Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7278, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949869

RESUMEN

In the mammalian visual system, the ventral lateral geniculate nucleus (vLGN) of the thalamus receives salient visual input from the retina and sends prominent GABAergic axons to the superior colliculus (SC). However, whether and how vLGN contributes to fundamental visual information processing remains largely unclear. Here, we report in mice that vLGN facilitates visually-guided approaching behavior mediated by the lateral SC and enhances the sensitivity of visual object detection. This can be attributed to the extremely broad spatial integration of vLGN neurons, as reflected in their much lower preferred spatial frequencies and broader spatial receptive fields than SC neurons. Through GABAergic thalamocollicular projections, vLGN specifically exerts prominent surround suppression of visuospatial processing in SC, leading to a fine tuning of SC preferences to higher spatial frequencies and smaller objects in a context-dependent manner. Thus, as an essential component of the central visual processing pathway, vLGN serves to refine and contextually modulate visuospatial processing in SC-mediated visuomotor behaviors via visually-driven long-range feedforward inhibition.


Asunto(s)
Cuerpos Geniculados , Neuronas , Ratones , Animales , Cuerpos Geniculados/fisiología , Neuronas/fisiología , Tálamo , Vías Visuales/fisiología , Colículos Superiores/fisiología , Mamíferos
2.
Nat Commun ; 14(1): 7358, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963894

RESUMEN

Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited competitive interactions. SC GABAergic neurons encoded ipsilateral choice and locally inhibited glutamatergic neurons that encoded contralateral choice. Activating or suppressing these cell types could bidirectionally drive choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.


Asunto(s)
Lóbulo Frontal , Colículos Superiores , Ratones , Animales , Colículos Superiores/fisiología , Lóbulo Frontal/fisiología , Neuronas/fisiología , Tálamo
3.
J Vis Exp ; (194)2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37154575

RESUMEN

The superior colliculus (SC), an evolutionarily conserved midbrain structure in all vertebrates, is the most sophisticated visual center before the emergence of the cerebral cortex. It receives direct inputs from ~30 types of retinal ganglion cells (RGCs), with each encoding a specific visual feature. It remains elusive whether the SC simply inherits retinal features or if additional and potentially de novo processing occurs in the SC. To reveal the neural coding of visual information in the SC, we provide here a detailed protocol to optically record visual responses with two complementary methods in awake mice. One method uses two-photon microscopy to image calcium activity at single-cell resolution without ablating the overlaying cortex, while the other uses wide-field microscopy to image the whole SC of a mutant mouse whose cortex is largely undeveloped. This protocol details these two methods, including animal preparation, viral injection, headplate implantation, plug implantation, data acquisition, and data analysis. The representative results show that the two-photon calcium imaging reveals visually evoked neuronal responses at single-cell resolution, and the wide-field calcium imaging reveals neural activity across the entire SC. By combining these two methods, one can reveal the neural coding in the SC at different scales, and such combination can also be applied to other brain regions.


Asunto(s)
Calcio , Colículos Superiores , Ratones , Animales , Colículos Superiores/diagnóstico por imagen , Colículos Superiores/fisiología , Células Ganglionares de la Retina/fisiología , Retina , Microscopía
4.
Neuron ; 111(14): 2247-2257.e7, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37172584

RESUMEN

Cortical responses to visual stimuli are believed to rely on the geniculo-striate pathway. However, recent work has challenged this notion by showing that responses in the postrhinal cortex (POR), a visual cortical area, instead depend on the tecto-thalamic pathway, which conveys visual information to the cortex via the superior colliculus (SC). Does POR's SC-dependence point to a wider system of tecto-thalamic cortical visual areas? What information might this system extract from the visual world? We discovered multiple mouse cortical areas whose visual responses rely on SC, with the most lateral showing the strongest SC-dependence. This system is driven by a genetically defined cell type that connects the SC to the pulvinar thalamic nucleus. Finally, we show that SC-dependent cortices distinguish self-generated from externally generated visual motion. Hence, lateral visual areas comprise a system that relies on the tecto-thalamic pathway and contributes to processing visual motion as animals move through the environment.


Asunto(s)
Pulvinar , Colículos Superiores , Ratones , Animales , Colículos Superiores/fisiología , Vías Visuales/fisiología , Tálamo , Núcleos Talámicos , Cuerpos Geniculados/fisiología
5.
Nature ; 608(7921): 146-152, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35831500

RESUMEN

Social affiliation emerges from individual-level behavioural rules that are driven by conspecific signals1-5. Long-distance attraction and short-distance repulsion, for example, are rules that jointly set a preferred interanimal distance in swarms6-8. However, little is known about their perceptual mechanisms and executive neural circuits3. Here we trace the neuronal response to self-like biological motion9,10, a visual trigger for affiliation in developing zebrafish2,11. Unbiased activity mapping and targeted volumetric two-photon calcium imaging revealed 21 activity hotspots distributed throughout the brain as well as clustered biological-motion-tuned neurons in a multimodal, socially activated nucleus of the dorsal thalamus. Individual dorsal thalamus neurons encode local acceleration of visual stimuli mimicking typical fish kinetics but are insensitive to global or continuous motion. Electron microscopic reconstruction of dorsal thalamus neurons revealed synaptic input from the optic tectum and projections into hypothalamic areas with conserved social function12-14. Ablation of the optic tectum or dorsal thalamus selectively disrupted social attraction without affecting short-distance repulsion. This tectothalamic pathway thus serves visual recognition of conspecifics, and dissociates neuronal control of attraction from repulsion during social affiliation, revealing a circuit underpinning collective behaviour.


Asunto(s)
Aglomeración , Neuronas , Conducta Social , Colículos Superiores , Tálamo , Vías Visuales , Pez Cebra , Animales , Mapeo Encefálico , Calcio/análisis , Hipotálamo/citología , Hipotálamo/fisiología , Locomoción , Microscopía Electrónica , Neuronas/citología , Neuronas/fisiología , Neuronas/ultraestructura , Reconocimiento Visual de Modelos , Estimulación Luminosa , Colículos Superiores/citología , Colículos Superiores/fisiología , Tálamo/citología , Tálamo/fisiología , Vías Visuales/citología , Vías Visuales/fisiología , Vías Visuales/ultraestructura , Pez Cebra/fisiología
6.
J Comp Neurol ; 530(11): 1992-2013, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35383929

RESUMEN

The rodent homolog of the primate pulvinar, the lateral posterior (LP) thalamus, is extensively interconnected with multiple cortical areas. While these cortical interactions can span the entire LP, subdivisions of the LP are characterized by differential connections with specific cortical regions. In particular, the medial LP has reciprocal connections with frontoparietal cortical areas, including the anterior cingulate cortex (ACC). The ACC plays an integral role in top-down sensory processing and attentional regulation, likely exerting some of these functions via the LP. However, little is known about how ACC and LP interact, and about the information potentially integrated in this reciprocal network. Here, we address this gap by employing a projection-specific monosynaptic rabies tracing strategy to delineate brain-wide inputs to bottom-up LP→ACC and top-down ACC→LP neurons. We find that LP→ACC neurons receive inputs from widespread cortical regions, including primary and higher order sensory and motor cortical areas. LP→ACC neurons also receive extensive subcortical inputs, particularly from the intermediate and deep layers of the superior colliculus (SC). Sensory inputs to ACC→LP neurons largely arise from visual cortical areas. In addition, ACC→LP neurons integrate cross-hemispheric prefrontal cortex inputs as well as inputs from higher order medial cortex. Our brain-wide anatomical mapping of inputs to the reciprocal LP-ACC pathways provides a roadmap for understanding how LP and ACC communicate different sources of information to mediate attentional control and visuomotor functions.


Asunto(s)
Pulvinar , Animales , Giro del Cíngulo , Ratones , Pulvinar/fisiología , Colículos Superiores/fisiología , Tálamo/fisiología , Vías Visuales/fisiología
7.
J Neurosci ; 41(50): 10305-10315, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34764158

RESUMEN

Space-specific neurons in the owl's midbrain form a neural map of auditory space, which supports sound-orienting behavior. Previous work proposed that a population vector (PV) readout of this map, implementing statistical inference, predicts the owl's sound localization behavior. This model also predicts the frontal localization bias normally observed and how sound-localizing behavior changes when the signal-to-noise ratio varies, based on the spread of activity across the map. However, the actual distribution of population activity and whether this pattern is consistent with premises of the PV readout model on a trial-by-trial basis remains unknown. To answer these questions, we investigated whether the population response profile across the midbrain map in the optic tectum of the barn owl matches these predictions using in vivo multielectrode array recordings. We found that response profiles of recorded subpopulations are sufficient for estimating the stimulus interaural time difference using responses from single trials. Furthermore, this decoder matches the expected differences in trial-by-trial variability and frontal bias between stimulus conditions of low and high signal-to-noise ratio. These results support the hypothesis that a PV readout of the midbrain map can mediate statistical inference in sound-localizing behavior of barn owls.SIGNIFICANCE STATEMENT While the tuning of single neurons in the owl's midbrain map of auditory space has been considered predictive of the highly specialized sound-localizing behavior of this species, response properties across the population remain largely unknown. For the first time, this study analyzed the spread of population responses across the map using multielectrode recordings and how it changes with signal-to-noise ratio. The observed responses support the hypothesis concerning the ability of a population vector readout to predict biases in orienting behaviors and mediate uncertainty-dependent behavioral commands. The results are of significance for understanding potential mechanisms for the implementation of optimal behavioral commands across species.


Asunto(s)
Vías Auditivas/fisiología , Modelos Neurológicos , Localización de Sonidos/fisiología , Colículos Superiores/fisiología , Estimulación Acústica , Animales , Mapeo Encefálico/métodos , Femenino , Masculino , Estrigiformes
8.
PLoS Comput Biol ; 17(11): e1009181, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34723955

RESUMEN

Sensory information from different modalities is processed in parallel, and then integrated in associative brain areas to improve object identification and the interpretation of sensory experiences. The Superior Colliculus (SC) is a midbrain structure that plays a critical role in integrating visual, auditory, and somatosensory input to assess saliency and promote action. Although the response properties of the individual SC neurons to visuoauditory stimuli have been characterized, little is known about the spatial and temporal dynamics of the integration at the population level. Here we recorded the response properties of SC neurons to spatially restricted visual and auditory stimuli using large-scale electrophysiology. We then created a general, population-level model that explains the spatial, temporal, and intensity requirements of stimuli needed for sensory integration. We found that the mouse SC contains topographically organized visual and auditory neurons that exhibit nonlinear multisensory integration. We show that nonlinear integration depends on properties of auditory but not visual stimuli. We also find that a heuristically derived nonlinear modulation function reveals conditions required for sensory integration that are consistent with previously proposed models of sensory integration such as spatial matching and the principle of inverse effectiveness.


Asunto(s)
Modelos Neurológicos , Colículos Superiores/fisiología , Estimulación Acústica , Animales , Percepción Auditiva/fisiología , Mapeo Encefálico/estadística & datos numéricos , Biología Computacional , Fenómenos Electrofisiológicos , Femenino , Masculino , Ratones , Ratones Endogámicos CBA , Modelos Psicológicos , Neuronas/fisiología , Dinámicas no Lineales , Estimulación Luminosa , Sensación/fisiología , Colículos Superiores/citología , Percepción Visual/fisiología
9.
Neuron ; 109(12): 1996-2008.e6, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33979633

RESUMEN

Sensory processing involves information flow between neocortical areas, assumed to rely on direct intracortical projections. However, cortical areas may also communicate indirectly via higher-order nuclei in the thalamus, such as the pulvinar or lateral posterior nucleus (LP) in the visual system of rodents. The fine-scale organization and function of these cortico-thalamo-cortical pathways remains unclear. We find that responses of mouse LP neurons projecting to higher visual areas likely derive from feedforward input from primary visual cortex (V1) combined with information from many cortical and subcortical areas, including superior colliculus. Signals from LP projections to different higher visual areas are tuned to specific features of visual stimuli and their locomotor context, distinct from the signals carried by direct intracortical projections from V1. Thus, visual transthalamic pathways are functionally specific to their cortical target, different from feedforward cortical pathways, and combine information from multiple brain regions, linking sensory signals with behavioral context.


Asunto(s)
Núcleos Talámicos Laterales/fisiología , Neuronas/fisiología , Pulvinar/fisiología , Tálamo/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Corteza Cerebral/fisiología , Locomoción/fisiología , Ratones , Estimulación Luminosa , Colículos Superiores/fisiología
10.
Nat Commun ; 11(1): 6007, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243980

RESUMEN

Sensorimotor behaviors require processing of behaviorally relevant sensory cues and the ability to select appropriate responses from a vast behavioral repertoire. Modulation by the prefrontal cortex (PFC) is thought to be key for both processes, but the precise role of specific circuits remains unclear. We examined the sensorimotor function of anatomically distinct outputs from a subdivision of the mouse PFC, the anterior cingulate cortex (ACC). Using a visually guided two-choice behavioral paradigm with multiple cue-response mappings, we dissociated the sensory and motor response components of sensorimotor control. Projection-specific two-photon calcium imaging and optogenetic manipulations show that ACC outputs to the superior colliculus, a key midbrain structure for response selection, principally coordinate specific motor responses. Importantly, ACC outputs exert control by reducing the innate response bias of the superior colliculus. In contrast, ACC outputs to the visual cortex facilitate sensory processing of visual cues. Our results ascribe motor and sensory roles to ACC projections to the superior colliculus and the visual cortex and demonstrate for the first time a circuit motif for PFC function wherein anatomically non-overlapping output pathways coordinate complementary but distinct aspects of visual sensorimotor behavior.


Asunto(s)
Retroalimentación Sensorial/fisiología , Giro del Cíngulo/fisiología , Locomoción/fisiología , Corteza Prefrontal/fisiología , Percepción Visual/fisiología , Animales , Conducta Animal/fisiología , Señales (Psicología) , Femenino , Masculino , Ratones , Modelos Animales , Vías Nerviosas/fisiología , Optogenética , Estimulación Luminosa/métodos , Técnicas Estereotáxicas , Colículos Superiores/fisiología , Corteza Visual/fisiología
11.
Front Neural Circuits ; 14: 33, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612514

RESUMEN

Determining how neurons transform synaptic input and encode information in action potential (AP) firing output is required for understanding dendritic integration, neural transforms and encoding. Limitations in the speed of imaging 3D volumes of brain encompassing complex dendritic arbors in vivo using conventional galvanometer mirror-based laser-scanning microscopy has hampered fully capturing fluorescent sensors of activity throughout an individual neuron's entire complement of synaptic inputs and somatic APs. To address this problem, we have developed a two-photon microscope that achieves high-speed scanning by employing inertia-free acousto-optic deflectors (AODs) for laser beam positioning, enabling random-access sampling of hundreds to thousands of points-of-interest restricted to a predetermined neuronal structure, avoiding wasted scanning of surrounding extracellular tissue. This system is capable of comprehensive imaging of the activity of single neurons within the intact and awake vertebrate brain. Here, we demonstrate imaging of tectal neurons within the brains of albino Xenopus laevis tadpoles labeled using single-cell electroporation for expression of a red space-filling fluorophore to determine dendritic arbor morphology, and either the calcium sensor jGCaMP7s or the glutamate sensor iGluSnFR as indicators of neural activity. Using discrete, point-of-interest scanning we achieve sampling rates of 3 Hz for saturation sampling of entire arbors at 2 µm resolution, 6 Hz for sequentially sampling 3 volumes encompassing the dendritic arbor and soma, and 200-250 Hz for scanning individual planes through the dendritic arbor. This system allows investigations of sensory-evoked information input-output relationships of neurons within the intact and awake brain.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neuronas/fisiología , Estimulación Luminosa/métodos , Colículos Superiores/fisiología , Vigilia/fisiología , Estimulación Acústica/métodos , Animales , Química Encefálica/fisiología , Potenciales Evocados Visuales/fisiología , Neuronas/química , Fenómenos Ópticos , Colículos Superiores/química , Factores de Tiempo , Xenopus laevis
12.
J Neurosci ; 40(27): 5228-5246, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32444386

RESUMEN

Humans and animals maintain accurate sound discrimination in the presence of loud sources of background noise. It is commonly assumed that this ability relies on the robustness of auditory cortex responses. However, only a few attempts have been made to characterize neural discrimination of communication sounds masked by noise at each stage of the auditory system and to quantify the noise effects on the neuronal discrimination in terms of alterations in amplitude modulations. Here, we measured neural discrimination between communication sounds masked by a vocalization-shaped stationary noise from multiunit responses recorded in the cochlear nucleus, inferior colliculus, auditory thalamus, and primary and secondary auditory cortex at several signal-to-noise ratios (SNRs) in anesthetized male or female guinea pigs. Masking noise decreased sound discrimination of neuronal populations in each auditory structure, but collicular and thalamic populations showed better performance than cortical populations at each SNR. In contrast, in each auditory structure, discrimination by neuronal populations was slightly decreased when tone-vocoded vocalizations were tested. These results shed new light on the specific contributions of subcortical structures to robust sound encoding, and suggest that the distortion of slow amplitude modulation cues conveyed by communication sounds is one of the factors constraining the neuronal discrimination in subcortical and cortical levels.SIGNIFICANCE STATEMENT Dissecting how auditory neurons discriminate communication sounds in noise is a major goal in auditory neuroscience. Robust sound coding in noise is often viewed as a specific property of cortical networks, although this remains to be demonstrated. Here, we tested the discrimination performance of neuronal populations at five levels of the auditory system in response to conspecific vocalizations masked by noise. In each acoustic condition, subcortical neurons better discriminated target vocalizations than cortical ones and in each structure, the reduction in discrimination performance was related to the reduction in slow amplitude modulation cues.


Asunto(s)
Comunicación Animal , Percepción Auditiva/fisiología , Discriminación en Psicología/fisiología , Ruido , Vocalización Animal/fisiología , Estimulación Acústica , Algoritmos , Animales , Corteza Auditiva/citología , Corteza Auditiva/fisiología , Femenino , Cobayas , Masculino , Enmascaramiento Perceptual , Relación Señal-Ruido , Colículos Superiores/citología , Colículos Superiores/fisiología , Tálamo/citología , Tálamo/fisiología
13.
Neuron ; 106(1): 21-36, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32272065

RESUMEN

Since the discovery of ocular dominance plasticity, neuroscientists have understood that changes in visual experience during a discrete developmental time, the critical period, trigger robust changes in the visual cortex. State-of-the-art tools used to probe connectivity with cell-type-specific resolution have expanded the understanding of circuit changes underlying experience-dependent plasticity. Here, we review the visual circuitry of the mouse, describing projections from retina to thalamus, between thalamus and cortex, and within cortex. We discuss how visual circuit development leads to precise connectivity and identify synaptic loci, which can be altered by activity or experience. Plasticity extends to visual features beyond ocular dominance, involving subcortical and cortical regions, and connections between cortical inhibitory interneurons. Experience-dependent plasticity contributes to the alignment of networks spanning retina to thalamus to cortex. Disruption of this plasticity may underlie aberrant sensory processing in some neurodevelopmental disorders.


Asunto(s)
Predominio Ocular/fisiología , Plasticidad Neuronal/fisiología , Retina/fisiología , Tálamo/fisiología , Corteza Visual/fisiología , Animales , Período Crítico Psicológico , Cuerpos Geniculados/crecimiento & desarrollo , Cuerpos Geniculados/fisiología , Núcleos Talámicos Laterales/crecimiento & desarrollo , Núcleos Talámicos Laterales/fisiología , Ratones , Trastornos del Neurodesarrollo/fisiopatología , Retina/crecimiento & desarrollo , Colículos Superiores/crecimiento & desarrollo , Colículos Superiores/fisiología , Núcleo Supraquiasmático/crecimiento & desarrollo , Núcleo Supraquiasmático/fisiología , Sinapsis/fisiología , Tálamo/crecimiento & desarrollo , Visión Binocular/fisiología , Corteza Visual/crecimiento & desarrollo , Vías Visuales/crecimiento & desarrollo , Vías Visuales/fisiología
14.
Sci Rep ; 10(1): 5769, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32238844

RESUMEN

Evidence has shown that a variety of vertebrates, including fish, can discriminate collections of visual items on the basis of their numerousness using an evolutionarily conserved system for approximating numerical magnitude (the so-called Approximate Number System, ANS). Here we combine a habituation/dishabituation behavioural task with molecular biology assays to start investigating the neural bases of the ANS in zebrafish. Separate groups of zebrafish underwent a habituation phase with a set of 3 or 9 small red dots, associated with a food reward. The dots changed in size, position and density from trial to trial but maintained their numerousness, and the overall areas of the stimuli was kept constant. During the subsequent dishabituation test, zebrafish faced a change (i) in number (from 3 to 9 or vice versa with the same overall surface), or (ii) in shape (with the same overall surface and number), or (iii) in size (with the same shape and number). A control group of zebrafish was shown the same stimuli as during the habituation. RT-qPCR revealed that the telencephalon and thalamus were characterized by the most consistent modulation of the expression of the immediate early genes c-fos and egr-1 upon change in numerousness; in contrast, the retina and optic tectum responded mainly to changes in stimulus size.


Asunto(s)
Pez Cebra/fisiología , Animales , Aprendizaje Discriminativo , Genes Inmediatos-Precoces , Habituación Psicofisiológica , Masculino , Estimulación Luminosa , Colículos Superiores/fisiología , Telencéfalo/fisiología , Tálamo/fisiología , Percepción Visual , Pez Cebra/genética
15.
Nat Commun ; 11(1): 1087, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107385

RESUMEN

Sound localization plays a critical role in animal survival. Three cues can be used to compute sound direction: interaural timing differences (ITDs), interaural level differences (ILDs) and the direction-dependent spectral filtering by the head and pinnae (spectral cues). Little is known about how spectral cues contribute to the neural encoding of auditory space. Here we report on auditory space encoding in the mouse superior colliculus (SC). We show that the mouse SC contains neurons with spatially-restricted receptive fields (RFs) that form an azimuthal topographic map. We found that frontal RFs require spectral cues and lateral RFs require ILDs. The neurons with frontal RFs have frequency tunings that match the spectral structure of the specific head and pinna filter for sound coming from the front. These results demonstrate that patterned spectral cues in combination with ILDs give rise to the topographic map of azimuthal auditory space.


Asunto(s)
Vías Auditivas/fisiología , Señales (Psicología) , Localización de Sonidos/fisiología , Colículos Superiores/fisiología , Estimulación Acústica , Animales , Vías Auditivas/citología , Mapeo Encefálico/métodos , Pabellón Auricular/fisiología , Electrodos Implantados , Femenino , Masculino , Ratones , Neuronas/fisiología , Colículos Superiores/citología
16.
Neuron ; 105(2): 355-369.e6, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31812514

RESUMEN

In the mammalian visual system, information from the retina streams into parallel bottom-up pathways. It remains unclear how these pathways interact to contribute to contextual modulation of visual cortical processing. By optogenetic inactivation and activation of mouse lateral posterior nucleus (LP) of thalamus, a homolog of pulvinar, or its projection to primary visual cortex (V1), we found that LP contributes to surround suppression of layer (L) 2/3 responses in V1 by driving L1 inhibitory neurons. This results in subtractive suppression of visual responses and an overall enhancement of orientation, direction, spatial, and size selectivity. Neurons in V1-projecting LP regions receive bottom-up input from the superior colliculus (SC) and respond preferably to non-patterned visual noise. The noise-dependent LP activity allows V1 to "cancel" noise effects and maintain its orientation selectivity under varying noise background. Thus, the retina-SC-LP-V1 pathway forms a differential circuit with the canonical retino-geniculate pathway to achieve context-dependent sharpening of visual representations.


Asunto(s)
Cuerpos Geniculados/fisiología , Pulvinar/fisiología , Retina/fisiología , Colículos Superiores/fisiología , Tálamo/fisiología , Corteza Visual/fisiología , Animales , Femenino , Glutamato Descarboxilasa/genética , Masculino , Ratones , Ratones Transgénicos , Inhibición Neural/fisiología , Neuronas/fisiología , Estimulación Luminosa , Proteína 2 de Transporte Vesicular de Glutamato/genética , Vías Visuales/fisiología
17.
Artículo en Inglés | MEDLINE | ID: mdl-31351985

RESUMEN

In motor systems, a copy of the movement command known as corollary discharge is broadcast to other regions of the brain to warn them of the impending movement. The premise of this review is that the concept of corollary discharge may generalize in revealing ways to the brain's cognitive systems. An oculomotor pathway from the brain stem to frontal cortex provides a well-established example of how corollary discharge is instantiated for sensorimotor processing. Building on causal evidence from inactivation of the pathway, we motivate forward models as a tool for understanding the contributions of corollary discharge to perception and movement. Finally, we extend the definition of corollary discharge to account for signals that may be used for cognitive forward models of decision making. This framework may provide new insights into signals and circuits that contribute to sequential decision processes, the breakdown of which may account for some symptoms of psychiatric disorders.


Asunto(s)
Toma de Decisiones/fisiología , Fenómenos Electrofisiológicos/fisiología , Movimientos Oculares/fisiología , Lóbulo Frontal/fisiología , Modelos Biológicos , Actividad Motora/fisiología , Vías Nerviosas/fisiología , Colículos Superiores/fisiología , Tálamo/fisiología , Animales , Humanos
18.
J Neurosci ; 39(23): 4576-4594, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30936242

RESUMEN

An innocuous sensory stimulus that reliably signals an upcoming aversive event can be conditioned to elicit locomotion to a safe location before the aversive outcome ensues. The neural circuits that mediate the expression of this signaled locomotor action, known as signaled active avoidance, have not been identified. While exploring sensorimotor midbrain circuits in mice of either sex, we found that excitation of GABAergic cells in the substantia nigra pars reticulata blocks signaled active avoidance by inhibiting cells in the pedunculopontine tegmental nucleus (PPT), not by inhibiting cells in the superior colliculus or thalamus. Direct inhibition of putative-glutamatergic PPT cells, excitation of GABAergic PPT cells, or excitation of GABAergic afferents in PPT, abolish signaled active avoidance. Conversely, excitation of putative-glutamatergic PPT cells, or inhibition of GABAergic PPT cells, can be tuned to drive avoidance responses. The PPT is an essential junction for the expression of signaled active avoidance gated by nigral and other synaptic afferents.SIGNIFICANCE STATEMENT When a harmful situation is signaled by a sensory stimulus (e.g., street light), subjects typically learn to respond with active or passive avoidance responses that circumvent the threat. During signaled active avoidance behavior, subjects move away to avoid a threat signaled by a preceding innocuous stimulus. We identified a part of the midbrain essential to process the signal and avoid the threat. Inhibition of neurons in this area eliminates avoidance responses to the signal but preserves escape responses caused by presentation of the threat. The results highlight an essential part of the neural circuits that mediate signaled active avoidance behavior.


Asunto(s)
Reacción de Prevención/fisiología , Reacción de Fuga/fisiología , Neuronas GABAérgicas/fisiología , Red Nerviosa/fisiología , Porción Reticular de la Sustancia Negra/fisiología , Núcleo Tegmental Pedunculopontino/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/efectos de la radiación , Mapeo Encefálico , Proteínas Portadoras/genética , Proteínas Portadoras/efectos de la radiación , Clozapina/análogos & derivados , Clozapina/farmacología , Condicionamiento Clásico , Dependovirus/genética , Conducta de Ingestión de Líquido , Electrochoque , Reacción de Fuga/efectos de los fármacos , Reacción de Fuga/efectos de la radiación , Mutación con Ganancia de Función , Genes Reporteros , Vectores Genéticos/administración & dosificación , Luz , Ratones , Ruido/efectos adversos , Optogenética , Porción Reticular de la Sustancia Negra/citología , Tiempo de Reacción , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/efectos de la radiación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/efectos de la radiación , Colículos Superiores/citología , Colículos Superiores/fisiología , Tálamo/citología , Tálamo/fisiología
19.
Neuron ; 102(2): 477-492.e5, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30850257

RESUMEN

Higher-order thalamic nuclei, such as the visual pulvinar, play essential roles in cortical function by connecting functionally related cortical and subcortical brain regions. A coherent framework describing pulvinar function remains elusive because of its anatomical complexity and involvement in diverse cognitive processes. We combined large-scale anatomical circuit mapping with high-density electrophysiological recordings to dissect a homolog of the pulvinar in mice, the lateral posterior thalamic nucleus (LP). We define three broad LP subregions based on correspondence between connectivity and functional properties. These subregions form corticothalamic loops biased toward ventral or dorsal stream cortical areas and contain separate representations of visual space. Silencing the visual cortex or superior colliculus revealed that they drive visual tuning properties in separate LP subregions. Thus, by specifying the driving input sources, functional properties, and downstream targets of LP circuits, our data provide a roadmap for understanding the mechanisms of higher-order thalamic function in vision.


Asunto(s)
Pulvinar/fisiología , Colículos Superiores/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Mapeo Encefálico , Electroencefalografía , Ratones , Tálamo/fisiología
20.
Behav Brain Res ; 364: 106-113, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30707906

RESUMEN

Prepulse inhibition (PPI) is the suppression of the startle reflex, when a weaker non-startling sensory stimulus (the prepulse) precedes the intense startling stimulus. Although the basic PPI neural circuitry resides in the brainstem, PPI can be enhanced by selective attention to the prepulse, indicating that this sensorimotor-gating process is influenced by higher-order perceptual/cognitive processes. Along with the auditory cortex, the brain structures involved in attentional modulations of PPI include both the lateral nucleus of the amygdala (LA), which contributes to the fear-conditioning modulation, and the posterior parietal cortex (PPC), which contributes to the spatially attentional modulation. The deeper layers of the superior colliculus (DpSC), which has been suggested as a midbrain component in the PPI circuitry, receive descending axonal projections from some forebrain structures associated with auditory perception, emotional conditioning, or spatial attention. This study was to examine whether the DpSC are also involved in attentional modulations of PPI in rats. The results showed that both fear conditioning of a prepulse sound and precedence-effect-induced perceptual separation between the conditioned prepulse and a noise masker facilitated selective attention to the prepulse and consequently enhanced PPI. Reversibly blocking glutamate receptors in the DpSC with 2-mM kynurenic acid eliminated both the conditioning-induced and the perceptual-separation-induced PPI enhancements. However, the baseline magnitudes of startle and PPI were not affected. The results suggest that the DpSC play a role in mediating the attentional enhancements of PPI, probably through both receiving top-down signals from certain forebrain structures and modulating the midbrain representations of prepulse signals.


Asunto(s)
Inhibición Prepulso/fisiología , Reflejo de Sobresalto/fisiología , Colículos Superiores/fisiología , Estimulación Acústica/métodos , Amígdala del Cerebelo/efectos de los fármacos , Animales , Atención/fisiología , Percepción Auditiva/fisiología , Condicionamiento Clásico/fisiología , Emociones/efectos de los fármacos , Miedo/fisiología , Masculino , Lóbulo Parietal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Filtrado Sensorial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA