vascular regulation. Endothelin receptors are also expressed on the human eccrine sweat gland, although it remains unclear whether ET-1 modulates cholinergic sweating. We investigated whether ET-1 attenuates cholinergic cutaneous vasodilatation and sweating through a nitric oxide synthase (NOS)-dependent mechanism. Our findings show that ET-1 attenuates methacholine-induced cutaneous vasodilatation through a NOS-independent mechanism. We also demonstrate that ET-1 attenuates cutaneous vasodilatation in response to sodium nitroprusside, suggesting that ET-1 diminishes the dilatation capacity of vascular smooth muscle cells. We show that ET-1 does not modulate methacholine-induced sweating at any of the administered concentrations. Our findings advance our knowledge pertaining to the peripheral control underpinning the regulation of cutaneous blood flow and sweating and infer that ET-1 may attenuate the heat loss responses of cutaneous blood flow, but not sweating. ABSTRACT: The present study investigated the effect of endothelin-1 (ET-1) on cholinergic mechanisms of end-organs (i.e. skin blood vessels and sweat glands) for heat dissipation. We evaluated the hypothesis that ET-1 attenuates cholinergic cutaneous vasodilatation and sweating through a nitric oxide synthase (NOS)-dependent mechanism. Cutaneous vascular conductance (CVC) and sweat rate were assessed in three protocols: in Protocol 1 (n = 8), microdialysis sites were perfused with lactated Ringer solution (Control), 40 pm, 4 nm or 400 nm ET-1; in Protocol 2 (n = 11) sites were perfused with lactated Ringer solution (Control), 400 nm ET-1, 10 mm N(G) -nitro-l-arginine (l-NNA; a NOS inhibitor) or a combination of 400 nm ET-1 and 10 mm l-NNA; in Protocol 3 (n = 8), only two sites (Control and 400 nm ET-1) were utilized to assess the influence of ET-1 on the dilatation capacity of vascular smooth muscle cells (sodium nitroprusside; SNP). Methacholine (MCh) was co-administered in a dose-dependent manner (0.0125, 0.25, 5, 100, 2000 mm, each for 25 min) at all skin sites. ET-1 at 400 nm (P < 0.05) compared to lower doses (40 pm and 4 nm) (all P > 0.05) significantly attenuated increases in CVC in response to 0.25 and 5 mm MCh. A high dose of ET-1 (400 nm) co-infused with l-NNA further attenuated CVC during 0.25, 5 and 100 mm MCh administration relative to the ET-1 site (all P < 0.05). Cutaneous vasodilatation in response to SNP was significantly blunted after administration of 400 nm ET-1 (P < 0.05). We show that ET-1 attenuates cutaneous vasodilatation through a NOS-independent mechanism, possibly through a vascular smooth muscle cell-dependent mechanism, and methacholine-induced sweating is not altered by ET-1.


Asunto(s)
Endotelina-1/fisiología , Piel/irrigación sanguínea , Sudoración/fisiología , Vasodilatación/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Cloruro de Metacolina/farmacología , Nitroprusiato/farmacología , Piel/efectos de los fármacos , Fenómenos Fisiológicos de la Piel , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Adulto Joven
20.
J Toxicol Environ Health A ; 79(2): 49-60, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26818398

RESUMEN

Naturally occurring asbestos (NOA) fibers are found in geologic deposits that may be disturbed by mining, earthworks, or natural processes, resulting in adverse health risks to exposed individuals. The toxicities of Libby amphibole and NOA samples including Sumas Mountain chrysotile (SM), El Dorado tremolite (ED), and Ontario ferroactinolite cleavage fragments (ON) were compared in male Fischer 344 (F344) rats 15 mo after exposure. Rat-respirable fractions of LA and SM displayed greater mean lengths and aspect ratios than ED and ON. After a single intratracheal (IT) instillation (0.5 or 1.5 mg/rat), persistent changes in ventilatory parameters and a significant increase in lung resistance at baseline and after methacholine aerosol dosing were found only in rats exposed to 1.5 mg SM. High-dose ED significantly elevated bronchoalveolar lavage lactate dehydrogenase (LDH) activity and protein levels, while high-dose SM increased γ-glutamyl transferase and LDH activities. A moderate degree of lung interstitial fibrosis after exposure to 1.5 mg SM persisted 15 mo after exposure, unchanged from previous findings at 3 mo. LA induced mild fibrosis, while ED and ON produced minimal and no apparent fibrosis, respectively. Bronchioloalveolar carcinoma was observed 15 mo after exposure to LA or ED. Data demonstrated that SM, given by bolus IT dosing on an equivalent mass basis, induced greater pulmonary function deficits, airway hyperresponsiveness, and interstitial fibrosis than other NOA, although unlike LA and ED, no apparent evidence for carcinogenicity was found. All NOA samples except ON cleavage fragments produced some degree of long-term toxicity.


Asunto(s)
Amianto/toxicidad , Carcinógenos/toxicidad , Resistencia de las Vías Respiratorias/efectos de los fármacos , Animales , Asbestos Anfíboles , Asbestos Serpentinas , Asbestosis/patología , Hiperreactividad Bronquial/inducido químicamente , Hiperreactividad Bronquial/patología , Líquido del Lavado Bronquioalveolar/química , Broncoconstrictores/farmacología , Exposición por Inhalación , Intubación Intratraqueal , L-Lactato Deshidrogenasa/análisis , L-Lactato Deshidrogenasa/metabolismo , Masculino , Cloruro de Metacolina/administración & dosificación , Cloruro de Metacolina/farmacología , Ratas , Ratas Endogámicas F344 , Pruebas de Función Respiratoria , Análisis de Supervivencia , gamma-Glutamiltransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA