Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nutrients ; 13(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34836169

RESUMEN

The effect of a Citrus Fruit Extract high in the polyphenols hesperidin and naringin (CFE) on modulation of the composition and activity of the gut microbiota was tested in a validated, dynamic in vitro model of the colon (TIM-2). CFE was provided at two doses (250 and 350 mg/day) for 3 days. CFE led to a dose-dependent increase in Roseburia, Eubacterium ramulus, and Bacteroides eggerthii. There was a shift in production of short-chain fatty acids, where acetate production increased on CFE, while butyrate decreased. In overweight and obesity, acetate has been shown to increase fat oxidation when produced in the distal gut, and stimulate secretion of appetite-suppressive neuropeptides. Thus, the data in the in vitro model point towards mechanisms underlying the effects of the polyphenols in CFE with respect to modulation of the gut microbiota, both in composition and activity. These results should be confirmed in a clinical trial.


Asunto(s)
Citrus/química , Colon/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/farmacología , Polifenoles/farmacología , Adulto , Bacteroides/efectos de los fármacos , Butiratos/metabolismo , Clostridiales/efectos de los fármacos , Colon/metabolismo , Eubacterium/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Femenino , Flavanonas/farmacología , Frutas/química , Voluntarios Sanos , Hesperidina/farmacología , Humanos , Masculino
2.
Nutrients ; 13(3)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673609

RESUMEN

Obesity, a major public health problem, is the consequence of an excess of body fat and biological alterations in the adipose tissue. Our aim was to determine whether high-intensity interval training (HIIT) and/or α-linolenic acid supplementation (to equilibrate the n-6/n-3 polyunsaturated fatty acids (PUFA) ratio) might prevent obesity disorders, particularly by modulating the mucosa-associated microbiota. Wistar rats received a low fat diet (LFD; control) or high fat diet (HFD) for 16 weeks to induce obesity. Then, animals in the HFD group were divided in four groups: HFD (control), HFD + linseed oil (LO), HFD + HIIT, HFD + HIIT + LO. In the HIIT groups, rats ran on a treadmill, 4 days.week-1. Erythrocyte n-3 PUFA content, body composition, inflammation, and intestinal mucosa-associated microbiota composition were assessed after 12 weeks. LO supplementation enhanced α-linolenic acid (ALA) to docosahexaenoic acid (DHA) conversion in erythrocytes, and HIIT potentiated this conversion. Compared with HFD, HIIT limited weight gain, fat mass accumulation, and adipocyte size, whereas LO reduced systemic inflammation. HIIT had the main effect on gut microbiota ß-diversity, but the HIIT + LO association significantly increased Oscillospira relative abundance. In our conditions, HIIT had a major effect on body fat mass, whereas HIIT + LO improved ALA conversion to DHA and increased the abundance of Oscillospira bacteria in the microbiota.


Asunto(s)
Clostridiales/efectos de los fármacos , Ácidos Docosahexaenoicos/metabolismo , Condicionamiento Físico Animal , Ácido alfa-Linolénico/farmacología , Adipocitos , Animales , Glucemia , Composición Corporal , Eritrocitos , Ácidos Grasos , Ácidos Grasos Volátiles/química , Heces/química , Microbioma Gastrointestinal , Prueba de Tolerancia a la Glucosa , Entrenamiento de Intervalos de Alta Intensidad , Mucosa Intestinal , Distribución Aleatoria , Ratas , Ratas Wistar , Ácido alfa-Linolénico/administración & dosificación
3.
PLoS One ; 15(12): e0234893, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33382695

RESUMEN

Breast cancer is the second leading cause of cancer-related mortality in women. Various nutritional compounds possess anti-carcinogenic properties which may be mediated through their effects on the gut microbiota and its production of short-chain fatty acids (SCFAs) for the prevention of breast cancer. We evaluated the impact of broccoli sprouts (BSp), green tea polyphenols (GTPs) and their combination on the gut microbiota and SCFAs metabolism from the microbiota in Her2/neu transgenic mice that spontaneously develop estrogen receptor-negative [ER(-)] mammary tumors. The mice were grouped based on the dietary treatment: control, BSp, GTPs or their combination from beginning in early life (BE) or life-long from conception (LC). We found that the combination group showed the strongest inhibiting effect on tumor growth volume and a significant increase in tumor latency. BSp treatment was integrally more efficacious than the GTPs group when compared to the control group. There was similar clustering of microbiota of BSp-fed mice with combination-fed mice, and GTPs-fed mice with control-fed mice at pre-tumor in the BE group and at pre-tumor and post-tumor in the LC group. The mice on all dietary treatment groups incurred a significant increase of Adlercreutzia, Lactobacillus genus and Lachnospiraceae, S24-7 family in the both BE and LC groups. We found no change in SCFAs levels in the plasma of BSp-fed, GTPs-fed and combination-fed mice of the BE group. Marked changes were observed in the mice of the LC group consisting of significant increases in propionate and isobutyrate in GTPs-fed and combination-fed mice. These studies indicate that nutrients such as BSp and GTPs differentially affect the gut microbial composition in both the BE and LC groups and the key metabolites (SCFAs) levels in the LC group. The findings also suggest that temporal factors related to different time windows of consumption during the life-span can have a promising influence on the gut microbial composition, SCFAs profiles and ER(-) breast cancer prevention.


Asunto(s)
Dieta/métodos , Ácidos Grasos Volátiles/sangre , Microbioma Gastrointestinal/efectos de los fármacos , Neoplasias Mamarias Experimentales/prevención & control , Polifenoles/farmacología , Plantones/química , Actinobacteria/efectos de los fármacos , Actinobacteria/aislamiento & purificación , Actinobacteria/fisiología , Animales , Brassica/química , Clostridiales/efectos de los fármacos , Clostridiales/aislamiento & purificación , Clostridiales/fisiología , Femenino , Microbioma Gastrointestinal/fisiología , Expresión Génica , Lactobacillus/efectos de los fármacos , Lactobacillus/aislamiento & purificación , Lactobacillus/fisiología , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/sangre , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Noqueados , Polifenoles/química , Receptor ErbB-2/deficiencia , Receptor ErbB-2/genética , Receptores de Estrógenos/deficiencia , Receptores de Estrógenos/genética , Té/química
4.
Microbiome ; 8(1): 162, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213511

RESUMEN

The capability of gut microbiota in degrading foods and drugs administered orally can result in diversified efficacies and toxicity interpersonally and cause significant impact on human health. Production of atherogenic trimethylamine N-oxide (TMAO) from carnitine is a gut microbiota-directed pathway and varies widely among individuals. Here, we demonstrated a personalized TMAO formation and carnitine bioavailability from carnitine supplements by differentiating individual TMAO productivities with a recently developed oral carnitine challenge test (OCCT). By exploring gut microbiome in subjects characterized by TMAO producer phenotypes, we identified 39 operational taxonomy units that were highly correlated to TMAO productivity, including Emergencia timonensis, which has been recently discovered to convert γ-butyrobetaine to TMA in vitro. A microbiome-based random forest classifier was therefore constructed to predict the TMAO producer phenotype (AUROC = 0.81) which was then validated with an external cohort (AUROC = 0.80). A novel bacterium called Ihubacter massiliensis was also discovered to be a key microbe for TMA/TMAO production by using an OCCT-based humanized gnotobiotic mice model. Simply combining the presence of E. timonensis and I. massiliensis could account for 43% of high TMAO producers with 97% specificity. Collectively, this human gut microbiota phenotype-directed approach offers potential for developing precision medicine and provides insights into translational research. Video Abstract.


Asunto(s)
Carnitina/farmacología , Metilaminas/metabolismo , Microbiota/efectos de los fármacos , Administración Oral , Adulto , Animales , Carnitina/administración & dosificación , Clostridiales/efectos de los fármacos , Clostridiales/metabolismo , Femenino , Humanos , Masculino , Ratones , Microbiota/genética
6.
Mediators Inflamm ; 2020: 5867627, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32831636

RESUMEN

Inflammatory bowel disease, a gut disease that is prevalent worldwide, is characterized by chronic intestinal inflammation, such as colitis, and disorder of the gut microbiome. Glycine (Gly) is the simplest amino acid and functions as an anti-inflammatory immune-nutrient and intestinal microbiota regulator. This study aimed at investigating the effect of Gly on colitis induced in mice by intrarectal administration of 5% acetic acid (AA). Bodyweight and survival rates were monitored, and colonic length and weight, serum amino acid concentrations, intestinal inflammation-related gene expression, and colonic microbiota abundances were analyzed. The results showed that Gly dietary supplementation had no effect on the survival rate or the ratio of colonic length to weight. However, Gly supplementation reversed the AA-induced increase in serum concentrations of amino acids such as glutamate, leucine, isoleucine, and valine. Furthermore, Gly inhibited colonic gene expression of interleukin- (IL-) 1ß and promoted IL-10 expression in colitis mice. Gly supplementation also reversed the AA-induced reduction in the abundance of bacteria such as Clostridia, Ruminococcaceae, and Clostridiales. This change in the intestinal microbiota was possibly attributable to the changes in colonic IL-10 expression and serum concentrations of valine and leucine. In sum, Gly supplementation regulated the serum concentrations of amino acids, the levels of colonic immune-associated gene expression, and the intestinal microbiota in a mouse model of colitis. These findings enhance our understanding of the role of Gly in regulating metabolism, intestinal immunity, and the gut microbiota in animals afflicted with colitis.


Asunto(s)
Ácido Acético/toxicidad , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Glicina/uso terapéutico , Interleucina-10/metabolismo , Animales , Clostridiales/efectos de los fármacos , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Ratones
7.
World J Gastroenterol ; 25(40): 6129-6144, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31686768

RESUMEN

BACKGROUND: Constipation is a common functional gastrointestinal disorder and its etiology is multifactorial. Growing evidence suggests that intestinal dysbiosis is associated with the development of constipation. Prebiotics are subjected to bacterial fermentation in the gut to produce short-chain fatty acids (SCFAs), which can help relieve constipation symptoms. The prebiotic UG1601 consists of inulin, lactitol, and aloe vera gel, which are known laxatives, but randomized, controlled clinical trials that examine the effects of this supplement on gut microbiota composition are lacking. AIM: To assess the efficacy of the prebiotic UG1601 in suppressing constipation-related adverse events in subjects with mild constipation. METHODS: Adults with a stool frequency of less than thrice a week were randomized to receive either prebiotics or a placebo supplement for 4 wk. All participants provided their fecal and blood samples at baseline and at the end of intervention. Gastrointestinal symptoms and stool frequency were evaluated. The concentrations of serum endotoxemia markers and fecal SCFAs were determined. The relative abundance of SCFA-producing bacteria and the gut microbial community in the responders and non-responders in the prebiotics supplementation group were evaluated. RESULTS: There were no significant differences in gastrointestinal symptoms between groups, although the prebiotic group showed greater symptom improvement. However, after prebiotic usage, serum cluster of differentiation (CD) 14 and lipopolysaccharide (LPS) concentrations were significantly decreased (CD14, P = 0.012; LPS, P < 0.001). The change in LPS concentration was significantly larger in the prebiotic group than in the placebo group (P < 0.001). Fecal SCFAs concentrations did not differ between groups, while the relative abundance of Roseburia hominis, a major butyrate producer, was significantly increased in the prebiotic group (P = 0.045). The abundances of the phylum Firmicutes and the family Lachnospiraceae (phylum Firmicutes, class Clostridia) (P = 0.009) were decreased in the responders within the prebiotic group. In addition, the proportions of the phylum Firmicutes, the class Clostridia, and the order Clostridiales were inversely correlated with several fecal SCFAs (P < 0.05). CONCLUSION: Alterations in gut microbiota composition, including a decrease in the phylum Firmicutes and an increase in butyrate-producing bacteria, following prebiotic UG1601 supplementation might help alleviate symptom scores and endotoxemia.


Asunto(s)
Estreñimiento/dietoterapia , Disbiosis/dietoterapia , Endotoxemia/dietoterapia , Microbioma Gastrointestinal/efectos de los fármacos , Prebióticos/administración & dosificación , Adulto , Clostridiales/efectos de los fármacos , Clostridiales/aislamiento & purificación , Estreñimiento/complicaciones , Estreñimiento/diagnóstico , Método Doble Ciego , Disbiosis/diagnóstico , Disbiosis/microbiología , Endotoxemia/diagnóstico , Endotoxemia/microbiología , Ácidos Grasos Volátiles/análisis , Heces/química , Heces/microbiología , Femenino , Humanos , Inulina/administración & dosificación , Masculino , Persona de Mediana Edad , Placebos/administración & dosificación , Preparaciones de Plantas/administración & dosificación , Índice de Severidad de la Enfermedad , Alcoholes del Azúcar/administración & dosificación , Resultado del Tratamiento , Adulto Joven
8.
PLoS One ; 14(1): e0210970, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30653573

RESUMEN

The emergence of bacterial pathogens that are resistant to clinical antibiotics poses an increasing risk to human health. An important reservoir from which bacterial pathogens can acquire resistance is the human gut microbiota. However, thus far, a substantial fraction of the gut microbiota remains uncultivated and has been little-studied with respect to its resistance reservoir-function. Here, we aimed to isolate yet uncultivated resistant gut bacteria by a targeted approach. Therefore, faecal samples from 20 intensive care patients who had received the prophylactic antibiotic treatment selective digestive decontamination (SDD), i.e. tobramycin, polymyxin E, amphotericin B and cefotaxime, were inoculated anaerobically on porous aluminium oxide chips placed on top of poor and rich agar media, including media supplemented with the SDD antibiotics. Biomass growing on the chips was analysed by 16S rRNA gene amplicon sequencing, showing large inter-individual differences in bacterial cultivability, and enrichment of a range of taxonomically diverse operational taxonomic units (OTUs). Furthermore, growth of Ruminococcaceae (2 OTUs), Enterobacteriaceae (6 OTUs) and Lachnospiraceae (4 OTUs) was significantly inhibited by the SDD antibiotics. Strains belonging to 16 OTUs were candidates for cultivation to pure culture as they shared ≤95% sequence identity with the closest type strain and had a relative abundance of ≥2%. Six of these OTUs were detected on media containing SDD antibiotics, and as such were prime candidates to be studied regarding antibiotic resistance. One of these six OTUs was obtained in pure culture using targeted isolation. This novel strain was resistant to the antibiotics metrodinazole and imipenem. It was initially classified as member of the Ruminococcaceae, though later it was found to share 99% nucleotide identity with the recently published Sellimonas intestinalis BR72T. In conclusion, we show that high-throughput cultivation-based screening of microbial communities can guide targeted isolation of bacteria that serve as reservoirs of antibiotic resistance.


Asunto(s)
Farmacorresistencia Bacteriana , Microbioma Gastrointestinal/efectos de los fármacos , Óxido de Aluminio , Anaerobiosis , Profilaxis Antibiótica , Técnicas Bacteriológicas , Clostridiales/efectos de los fármacos , Clostridiales/crecimiento & desarrollo , Clostridiales/aislamiento & purificación , Descontaminación/métodos , Reservorios de Enfermedades/microbiología , Farmacorresistencia Bacteriana/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Heces/microbiología , Microbioma Gastrointestinal/genética , Ensayos Analíticos de Alto Rendimiento , Humanos , Unidades de Cuidados Intensivos , Pruebas de Sensibilidad Microbiana , Porosidad , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
9.
Biomed Res Int ; 2018: 1879168, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29682522

RESUMEN

Antibiotic growth promoters have been used for decades in poultry farming as a tool to maintain bird health and improve growth performance. Global concern about the recurrent emergence and spreading of antimicrobial resistance is challenging the livestock producers to search for alternatives to feed added antibiotics. The use of phytogenic compounds appears as a feasible option due to their ability to emulate the bioactive properties of antibiotics. However, detailed description about the effects of in-feed antibiotics and alternative natural products on chicken intestinal microbiota is lacking. High-throughput sequencing of 16S rRNA gene was used to study composition of cecal microbiota in broiler chickens supplemented with either bacitracin or a blend of chestnut and quebracho tannins over a 30-day grow-out period. Both tannins and bacitracin had a significant impact on diversity of cecal microbiota. Bacitracin consistently decreased Bifidobacterium while other bacterial groups were affected only at certain times. Tannins-fed chickens showed a drastic decrease in genus Bacteroides while certain members of order Clostridiales mainly belonging to the families Ruminococcaceae and Lachnospiraceae were increased. Different members of these groups have been associated with an improvement of intestinal health and feed efficiency in poultry, suggesting that these bacteria could be associated with productive performance of birds.


Asunto(s)
Bacitracina/farmacología , Pollos/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Microbiota/efectos de los fármacos , Taninos/farmacología , Alimentación Animal , Animales , Antibacterianos/farmacología , Bacteroides/efectos de los fármacos , Bacteroides/genética , Bifidobacterium/efectos de los fármacos , Bifidobacterium/genética , Clostridiales/efectos de los fármacos , Clostridiales/genética , Intestinos/microbiología , Microbiota/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA