Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Protein Sci ; 32(10): e4781, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37703013

RESUMEN

The 11 lytic transglycosylases of Pseudomonas aeruginosa have overlapping activities in the turnover of the cell-wall peptidoglycan. Rare lipoprotein A (RlpA) is distinct among the 11 by its use of only peptidoglycan lacking peptide stems. The spatial localization of RlpA and its interactome within P. aeruginosa are unknown. We employed suppression of introduced amber codons at sites in the rlpA gene for the introduction of the unnatural-amino-acids Νζ -[(2-azidoethoxy)carbonyl]-l-lysine (compound 1) and Nζ -[[[3-(3-methyl-3H-diazirin-3-yl)propyl]amino]carbonyl]-l-lysine (compound 2). In live P. aeruginosa, full-length RlpA incorporating compound 1 into its sequence was fluorescently tagged using strained-promoted alkyne-azide cycloaddition and examined by fluorescence microscopy. RlpA is present at low levels along the sidewall length of the bacterium, and at higher levels at the nascent septa of replicating bacteria. In intact P. aeruginosa, UV photolysis of full-length RlpA having compound 2 within its sequence generated a transient reactive carbene, which engaged in photoaffinity capture of neighboring proteins. Thirteen proteins were identified. Three of these proteins-PBP1a, PBP5, and MreB-are members of the bacterial divisome. The use of the complementary methodologies of non-canonical amino-acid incorporation, photoaffinity proximity analysis, and fluorescent microscopy confirm a dominant septal location for the RlpA enzyme of P. aeruginosa, as a divisome-associated activity. This accomplishment adds to the emerging recognition of the value of these methodologies for identification of the intracellular localization of bacterial proteins.


Asunto(s)
Lipoproteína(a) , Pseudomonas aeruginosa , Lipoproteína(a)/metabolismo , Codón de Terminación/metabolismo , Peptidoglicano/metabolismo , Lisina/metabolismo
2.
Nutrients ; 12(8)2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806741

RESUMEN

There is considerable interest in the trace element selenium as a possible cancer chemopreventive dietary component, but supplementation trials have not indicated a clear benefit. Selenium is a critical component of selenium-containing proteins, or selenoproteins. Members of this protein family contain selenium in the form of selenocysteine. Selenocysteine is encoded by an in-frame UGA codon recognized as a selenocysteine codon by a regulatory element, the selenocysteine insertion sequence (SECIS), in the 3'-untranslated region of selenoprotein mRNAs. Epidemiological studies have implicated several selenoprotein genes in cancer risk or outcome based on associations between allelic variations and disease risk or mortality. These polymorphisms can be found in or near the SECIS or in the selenoprotein coding sequence. These variations both function to control protein synthesis and impact the efficiency of protein synthesis in response to the levels of available selenium. Thus, an individual's genetic makeup and nutritional intake of selenium may interact to predispose them to acquiring cancer or affect cancer progression to lethality.


Asunto(s)
Ingestión de Alimentos/genética , Neoplasias/genética , Nutrigenómica , Biosíntesis de Proteínas/genética , Selenio/metabolismo , Regiones no Traducidas 3' , Codón de Terminación/metabolismo , Predisposición Genética a la Enfermedad , Humanos , ARN Mensajero/metabolismo , Factores de Riesgo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo
3.
Int J Mol Sci ; 20(3)2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30678326

RESUMEN

Cell-free protein synthesis is useful for synthesizing difficult targets. The site-specific incorporation of non-natural amino acids into proteins is a powerful protein engineering method. In this study, we optimized the protocol for cell extract preparation from the Escherichia coli strain RFzero-iy, which is engineered to lack release factor 1 (RF-1). The BL21(DE3)-based RFzero-iy strain exhibited quite high cell-free protein productivity, and thus we established the protocols for its cell culture and extract preparation. In the presence of 3-iodo-l-tyrosine (IY), cell-free protein synthesis using the RFzero-iy-based S30 extract translated the UAG codon to IY at various sites with a high translation efficiency of >90%. In the absence of IY, the RFzero-iy-based cell-free system did not translate UAG to any amino acid, leaving UAG unassigned. Actually, UAG was readily reassigned to various non-natural amino acids, by supplementing them with their specific aminoacyl-tRNA synthetase variants (and their specific tRNAs) into the system. The high incorporation rate of our RFzero-iy-based cell-free system enables the incorporation of a variety of non-natural amino acids into multiple sites of proteins. The present strategy to create the RFzero strain is rapid, and thus promising for RF-1 deletions of various E. coli strains genomically engineered for specific requirements.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Escherichia coli/metabolismo , Monoyodotirosina/metabolismo , Factores de Terminación de Péptidos/deficiencia , Codón de Terminación/genética , Codón de Terminación/metabolismo , Monoyodotirosina/genética , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Fracciones Subcelulares/metabolismo
4.
Antioxid Redox Signal ; 23(10): 775-94, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26154496

RESUMEN

SIGNIFICANCE: Selenium is an essential trace element that is incorporated in the small but vital family of proteins, namely the selenoproteins, as the selenocysteine amino acid residue. In humans, 25 selenoprotein genes have been characterized. The most remarkable trait of selenoprotein biosynthesis is the cotranslational insertion of selenocysteine by the recoding of a UGA codon, normally decoded as a stop signal. RECENT ADVANCES: In eukaryotes, a set of dedicated cis- and trans-acting factors have been identified as well as a variety of regulatory mechanisms, factors, or elements that control the selenoprotein expression at the level of the UGA-selenocysteine recoding process, offering a fascinating playground in the field of translational control. It appeared that the central players are two RNA molecules: the selenocysteine insertion sequence (SECIS) element within selenoprotein mRNA and the selenocysteine-tRNA([Ser]Sec); and their interacting partners. CRITICAL ISSUES: After a couple of decades, despite many advances in the field and the discovery of many essential and regulatory components, the precise mechanism of UGA-selenocysteine recoding remains elusive and more complex than anticipated, with many layers of control. This review offers an update of selenoproteome biosynthesis and regulation in eukaryotes. FUTURE DIRECTIONS: The regulation of selenoproteins in response to a variety of pathophysiological conditions and cellular stressors, including selenium levels, oxidative stress, replicative senescence, or cancer, awaits further detailed investigation. Clearly, the efficiency of UGA-selenocysteine recoding is the limiting stage of selenoprotein synthesis. The sequence of events leading Sec-tRNA([Ser]Sec) delivery to ribosomal A site awaits further analysis, notably at the level of a three-dimensional structure.


Asunto(s)
Biosíntesis de Proteínas , Selenoproteínas/biosíntesis , Codón de Terminación/metabolismo , Humanos , Proteoma/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia Aminoácido-Específico/metabolismo , Selenio/metabolismo , Selenoproteínas/metabolismo
5.
J Biol Chem ; 288(27): 19401-13, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23696641

RESUMEN

Incorporation of selenium into ~25 mammalian selenoproteins occurs by translational recoding whereby in-frame UGA codons are redefined to encode the selenium containing amino acid, selenocysteine (Sec). Here we applied ribosome profiling to examine the effect of dietary selenium levels on the translational mechanisms controlling selenoprotein synthesis in mouse liver. Dietary selenium levels were shown to control gene-specific selenoprotein expression primarily at the translation level by differential regulation of UGA redefinition and Sec incorporation efficiency, although effects on translation initiation and mRNA abundance were also observed. Direct evidence is presented that increasing dietary selenium causes a vast increase in ribosome density downstream of UGA-Sec codons for a subset of selenoprotein mRNAs and that the selenium-dependent effects on Sec incorporation efficiency are mediated in part by the degree of Sec-tRNA([Ser]Sec) Um34 methylation. Furthermore, we find evidence for translation in the 5'-UTRs for a subset of selenoproteins and for ribosome pausing near the UGA-Sec codon in those mRNAs encoding the selenoproteins most affected by selenium availability. These data illustrate how dietary levels of the trace element selenium can alter the readout of the genetic code to affect the expression of an entire class of proteins.


Asunto(s)
Codón de Terminación/metabolismo , Suplementos Dietéticos , Biosíntesis de Proteínas/fisiología , Selenio/farmacología , Selenocisteína/metabolismo , Selenoproteínas/biosíntesis , Animales , Codón de Terminación/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Transgénicos , Biosíntesis de Proteínas/efectos de los fármacos , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Selenocisteína/genética
6.
Met Ions Life Sci ; 13: 499-534, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24470102

RESUMEN

Selenium is an essential micronutrient in mammals, but is also recognized as toxic in excess. It is a non-metal with properties that are intermediate between the chalcogen elements sulfur and tellurium. Selenium exerts its biological functions through selenoproteins. Selenoproteins contain selenium in the form of the 21st amino acid, selenocysteine (Sec), which is an analog of cysteine with the sulfur-containing side chain replaced by a Se-containing side chain. Sec is encoded by the codon UGA, which is one of three termination codons for mRNA translation in non-selenoprotein genes. Recognition of the UGA codon as a Sec insertion site instead of stop requires a Sec insertion sequence (SECIS) element in selenoprotein mRNAs and a unique selenocysteyl-tRNA, both of which are recognized by specialized protein factors. Unlike the 20 standard amino acids, Sec is biosynthesized from serine on its tRNA. Twenty-five selenoproteins are encoded in the human genome. Most of the selenoprotein genes were discovered by bioinformatics approaches, searching for SECIS elements downstream of in-frame UGA codons. Sec has been described as having stronger nucleophilic and electrophilic properties than cysteine, and Sec is present in the catalytic site of all selenoenzymes. Most selenoproteins, whose functions are known, are involved in redox systems and signaling pathways. However, several selenoproteins are not well characterized in terms of their function. The selenium field has grown dramatically in the last few decades, and research on selenium biology is providing extensive new information regarding its importance for human health.


Asunto(s)
Genoma Humano/fisiología , Selenio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Animales , Codón de Terminación/metabolismo , Humanos , Aminoacil-ARN de Transferencia/metabolismo
7.
J Nutr Biochem ; 23(10): 1294-301, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22209284

RESUMEN

The mechanisms regulating the differential selenium (Se)-dependent stability of selenoprotein mRNAs are partially characterized. To further study the Se-dependent regulation of selenoproteins, we developed a novel chemiluminescent reporter to monitor the steady-state mRNA level of an artificial selenoprotein. Our reporter is a fusion of the Renilla luciferase gene and of the ß-globin gene, but contains features required for incorporation of selenocysteine (SEC), namely, a UGA-SEC codon and a 3' untranslated region RNA stem loop called a SEC incorporation sequence (SECIS). At various levels of Se, the activity of reporters containing GPX1 or GPX4 SECIS elements is proportional to the steady-state mRNA level of the reporter construct and reflects the level of the corresponding endogenous mRNA. In a reporter containing a UGA codon and a functional GPX1 SECIS, Se-dependent nonsense-mediated decay (NMD) occurred in the cytoplasm, as opposed to the more typical nuclear location. To validate the reporter system, we used genetic and pharmacologic approaches to inhibit or promote NMD. Modulation of UPF1 by siRNA, overexpression, or by inhibition of SMG1 altered NMD in this system. Our reporter is derived from a Renilla luciferase reporter gene fused to an intron containing B-globin gene and is subject to degradation by NMD when a stop codon is inserted before the second intron.


Asunto(s)
Degradación de ARNm Mediada por Codón sin Sentido , ARN Mensajero/genética , Selenio/metabolismo , Selenoproteínas/genética , Regiones no Traducidas 3' , Codón de Terminación/metabolismo , Citoplasma/metabolismo , Genes Reporteros , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Células HeLa , Humanos , Intrones , Luciferasas/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , ARN Helicasas , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Reproducibilidad de los Resultados , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Globinas beta/genética , Globinas beta/metabolismo , Glutatión Peroxidasa GPX1
8.
Bioorg Med Chem Lett ; 21(19): 5842-8, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21873052

RESUMEN

A structure-activity relationship (SAR) study was carried out to identify novel, small molecular weight compounds which induce readthrough of premature termination codons. In particular, analogs of RTC13, 1, were evaluated. In addition, hypothesizing that these compounds exhibit their activity by binding to the ribosome, we prepared the hybrid analogs 13 containing pyrimidine bases and these also showed good readthrough activity.


Asunto(s)
Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/metabolismo , Codón sin Sentido/metabolismo , Proteínas de Unión al ADN/metabolismo , Evaluación Preclínica de Medicamentos , Furanos/síntesis química , Furanos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Tiazoles/síntesis química , Tiazoles/farmacología , Proteínas Supresoras de Tumor/metabolismo , Ataxia Telangiectasia/tratamiento farmacológico , Ataxia Telangiectasia/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Línea Celular , Codón sin Sentido/química , Codón sin Sentido/genética , Codón de Terminación/genética , Codón de Terminación/metabolismo , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Diseño de Fármacos , Furanos/química , Ensayos Analíticos de Alto Rendimiento , Estructura Molecular , Terapia Molecular Dirigida , Mutación , Sistemas de Lectura Abierta , Terminación de la Cadena Péptídica Traduccional/genética , Biosíntesis de Proteínas/genética , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Relación Estructura-Actividad , Tiazoles/química , Activación Transcripcional , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA