Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.643
Filtrar
Más filtros

Intervalo de año de publicación
1.
Microbiol Spectr ; 12(6): e0428023, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38629838

RESUMEN

Dehydrated alginate beads formulated with copper were synthesized and tested as a feed additive to influence the microbiota in finishing pigs and potentially use them as a preharvest intervention to reduce fecal pathogen shedding. The efficacy of the copper beads was tested in vitro and in vivo. In vitro, Salmonella was significantly (P < 0.05) reduced when in contact with the copper beads solution for up to 6 h, with a 5.4 log CFU/mL reduction over the first hour. Chemical analysis of the soak solutions demonstrated the beads delivered their copper payload gradually over the same period the bactericidal effect was observed. For the in vivo experiments, pigs (n = 48) supplemented with the copper beads experienced significant shifts in their microbiota. Enterobacteriaceae (EB) increased by 1.07 log CFU/g (P < 0.05), while lactic acid bacteria (LAB) decreased by 1.22 log CFU/g (P < 0.05) during the treatment period. When beads were removed from the feed, EB and LAB concentrations returned to baseline, indicating copper beads led to measurable and significant changes in microbial loads. Fecal microbiome analysis conducted to explore additional changes by copper bead supplementation demonstrated that, at the phylum level, there was an increase in Firmicutes, Euryarchaeota, and Acidobacteriota, while at the genus level, an increase in Methanosphaera and Pseudomonas was observed. Measures of copper in swine feces showed values ~20 times higher in the treatment group than in the control group during the treatment period, suggesting that dehydrated alginate copper beads were effective in delivering antimicrobial copper to the animal hindgut.IMPORTANCECopper has long been known to have antimicrobial properties. However, when water-soluble salts are fed to livestock, the copper may rapidly dissolve in gastric contents and fail to reach the gut. Here, specially formulated copper beads are seamlessly incorporated into feed and allow copper to remain longer in the gastrointestinal tract of animals, reach deep into both the foregut and hindgut, and shift microbial populations. The technology delivers antimicrobial copper to the animal hindgut and potentially reduces pathogenic microorganisms before animal slaughter.


Asunto(s)
Alimentación Animal , Cobre , Heces , Microbioma Gastrointestinal , Animales , Cobre/farmacología , Cobre/administración & dosificación , Porcinos , Heces/microbiología , Alimentación Animal/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Salmonella/efectos de los fármacos , Enterobacteriaceae/efectos de los fármacos , Aditivos Alimentarios/farmacología , Aditivos Alimentarios/administración & dosificación , Alginatos/química
2.
J Pharm Biomed Anal ; 245: 116167, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663257

RESUMEN

Wilson disease (WD) is an autosomal recessive disorder characterized by abnormal copper metabolism. The accumulation of copper in the liver can progress to liver fibrosis and, ultimately, cirrhosis, which is a primary cause of death in WD patients. Metabonomic technology offers an effective approach to investigate the traditional Chinese medicine (TCM) syndrome types of WD-related liver fibrosis by monitoring the alterations in small molecule metabolites within the body. In this study, we employed 1H-Nuclear Magnetic Resonance (1H NMR) metabonomics to assess the metabolic profiles associated with five TCM syndrome types of WD-related liver fibrosis and analyzed the diagnostic and predictive capabilities of various metabolites. The study found a variety of metabolites, each with varying levels of diagnostic and predictive capabilities. Furthermore, the discerned differential metabolic pathways were primarily associated with various pathways involving carbohydrate metabolism, amino acid metabolism, and lipid metabolism. This study has identified various characteristic metabolic markers and pathways associated with different TCM syndromes of liver fibrosis in WD, providing a substantial foundation for investigating the mechanisms underlying these TCM syndromes.


Asunto(s)
Degeneración Hepatolenticular , Cirrosis Hepática , Medicina Tradicional China , Metabolómica , Degeneración Hepatolenticular/metabolismo , Degeneración Hepatolenticular/diagnóstico , Humanos , Cirrosis Hepática/metabolismo , Metabolómica/métodos , Masculino , Femenino , Medicina Tradicional China/métodos , Adulto , Espectroscopía de Protones por Resonancia Magnética/métodos , Adulto Joven , Síndrome , Hígado/metabolismo , Hígado/patología , Biomarcadores/metabolismo , Persona de Mediana Edad , Cobre/metabolismo , Adolescente
3.
PLoS One ; 19(4): e0301511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38564509

RESUMEN

This study aimed to identify the biochemical parameters that determine the occurrence of glaucoma and assess the correlation between oxidative stress and clinical data in patients with glaucoma and healthy controls. We enrolled 169 participants; the glaucoma group comprised 104 patients with primary open-angle, pseudoexfoliation, or angle-closure glaucoma, and the control group comprised 65 healthy individuals. Serum concentrations of selenium (Se), copper (Cu), and zinc (Zn); Cu/Zn ratio; and total antioxidant status were measured in both groups. Significantly lower Se and Zn serum levels were observed in men (67.7 ± 17.14 g/L and 0.76 ± 0.11 mg/L, respectively) and women (68.73 ± 16.21 g/L and 0.76 ± 0.13, respectively) with glaucoma. Moreover, significant correlations were identified between serum Se concentration and corrected distance visual acuity (CDVA) and between serum Cu concentration and CDVA (p < 0.005 and p < 0.05, respectively). We also observed a significant positive correlation (r = 0.244, p < 0.05) between pRNFL thickness and BMI and a negative correlation (r = -0.289, p < 0.05) between serum Se concentration and the age of male patients with glaucoma. Additionally, the percentages of participants with below-normal, normal, and above-normal Se, Zn, and total antioxidant capacity serum levels were compared between both groups. Compared with healthy controls, a significantly higher percentage of patients with glaucoma had a below-normal Se serum concentration. A notable negative correlation was observed between Zn and copper serum levels of patients with glaucoma in both sexes. We believe that this study serves as a basis for considering personalized nutritional therapy for the prevention and supportive treatment of patients with glaucoma.


Asunto(s)
Glaucoma , Selenio , Humanos , Masculino , Femenino , Antioxidantes , Cobre , Zinc , Patrones Dietéticos
4.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38612424

RESUMEN

This work is aimed at relationships which govern zinc and copper uptake by four popular medicinal herbs: basil (Ocimum basilicum L.), borage (Borago officinalis L.), common nettle (Urtica dioica L.) and peppermint (Mentha piperita L.). They are often grown in soils with significant copper or zinc levels. Herbs were cultivated by a pot method in controlled conditions. Manganese, iron, copper and zinc concentrations were determined by High-Resolution Continuum Source Flame Atomic Absorption Spectrometry. The efficiency of photosynthesis was estimated by measuring the chlorophyll content, water use efficiency, net photosynthesis, intercellular CO2, stomatal conductance, and transpiration rate. Phenolic compounds were determined by the Folin-Ciocalteu method. Analysis of variance showed that herbs grown in soil treated with copper exhibited a lower iron content in roots, while manganese behaved in the opposite way. The only exception was borage, where a decrease in the manganese content in roots was observed. Both copper and zinc supplementations increased the total content of phenolics, while the highest increases were observed for common nettle and basil. Peppermint and borage responded less to supplementation. In the majority of samples, zinc and copper did not significantly affect the photosynthesis. Herbal extracts from common nettle and basil had unique antioxidant properties and may be good free radical scavengers.


Asunto(s)
Borago , Ocimum basilicum , Urtica dioica , Mentha piperita , Cobre , Zinc , Manganeso , Fenoles , Fotosíntesis , Hierro
5.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612631

RESUMEN

Trace elements are essential for maintaining the body's homeostasis, and their special role has been demonstrated in skin physiology. Among the most important trace elements are zinc, copper, and iron. A deficiency or excess of trace elements can be associated with an increased risk of skin diseases, so increasing their supplementation or limiting intake can be helpful in dermatological treatment. In addition, determinations of their levels in various types of biological material can be useful as additional tests in dermatological treatment. This paper describes the role of these elements in skin physiology and summarizes data on zinc, copper, and iron in the course of selected, following skin diseases: psoriasis, pemphigus vulgaris, atopic dermatitis, acne vulgaris and seborrheic dermatitis. In addition, this work identifies the potential of trace elements as auxiliary tests in dermatology. According to preliminary studies, abnormal levels of zinc, copper, and iron are observed in many skin diseases and their determinations in serum or hair can be used as auxiliary and prognostic tests in the course of various dermatoses. However, since data for some conditions are conflicting, clearly defining the potential of trace elements as auxiliary tests or elements requiring restriction/supplement requires further research.


Asunto(s)
Acné Vulgar , Oligoelementos , Humanos , Zinc , Cobre , Hierro
6.
Sci Rep ; 14(1): 8590, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615144

RESUMEN

Hypertension (HPT) is the leading modifiable risk factor for cardiovascular diseases and premature death worldwide. Currently, attention is given to various dietary approaches with a special focus on the role of micronutrient intake in the regulation of blood pressure. This study aims to measure the dietary intake of selected minerals among Malaysian adults and its association with HPT. This cross-sectional study involved 10,031 participants from the Prospective Urban and Rural Epidemiological study conducted in Malaysia. Participants were grouped into HPT if they reported having been diagnosed with high blood pressure [average systolic blood pressure (SBP)/average diastolic blood pressure (DBP) ≥ 140/90 mm Hg]. A validated food frequency questionnaire (FFQ) was used to measure participants' habitual dietary intake. The dietary mineral intake of calcium, copper, iron, magnesium, manganese, phosphorus, potassium, sodium, and zinc was measured. The chi-square test was used to assess differences in socio-demographic factors between HPT and non-HPT groups, while the Mann-Whitney U test was used to assess differences in dietary mineral intake between the groups. The participants' average dietary intake of calcium, copper, iron, magnesium, manganese, phosphorus, potassium, selenium, sodium, and zinc was 591.0 mg/day, 3.8 mg/day, 27.1 mg/day, 32.4 mg/day, 0.4 mg/day, 1431.1 mg/day, 2.3 g/day, 27.1 µg/day, 4526.7 mg/day and 1.5 mg/day, respectively. The intake was significantly lower among those with HPT than those without HPT except for calcium and manganese. Continuous education and intervention should be focused on decreasing sodium intake and increasing potassium, magnesium, manganese, zinc, and calcium intake for the general Malaysian population, particularly for the HPT patients.


Asunto(s)
Hipertensión , Selenio , Adulto , Humanos , Estudios Transversales , Calcio , Manganeso , Cobre , Magnesio , Estudios Prospectivos , Hipertensión/epidemiología , Calcio de la Dieta , Hierro , Zinc , Sodio , Fósforo , Potasio
7.
Food Chem ; 448: 139127, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608399

RESUMEN

To address the food safety issues caused by toxins, we established a fluorescent copper nanocluster biosensor based on magnetic aptamer for the visual and quantitative detection of ZEN. Specifically, we utilized the docking-aided rational tailoring (DART) strategy to analyze intermolecular force and interaction sites between zearalenone (ZEN) and the aptamer, and optimize the long-chain aptamer step by step to enhance the binding affinity by 3.4 times. The magnetic bead-modified aptamer underwent conformational changes when competing with complementary sequences to bind with ZEN. Then, the released complementary sequences will be amplified in template-free mode with the presence of the terminal deoxynucleotidyl transferase (TdT), and generating T-rich sequences as the core sequences for the luminescence of copper nanoclusters. The luminescence could be visualized and quantitatively detected through ultraviolet irradiation. The proposed label-free aptasensor exhibited high sensitivity and specificity, with a low limit of detection (LOD) of 0.1 ng/mL.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Cobre , Zearalenona , Zearalenona/análisis , Zearalenona/química , Cobre/química , Técnicas Biosensibles/instrumentación , Aptámeros de Nucleótidos/química , Contaminación de Alimentos/análisis , Límite de Detección , Simulación del Acoplamiento Molecular , Nanopartículas del Metal/química , Fluorescencia
8.
J Colloid Interface Sci ; 666: 434-446, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608638

RESUMEN

Bacterial infections are among the most significant causes of death in humans. Chronic misuse or uncontrolled use of antibiotics promotes the emergence of multidrug-resistant superbugs that threaten public health through the food chain and cause environmental pollution. Based on the above considerations, copper selenide nanosheets (CuSe NSs) with photothermal therapy (PTT)- and photodynamic therapy (PDT)-related properties have been fabricated. These CuSe NSs possess enhanced PDT-related properties and can convert O2 into highly toxic reactive oxygen species (ROS), which can cause significant oxidative stress and damage to bacteria. In addition, CuSe NSs can efficiently consume glutathione (GSH) at bacterial infection sites, thus further enhancing their sterilization efficacy. In vitro antibacterial experiments with near-infrared (NIR) irradiation have shown that CuSe NSs have excellent photothermal bactericidal properties. These experiments also showed that CuSe NSs exerted excellent bactericidal effects on wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) and significantly promoted the healing of infected wounds. Because of their superior biological safety, CuSe NSs are novel copper-based antimicrobial agents that are expected to enter clinical trials, serving as a modern approach to the major problem of treating bacterially infected wounds.


Asunto(s)
Antibacterianos , Cobre , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Nanoestructuras , Terapia Fototérmica , Cobre/química , Cobre/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Nanoestructuras/química , Ratones , Especies Reactivas de Oxígeno/metabolismo , Humanos , Propiedades de Superficie , Tamaño de la Partícula , Selenio/química , Selenio/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico
9.
Huan Jing Ke Xue ; 45(5): 3037-3046, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629564

RESUMEN

Through lettuce potting experiments, the effects of different types of biochar (apple branch, corn straw, and modified sorghum straw biochar with phosphoric acid modification) on lettuce growth under tetracycline (TC) and copper (Cu) co-pollution were investigated. The results showed that compared with those under CK, the addition of biochar treatment significantly increased the plant height, root length, shoot fresh weight, and root fresh weight of lettuce (P < 0.05). The addition of different biochars significantly increased the nitrate nitrogen, chlorophyll, and soluble protein content in lettuce physiological indicators to varying degrees, while also significantly decreasing the levels of malondialdehyde, proline content, and catalase activity. The effects of biochar on lettuce physiological indicators were consistent during both the seedling and mature stages. Compared with those in CK, the addition of biochar resulted in varying degrees of reduction in the TC and Cu contents of both the aboveground and underground parts of lettuce. The aboveground TC and Cu levels decreased by 2.49%-92.32% and 12.79%-36.47%, respectively. The underground TC and Cu levels decreased by 12.53%-55.64% and 22.41%-42.29%, respectively. Correlation analysis showed that nitrate nitrogen, chlorophyll, and soluble protein content of lettuce were negatively correlated with TC content, whereas malondialdehyde, proline content, and catalase activity were positively correlated with TC content. The resistance genes of lettuce were positively correlated with TC content (P < 0.05). In general, modified biochar was found to be more effective in improving lettuce growth quality and reducing pollutant accumulation compared to unmodified biochar, with modified sorghum straw biochar showing the best remediation effect.


Asunto(s)
Contaminantes Ambientales , Contaminantes del Suelo , Cobre , Lactuca , Contaminantes Ambientales/análisis , Suelo , Catalasa , Nitratos/análisis , Antibacterianos , Tetraciclina/análisis , Carbón Orgánico , Contaminantes del Suelo/análisis , Clorofila/análisis , Malondialdehído , Nitrógeno/análisis , Prolina
10.
J Med Virol ; 96(4): e29611, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38639305

RESUMEN

While micronutrients are crucial for immune function, their impact on humoral responses to inactivated COVID-19 vaccination remains unclear. We investigated the associations between seven key micronutrients and antibody responses in 44 healthy adults with two doses of an inactivated COVID-19 vaccine. Blood samples were collected pre-vaccination and 28 days post-booster. We measured circulating minerals (iron, zinc, copper, and selenium) and vitamins (A, D, and E) concentrations alongside antibody responses and assessed their associations using linear regression analyses. Our analysis revealed inverse associations between blood iron and zinc concentrations and anti-SARS-CoV-2 IgM antibody binding affinity (AUC for iron: ß = -258.21, p < 0.0001; zinc: ß = -17.25, p = 0.0004). Notably, antibody quality presented complex relationships. Blood selenium was positively associated (ß = 18.61, p = 0.0030), while copper/selenium ratio was inversely associated (ß = -1.36, p = 0.0055) with the neutralizing ability against SARS-CoV-2 virus at a 1:10 plasma dilution. There was no significant association between circulating micronutrient concentrations and anti-SARS-CoV-2 IgG binding affinity. These findings suggest that circulating iron, zinc, and selenium concentrations and copper/selenium ratio, may serve as potential biomarkers for both quantity (binding affinity) and quality (neutralization) of humoral responses after inactivated COVID-19 vaccination. Furthermore, they hint at the potential of pre-vaccination dietary interventions, such as selenium supplementation, to improve vaccine efficacy. However, larger, diverse studies are needed to validate these findings. This research advances the understanding of the impact of micronutrients on vaccine response, offering the potential for personalized vaccination strategies.


Asunto(s)
COVID-19 , Selenio , Oligoelementos , Adulto , Humanos , Micronutrientes , Vacunas contra la COVID-19 , Cobre , COVID-19/prevención & control , SARS-CoV-2 , Zinc , Hierro , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes
11.
Mol Biol Rep ; 51(1): 543, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642191

RESUMEN

Heavy metal stress is a major problem in present scenario and the consequences are well known. The agroecosystems are heavily affected by the heavy metal stress and the question arises on the sustainability of the agricultural products. Heavy metals inhibit the process to influence the reactive oxygen species production. When abundantly present copper metal ion has toxic effects which is mitigated by the exogenous application of Si. The role of silicon is to enhance physical parameters as well as gas exchange parameters. Si is likely to increase antioxidant enzymes in response to copper stress which can relocate toxic metals at subcellular level and remove heavy metals from the cell. Silicon regulates phytohormones when excess copper is present. Rate of photosynthesis and mineral absorption is increased in response to metal stress. Silicon manages enzymatic and non-enzymatic activities to balance metal stress condition. Cu transport by the plasma membrane is controlled by a family of proteins called copper transporter present at cell surface. Plants maintain balance in absorption, use and storage for proper copper ion homeostasis. Copper chaperones play vital role in copper ion movement within cells. Prior to that metallochaperones control Cu levels. The genes responsible in copper stress mitigation are discovered in various plant species and their function are decoded. However, detailed molecular mechanism is yet to be studied. This review discusses about the crucial mechanisms of Si-mediated alleviation of copper stress, the role of copper binding proteins in copper homeostasis. Moreover, it also provides a brief information on the genes, their function and regulation of their expression in relevance to Cu abundance in different plant species which will be beneficial for further understanding of the role of silicon in stabilization of copper stress.


Asunto(s)
Cobre , Metales Pesados , Cobre/metabolismo , Silicio/farmacología , Silicio/metabolismo , Metales Pesados/metabolismo , Antioxidantes/metabolismo , Plantas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Suplementos Dietéticos
12.
Food Chem ; 448: 139210, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569408

RESUMEN

The detection of heavy metals in tea infusions is important because of the potential health risks associated with their consumption. Existing highly sensitive detection methods pose challenges because they are complicated and time-consuming. In this study, we developed an innovative and simple method using Ag nanoparticles-modified resin (AgNPs-MR) for pre-enrichment prior to laser-induced breakdown spectroscopy for the simultaneous analysis of Cr (III), Cu (II), and Pb (II) in tea infusions. Signal enhancement using AgNPs-MR resulted in amplification with limits of detection of 0.22 µg L-1 for Cr (III), 0.33 µg L-1 for Cu (II), and 1.25 µg L-1 for Pb (II). Quantitative analyses of these ions in infusions of black tea from various brands yielded recoveries ranging from 83.3% to 114.5%. This method is effective as a direct and highly sensitive technique for precisely quantifying trace concentrations of heavy metals in tea infusions.


Asunto(s)
Cromo , Cobre , Contaminación de Alimentos , Plomo , Nanopartículas del Metal , Plata , , Té/química , Cromo/análisis , Plomo/análisis , Plata/química , Nanopartículas del Metal/química , Cobre/análisis , Contaminación de Alimentos/análisis , Análisis Espectral/métodos , Rayos Láser , Camellia sinensis/química , Metales Pesados/análisis , Límite de Detección
13.
Colloids Surf B Biointerfaces ; 238: 113921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631280

RESUMEN

Tumor microenvironment (TME)-responsive size-changeable and biodegradable nanoplatforms for multimodal therapy possess huge advantages in anti-tumor therapy. Hence, we developed a hyaluronic acid (HA) modified CuS/MnO2 nanosheets (HCMNs) as a multifunctional nanoplatform for synergistic chemodynamic therapy (CDT)/photothermal therapy (PTT)/photodynamic therapy (PDT). The prepared HCMNs exhibited significant NIR light absorption and photothermal conversion efficiency because of the densely deposited ultra-small sized CuS nanoparticles on the surface of MnO2 nanosheet. They could precisely target the tumor cells and rapidly decomposed into small sized nanostructures in the TME, and then efficiently promote intracellular ROS generation through a series of cascade reactions. Moreover, the local temperature elevation induced by photothermal effect also promote the PDT based on CuS nanoparticles and the Fenton-like reaction of Mn2+, thereby enhancing the therapeutic efficiency. Furthermore, the T1-weighted magnetic resonance (MR) imaging was significantly enhanced by the abundant Mn2+ ions from the decomposition process of HCMNs. In addition, the CDT/PTT/PDT synergistic therapy using a single NIR light source exhibited considerable anti-tumor effect via in vitro cell test. Therefore, the developed HCMNs will provide great potential for MR imaging and multimodal synergistic cancer therapy.


Asunto(s)
Cobre , Ácido Hialurónico , Imagen por Resonancia Magnética , Compuestos de Manganeso , Óxidos , Fotoquimioterapia , Microambiente Tumoral , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Microambiente Tumoral/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Óxidos/química , Óxidos/farmacología , Humanos , Cobre/química , Cobre/farmacología , Tamaño de la Partícula , Nanoestructuras/química , Antineoplásicos/farmacología , Antineoplásicos/química , Fototerapia , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos , Propiedades de Superficie , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Animales
14.
Medicine (Baltimore) ; 103(14): e37741, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579045

RESUMEN

The gallstone disease is becoming increasingly prevalent worldwide. Dietary trace minerals have been proven to be closely related to many metabolic diseases, and this study aims to explore the association between intakes of dietary trace minerals (copper, iron, selenium, and zinc) and gallstone disease (GSD). Using the National Health and Nutrition Examination Survey (NHANES) from 2017 to 2018, intakes of dietary trace minerals and GSD data were obtained through a 24-hour recall and diagnostic questionnaire, respectively. Weighted logistic regression models were used to identify the association between intakes of dietary trace minerals and the prevalence of GSD, and the results were presented as odds ratios (OR) and 95% confidence intervals (95% CI). A total of 4077 participants were included in the final analysis, of which 456 participants had GSD and 3621 participants serving as the control group. No significant associations between GSD and intakes of dietary trace minerals (iron, selenium, and zinc) were found. However, after adjusting for all covariates, significant association was demonstrated between dietary copper (Cu) intake and GSD (OR = 0.66, 95% CI = 0.45-0.98). After conducting a weighted quantile logistic regression, a significant negative correlation was also found between dietary Cu intake and highest GSD quartile (Q4) (OR = 0.45, 95% CI = 0.26-0.80). Following the research outlined above, no association was found between intakes of dietary trace minerals (iron, selenium, and zinc) and GSD; however, a linear negative association was identified between dietary Cu intake and GSD.


Asunto(s)
Colelitiasis , Selenio , Oligoelementos , Humanos , Encuestas Nutricionales , Estudios Transversales , Cobre , Zinc , Hierro
15.
Environ Sci Pollut Res Int ; 31(20): 29264-29279, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573576

RESUMEN

Guided by efficient utilization of natural plant oil and sulfur as low-cost sorbents, it is desired to tailor the porosity and composition of polysulfides to achieve their optimal applications in the management of aquatic heavy metal pollution. In this study, polysulfides derived from soybean oil and sulfur (PSSs) with improved porosity (10.2-22.9 m2/g) and surface oxygen content (3.1-7.0 wt.%) were prepared with respect to reaction time of 60 min, reaction temperature of 170 °C, and mass ratios of sulfur/soybean oil/NaCl/sodium citrate of 1:1:3:2. The sorption behaviors of PSSs under various hydrochemical conditions such as contact time, pH, ionic strength, coexisting cations and anions, temperature were systematically investigated. PSSs presented a fast sorption kinetic (5.0 h) and obviously improved maximum sorption capacities for Pb(II) (180.5 mg/g), Cu(II) (49.4 mg/g), and Cr(III) (37.0 mg/g) at pH 5.0 and T 298 K, in comparison with polymers made without NaCl/sodium citrate. This study provided a valuable reference for the facile preparation of functional polysulfides as well as a meaningful option for the removal of aquatic heavy metals.


Asunto(s)
Cobre , Plomo , Metales Pesados , Aceite de Soja , Sulfuros , Contaminantes Químicos del Agua , Adsorción , Plomo/química , Aceite de Soja/química , Cobre/química , Sulfuros/química , Porosidad , Contaminantes Químicos del Agua/química , Metales Pesados/química , Cromo/química , Cinética , Concentración de Iones de Hidrógeno
16.
COPD ; 21(1): 2322605, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38591165

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory condition characterized by persistent inflammation and oxidative stress, which ultimately leads to progressive restriction of airflow. Extensive research findings have cogently suggested that the dysregulation of essential transition metal ions, notably iron, copper, and zinc, stands as a critical nexus in the perpetuation of inflammatory processes and oxidative damage within the lungs of COPD patients. Unraveling the intricate interplay between metal homeostasis, oxidative stress, and inflammatory signaling is of paramount importance in unraveling the intricacies of COPD pathogenesis. This comprehensive review aims to examine the current literature on the sources, regulation, and mechanisms by which metal dyshomeostasis contributes to COPD progression. We specifically focus on iron, copper, and zinc, given their well-characterized roles in orchestrating cytokine production, immune cell function, antioxidant depletion, and matrix remodeling. Despite the limited number of clinical trials investigating metal modulation in COPD, the advent of emerging methodologies tailored to monitor metal fluxes and gauge responses to chelation and supplementation hold great promise in unlocking the potential of metal-based interventions. We conclude that targeted restoration of metal homeostasis represents a promising frontier for ameliorating pathological processes driving COPD progression.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Cobre/uso terapéutico , Pulmón , Estrés Oxidativo , Hierro/uso terapéutico , Zinc/uso terapéutico
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124202, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38565052

RESUMEN

A groundbreaking optical sensing membrane has been engineered for the accurate assessment of copper ions. The pliable poly(vinyl chloride) membrane is formulated through the integration of sodium tetraphenylborate (Na-TPB), 4-(2-hydroxy-4-nitro azobenzene)-2-methyl-quinoline (HNAMQ), and tri-n-octyl phosphine oxide (TOPO), in conjunction with o-nitrophenyl octyl ether (o-NPOE). The sensor membrane undergoes a thorough investigation of its composition to optimize performance, revealing that HNAMQ serves a dual role as both an ionophore and a chromoionophore. Simultaneously, TOPO contributes to enhancing the complexation of HNAMQ with copper ions. Demonstrating a linear range for Cu2+ ions spanning from 5.0 × 10-9 to 7.5 × 10-6 M, the proposed sensor membrane showcases detection and quantification limits of 1.5 × 10-9 and 5.0 × 10-9 M, respectively. Rigorous assessments of potential interferences from other cations and anions revealed no observable disruptions in the detection of Cu2+. With no discernible HNAMQ leaching, the membrane demonstrates rapid response times and excellent durability. The sensor exhibits remarkable selectivity for Cu2+ ions and can be regenerated through exposure to 0.05 M EDTA. Successful application of the sensor in determining the presence of Cu2+ in biological (blood, liver and meat), soil, food (coffee, black tea, sour cherry juice, black currant, and milk powder) and environmental water samples underscores its efficacy.


Asunto(s)
Colorimetría , Cobre , Cobre/análisis , Cationes , , Alimentos
18.
FASEB J ; 38(7): e23605, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38597508

RESUMEN

Understanding the homeostatic interactions among essential trace metals is important for explaining their roles in cellular systems. Recent studies in vertebrates suggest that cellular Mn metabolism is related to Zn metabolism in multifarious cellular processes. However, the underlying mechanism remains unclear. In this study, we examined the changes in the expression of proteins involved in cellular Zn and/or Mn homeostatic control and measured the Mn as well as Zn contents and Zn enzyme activities to elucidate the effects of Mn and Zn homeostasis on each other. Mn treatment decreased the expression of the Zn homeostatic proteins metallothionein (MT) and ZNT1 and reduced Zn enzyme activities, which were attributed to the decreased Zn content. Moreover, loss of Mn efflux transport protein decreased MT and ZNT1 expression and Zn enzyme activity without changing extracellular Mn content. This reduction was not observed when supplementing with the same Cu concentrations and in cells lacking Cu efflux proteins. Furthermore, cellular Zn homeostasis was oppositely regulated in cells expressing Zn and Mn importer ZIP8, depending on whether Zn or Mn concentration was elevated in the extracellular milieu. Our results provide novel insights into the intricate interactions between Mn and Zn homeostasis in mammalian cells and facilitate our understanding of the physiopathology of Mn, which may lead to the development of treatment strategies for Mn-related diseases in the future.


Asunto(s)
Manganeso , Zinc , Animales , Zinc/metabolismo , Manganeso/metabolismo , Cobre/metabolismo , Homeostasis , Mamíferos/metabolismo
19.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 447-454, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38597435

RESUMEN

OBJECTIVE: To investigate the neuroprotective effect of Huangpu Tongqiao Capsule (HPTQ) in a rat model of Wilson disease (WD) and explore the underlying mechanisms. METHODS: SD rat models of WD were established by feeding of coppersupplemented chow diet and drinking water for 12 weeks, and starting from the 9th week, the rats were treated with low-, moderate- and high-dose HPTQ, penicillamine, or normal saline by gavage on a daily basis for 3 weeks. Copper levels in the liver and 24-h urine of the rats were detected, and their learning and memory abilities were evaluated using Morris water maze test. HE staining was used to observe morphological changes of CA1 region neurons in the hippocampus, and neuronal apoptosis was detected with TUNEL staining. Hippocampal expressions of endoplasmic reticulum stress (ERS)-mediated apoptosis pathway-related proteins GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 at both the mRNA and protein levels were detected using RT-qPCR, immunofluorescence assay or Western blotting. RESULTS: Compared with normal control rats, the rat models with copper overload-induced WD exhibited significantly increased copper levels in both the liver and 24-h urine, impaired learning and memory abilities, obvious hippocampal neuronal damage in the CA1 region and increased TUNEL-positive neurons (P<0.01), with also lowered mRNA and protein expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the hippocampus (all P<0.01). Treatments with HPTQ and penicillamine significantly lowered copper level in the liver but increased urinary copper level, improved learning and memory ability, alleviated neuronal damage and apoptosis in the hippocampus, and decreased hippocampal expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the rat models (P<0.01 or 0.05). CONCLUSION: HPTQ Capsule has neuroprotective effects in rat models of WD possibly by inhibiting ERS-mediated apoptosis pathway.


Asunto(s)
Disfunción Cognitiva , Degeneración Hepatolenticular , Ratas , Animales , Ratas Sprague-Dawley , Degeneración Hepatolenticular/tratamiento farmacológico , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Caspasa 12/metabolismo , Cobre/metabolismo , Cobre/farmacología , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Apoptosis , Hipocampo/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Penicilamina/farmacología , Disfunción Cognitiva/tratamiento farmacológico , ARN Mensajero
20.
J Trace Elem Med Biol ; 84: 127441, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38579499

RESUMEN

BACKGROUND: The essential trace element copper is relevant for many important physiological processes. Changes in copper homeostasis can result from disease and affect human health. A reliable assessment of copper status by suitable biomarkers may enable fast detection of subtle changes in copper metabolism. To this end, additional biomarkers besides serum copper and ceruloplasmin (CP) concentrations are required. OBJECTIVES: The aim of this study was to investigate the emerging copper biomarkers CP oxidase (CPO) activity, exchangeable copper (CuEXC) and labile copper in serum of healthy women and compare them with the conventional biomarkers total serum copper and CP. METHOD AND MAIN FINDINGS: This observational study determined CPO activity, the non CP-bound copper species CuEXC and labile copper, total serum copper and CP in sera of 110 healthy women. Samples were collected at four time points over a period of 24 weeks. The concentrations of total serum copper and CP were within the reference ranges. The comparison of all five biomarkers provided insight into their relationship, the intra- and inter-individual variability as well as the age dependence. The correlation and Principal Component Analyses (PCA) indicated that CP, CPO activity and total copper correlated well, followed by CuEXC, while the labile copper pool was unrelated to the other parameters. CONCLUSIONS: This study suggests that the non-CP-bound copper species represent copper pools that are differently regulated from total copper or CP-bound copper, making them interesting complementary biomarkers to enable a more complete assessment of body copper status with potential relevance for clinical application.


Asunto(s)
Biomarcadores , Cobre , Humanos , Cobre/sangre , Femenino , Biomarcadores/sangre , Adulto , Persona de Mediana Edad , Ceruloplasmina/metabolismo , Ceruloplasmina/análisis , Adulto Joven , Voluntarios Sanos , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA