Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 623
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4937, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582805

RESUMEN

Olfactory cues are vital for prey animals like rodents to perceive and evade predators. Stress-induced hyperthermia, via brown adipose tissue (BAT) thermogenesis, boosts physical performance and facilitates escape. However, many aspects of this response, including thermogenic control and sex-specific effects, remain enigmatic. Our study unveils that the predator odor trimethylthiazoline (TMT) elicits BAT thermogenesis, suppresses feeding, and drives glucocorticoid release in female mice. Chemogenetic stimulation of olfactory bulb (OB) mitral cells recapitulates the thermogenic output of this response and associated stress hormone corticosterone release in female mice. Neuronal projections from OB to medial amygdala (MeA) and dorsomedial hypothalamus (DMH) exhibit female-specific cFos activity toward odors. Cell sorting and single-cell RNA-sequencing of DMH identify cholecystokinin (CCK)-expressing neurons as recipients of predator odor cues. Chemogenetic manipulation and neuronal silencing of DMHCCK neurons further implicate these neurons in the propagation of predator odor-associated thermogenesis and food intake suppression, highlighting their role in female stress-induced hyperthermia.


Asunto(s)
Colecistoquinina , Olfato , Masculino , Ratones , Femenino , Animales , Termogénesis/fisiología , Neuronas/fisiología , Hipotálamo
2.
Food Funct ; 14(16): 7469-7477, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37489980

RESUMEN

Satiety hormone cholecystokinin (CCK) plays a vital role in appetite inhibition. Its secretion is regulated by dietary components. The search for bioactive compounds that stimulate CCK secretion is currently an active area of research. The objective of this study was to evaluate the ability of buckwheat (Fagopyrum esculentum Moench) protein digest (BPD) to stimulate CCK secretion in vitro and in vivo and clarify the structural characteristics of peptides stimulating CCK secretion. BPD was prepared by an in vitro gastrointestinal digestion model. The relative molecular weight of BPD was <10 000 Da, and peptides with <3000 Da accounted for 70%. BPD was rich in essential amino acids Lys, Leu, and Val but lacked sulfur amino acids Met and Cys. It had a stimulatory effect on CCK secretion in vitro and in vivo. Chromatographic separation was performed to isolate peptide fractions involved in CCK secretion, and five novel CCK-releasing peptides including QFDLDD, PAFKEEHL, SFHFPI, IPPLFP, and RVTVQPDS were successfully identified. A sequence length range of 6-8 and marked hydrophobicity (18-28) were observed among the most CCK-releasing peptides. The present study demonstrated for the first time that BPD could stimulate CCK secretion and clarify the structural characteristics of bioactive peptides having CCK secretagogue activity in BPD.


Asunto(s)
Colecistoquinina , Fagopyrum , Colecistoquinina/metabolismo , Fagopyrum/metabolismo , Péptidos , Proteínas , Digestión
3.
Biosensors (Basel) ; 13(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37366967

RESUMEN

The gut-brain axis embodies the bi-directional communication between the gastrointestinal tract and the central nervous system (CNS), where vagal afferent neurons (VANs) serve as sensors for a variety of gut-derived signals. The gut is colonized by a large and diverse population of microorganisms that communicate via small (effector) molecules, which also act on the VAN terminals situated in the gut viscera and consequently influence many CNS processes. However, the convoluted in vivo environment makes it difficult to study the causative impact of the effector molecules on VAN activation or desensitization. Here, we report on a VAN culture and its proof-of-principle demonstration as a cell-based sensor to monitor the influence of gastrointestinal effector molecules on neuronal behavior. We initially compared the effect of surface coatings (poly-L-lysine vs. Matrigel) and culture media composition (serum vs. growth factor supplement) on neurite growth as a surrogate of VAN regeneration following tissue harvesting, where the Matrigel coating, but not the media composition, played a significant role in the increased neurite growth. We then used both live-cell calcium imaging and extracellular electrophysiological recordings to show that the VANs responded to classical effector molecules of endogenous and exogenous origin (cholecystokinin serotonin and capsaicin) in a complex fashion. We expect this study to enable platforms for screening various effector molecules and their influence on VAN activity, assessed by their information-rich electrophysiological fingerprints.


Asunto(s)
Neuronas Aferentes , Nervio Vago , Neuronas Aferentes/metabolismo , Nervio Vago/fisiología , Colecistoquinina/metabolismo , Colecistoquinina/farmacología , Neuronas/metabolismo , Sistema Nervioso Central/metabolismo
4.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37233611

RESUMEN

Excess dietary amino acids (AA) has been associated with reduced feed intake, increased satiation, and extended satiety in pigs. Recent ex vivo studies suggested that satiety peptide cholecystokinin (CCK) and insulinotropic glucagon-like peptide 1 (GLP-1), mediated the anorexigenic or insulinotropic effects of Lys, Glu, Phe, Ile, and Leu. However, the ex vivo model limitations require validation in vivo. The aim of the present study was to assess the effect of orally administered AA in vivo in pigs. It was hypothesized that oral Lys, Ile, and Leu have an anorexigenic effect via CCK, while Glu and Phe have an insulinotropic effect increasing circulating levels of GLP-1. Eight entire male pigs (Landrace × Large White) of 18.23 ±â€…1.06 kg of body weight were administered an oral gavage of water (control) or a 3 mmol/kg of Glu, Ile, Leu, Lys, Phe, or glucose (positive control for GLP-1 release) following an overnight fasting during 5 consecutive days using an incomplete latin square design. Blood samples were collected from the jugular vein before (-5 min, baseline value) and after the gavage (5, 15, 30, 60 and 90 min) to assess CCK and GLP-1 plasma levels. Pigs administered the oral gavage of Leu (P < 0.05), or Lys (P < 0.1) had increased levels of plasma CCK from 0 to 90 min post-gavage when compared to the control. A strong association (P < 0.001) was observed between GLP-1 plasma levels with Phe intake. The impact was significant starting 30 min post-gavage and was sustained until the end of the experiment (90 min post-gavage). Glucose administration increased GLP-1 early after the intake at the 5 min mark (P < 0.1). A positive correlation (P < 0.05, r = 0.89) driven by the impact of Phe at the 60 to 90 min post-gavage was identified between CCK and GLP-1 indicating feedback mechanisms between proximal and distal small intestine. In conclusion, oral gavages of Leu and Lys increased anorexigenic hormone CCK plasma levels in pigs. Phe caused a significant long-lasting increase in incretin GLP-1 plasma levels. Blood CCK and GLP-1 concentrations in Phe gavaged pigs were positively correlated indicating a potential feedback mechanism between proximal (CCK) and distal (GLP-1) small intestine. The present results are compatible with the known anorexigenic effects of excess dietary Leu and Lys, and the insulinotropic effect of Phe in pigs. These results demonstrate the relevance of accurate feed formulation practices particularly in post weaning pigs.


Previous ex vivo studies showed how the amino acids (AA) Lys, Leu, Ile, Phe, and Glu increased satiety peptide cholecystokinin (CCK) and/or insulinotropic hormone glucagon-like peptide 1 (GLP-1) model in pigs. The objective of this study was to validate the ex vivo model by testing the AA of interest in live pigs. Following the oral administration by gavage Leu increased plasma CCK compared to water. Phe showed a sustained long-lasting increase in GLP-1 plasma levels appearing 30 min after the gavage. A positive correlation between CCK and GLP-1 blood levels was observed for Phe treated pigs between 60 and 90 min after the treatment indicating that GLP-1 may induce the release of CCK in the small intestine via feedback mechanisms. The results also showed a trend for Lys increasing CCK congruent with previous data reporting an inhibition of appetite by dietary excess of this AA. These findings are relevant for commercial feeding practices since Lys is often supplemented and dietary Leu is commonly high in pig feeds. Finally, our results highlight the relevance of aromatic AA (i.e., Phe), in pig nutrition that deserves additional attention. There is significant room for improving the understanding of optimal AA levels in pig feeds.


Asunto(s)
Péptido 1 Similar al Glucagón , Incretinas , Masculino , Porcinos , Animales , Colecistoquinina , Leucina , Lisina , Fenilalanina , Glucosa , Saciedad
5.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175514

RESUMEN

The impact that healthy aging can have on society has raised great interest in understanding aging mechanisms. However, the effects this biological process may have on the gastrointestinal tract (GIT) have not yet been fully described. Results in relation to changes observed in the enteroendocrine system along the GIT are controversial. Grape seed proanthocyanidin extracts (GSPE) have been shown to protect against several pathologies associated with aging. Based on previous results, we hypothesized that a GSPE pre-treatment could prevent the aging processes that affect the enteroendocrine system. To test this hypothesis, we treated 21-month-old female rats with GSPE for 10 days. Eleven weeks after the treatment, we analyzed the effects of GSPE by comparing these aged animals with young animals. Aging induced a greater endocrine response to stimulation in the upper GIT segments (cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1)), a decrease in the mRNA abundance of GLP-1, peptide YY (PYY) and chromogranin A (ChgA) in the colon, and an increase in colonic butyrate. GSPE-treated rats were protected against a decrease in enterohormone expression in the colon. This effect is not directly related to the abundance of microbiome or short-chain fatty acids (SCFA) at this location. GSPE may therefore be effective in preventing a decrease in the colonic abundance of enterohormone expression induced by aging.


Asunto(s)
Extracto de Semillas de Uva , Proantocianidinas , Ratas , Femenino , Animales , Extracto de Semillas de Uva/farmacología , Proantocianidinas/farmacología , Péptido 1 Similar al Glucagón/metabolismo , Colecistoquinina , Ácidos Grasos Volátiles/metabolismo , Colon/metabolismo
6.
Elife ; 122023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36930206

RESUMEN

Defensive behaviors are critical for animal's survival. Both the paraventricular nucleus of the hypothalamus (PVN) and the parabrachial nucleus (PBN) have been shown to be involved in defensive behaviors. However, whether there are direct connections between them to mediate defensive behaviors remains unclear. Here, by retrograde and anterograde tracing, we uncover that cholecystokinin (CCK)-expressing neurons in the lateral PBN (LPBCCK) directly project to the PVN. By in vivo fiber photometry recording, we find that LPBCCK neurons actively respond to various threat stimuli. Selective photoactivation of LPBCCK neurons promotes aversion and defensive behaviors. Conversely, photoinhibition of LPBCCK neurons attenuates rat or looming stimuli-induced flight responses. Optogenetic activation of LPBCCK axon terminals within the PVN or PVN glutamatergic neurons promotes defensive behaviors. Whereas chemogenetic and pharmacological inhibition of local PVN neurons prevent LPBCCK-PVN pathway activation-driven flight responses. These data suggest that LPBCCK neurons recruit downstream PVN neurons to actively engage in flight responses. Our study identifies a previously unrecognized role for the LPBCCK-PVN pathway in controlling defensive behaviors.


Asunto(s)
Hipotálamo , Núcleos Parabraquiales , Ratas , Animales , Hipotálamo/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Colecistoquinina/metabolismo , Neuronas/fisiología , Núcleos Parabraquiales/fisiología
7.
Brain Res Bull ; 195: 109-119, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813046

RESUMEN

Metabolic programming may be induced by reduction or enhancement of litter size, which lead to neonatal over or undernutrition, respectively. Changes in neonatal nutrition can challenge some regulatory processes in adulthood, such as the hypophagic effect of cholecystokinin (CCK). In order to investigate the effects of nutritional programming on the anorexigenic function of CCK in adulthood, pups were raised in small (SL, 3 pups per dam), normal (NL, 10 pups per dam), or large litters (LL, 16 pups per dam), and on postnatal day 60, male rats were treated with vehicle or CCK (10 µg/Kg) for the evaluation of food intake and c-Fos expression in the area postrema (AP), nucleus of solitary tract (NTS), and paraventricular (PVN), arcuate (ARC), ventromedial (VMH), and dorsomedial (DMH) nuclei of the hypothalamus. Overnourished rats showed increased body weight gain that was inversely correlated with neuronal activation of PaPo, VMH, and DMH neurons, whereas undernourished rats had lower body weight gain, inversely correlated with increased neuronal activation of PaPo only. SL rats showed no anorexigenic response and lower neuron activation in the NTS and PVN induced by CCK. LL exhibited preserved hypophagia and neuron activation in the AP, NTS, and PVN in response to CCK. CCK showed no effect in c-Fos immunoreactivity in the ARC, VMH, and DMH in any litter. These results indicate that anorexigenic actions, associated with neuron activation in the NTS and PVN, induced by CCK were impaired by neonatal overnutrition. However, these responses were not disrupted by neonatal undernutrition. Thus, data suggest that an excess or poor supply of nutrients during lactation display divergent effects on programming CCK satiation signaling in male adult rats.


Asunto(s)
Desnutrición , Hipernutrición , Ratas , Masculino , Animales , Núcleo Hipotalámico Paraventricular/metabolismo , Colecistoquinina/farmacología , Colecistoquinina/metabolismo , Ratas Wistar , Núcleo Solitario/metabolismo , Ratas Sprague-Dawley , Hipotálamo/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Hipernutrición/metabolismo , Peso Corporal , Ingestión de Alimentos
8.
J Pak Med Assoc ; 73(2): 233-238, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36800701

RESUMEN

OBJECTIVE: To determine the impact of high-energy nutritional supplements on appetite, appetite regulators, energy intake and macronutrients level among underweight primigravidae. Methods: The single-blind randomised controlled trial was conducted from April 26, 2018, to August 10, 2019, in tertiary care hospitals of Khyber Pakhtunkhwa province of Pakistan, after approval from the ethics review committee of Khyber Medical University, Peshawar, and comprised underweight primigravidae who were randomly allocated to high energy nutritional supplement group A and placebo group B. Appetite questionnaires were filled and blood samples were obtained in fasting state, at 30, 60, 120, 210 and 270 minutes to measure blood glucose, insulin, peptide YY and cholecystokinin. Breakfast and lunch were served at 30 minutes and 210 minutes after supplementation, respectively. Data was analysed using SPSS 20. RESULTS: Of the 36 subjects, 19(52.8%) were in group A and 17(47.2%) were in group B. The overall mean age was 18.66 ± 2.5 years. Energy intake in group A was significantly higher than group B (p<0.001), and so were mean protein and fats (p<0.001). The subjective appetite perceptions for 'hunger' and 'desire to eat' were significantly lower (p<0.001) before lunch in group A. Plasma concentrations of appetite hormones corresponded to the appetite perceptions and were significantly higher in group A after breakfast and lunch for peptide YY, cholecystokinin and insulin compared to group B (p<0.001). CONCLUSIONS: High-energy nutritional supplement was found to have short-term suppressive effect on energy intake and appetite. Trial registration: ClinicalTrials.gov Identifier: ISRCTN 10088578. Registered on 27 March 2018. https://www.isrctn.com/ ISRCTN10088578.


Asunto(s)
Péptido YY , Delgadez , Adolescente , Humanos , Adulto Joven , Colecistoquinina , Suplementos Dietéticos , Insulina , Método Simple Ciego
9.
Physiol Behav ; 259: 114041, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36427543

RESUMEN

Studies suggest that the type of dietary fat consumed habitually may modulate appetite and further influence weight management. The purpose of this study was to evaluate the impact of an 8-week diet intervention enriched with either cottonseed oil (CSO; polyunsaturated fat-rich) or olive oil (OO; monounsaturated fat-rich) on appetite responses in adults with high cholesterol. This was a parallel design, randomized partial outpatient feeding trial designed to provide approximately 60% of participants daily energy needs with ∼30% of energy needs as CSO (n = 21, BMI 27.3 ± 0.92 kg/m2, age 53 ± 2y) or OO (n = 21, BMI 27.6 ± 1.20 kg/m2, age 54 ± 2y). A high saturated fat meal challenge was completed at pre- and post-intervention visits with 5 h postprandial blood draws and visual analog scales (VAS) for cholecystokinin (CCK), peptide YY (PYY), ghrelin, and subjective appetite, respectively. Participants also completed VAS questionnaires hourly and recorded dietary intake after leaving the lab for the remainder of the day. There was a greater increase in fasting CCK (CSO: 0.54 ± 0.03 to 0.56 ± 0.04; OO: 0.63 ± 0.07 to 0.60 ± 0.06 ng/ml p = 0.05), a greater suppression of postprandial ghrelin (p < 0.01), and a greater increase in postprandial VAS fullness (p = 0.04) in CSO compared to OO. Additionally, there was a greater decrease in self-reported energy intake in CSO compared to OO (CSO: 2464 ± 123 to 2115 ± 123; OO: 2263 ± 147 to 2,434 ± 184 kcal/d p = 0.02). Only postprandial VAS prospective consumption showed greater suppression (p = 0.03) in OO vs. CSO. Altogether, these data show that CSO has a greater effect on appetite suppression than OO diet enrichment and may be beneficial for weight maintenance, especially in a population at-risk for chronic disease. Registered at clinicaltrials.gov: NCT04397055.


Asunto(s)
Hambre , Respuesta de Saciedad , Adulto , Humanos , Persona de Mediana Edad , Aceite de Oliva/farmacología , Aceite de Semillas de Algodón , Ghrelina , Estudios Prospectivos , Dieta , Colecistoquinina , Periodo Posprandial , Péptido YY
10.
Cell Mol Biol (Noisy-le-grand) ; 68(6): 98-104, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36227672

RESUMEN

it was aimed to investigate the efficacy and safety of cupping moxibustion in patients with functional diarrhea. 51 patients diagnosed with functional diarrhea from January 2021 to December 2021 were selected as the objects, and they were randomly divided into the control group (oral montmorillonite powder) and the experiment group (oral montmorillonite powder combined with cupping moxibustion). The number of diarrheas, Bristol stool, traditional Chinese medicine (TCM) syndromes, clinical efficacy indexes, self-rating anxiety scale (SAS) score, the MOS item short from health survey (SF-36) scale score, peripheral blood cell levels of CD4+, CD8+, and Th17, gastrin (GAS), motilin (MTL), and cholecystokinin (CCK) levels was assessed before and after treatment. The adverse events were also recorded. Compared with those before treatment, all indexes of both groups were significantly improved (P<0.05). Compared with those of the control group, the number of diarrheas, Bristol stool, TCM syndrome score, SAS score, and CD8+ cell levels was significantly decreased after treatment in the experiment group (P<0.05). The clinical cure rate (48.0% vs. 73.1%), SF-36 score, GAS, MTL, CCK contents, and CD4+, and Th17 cell levels were significantly increased (P<0.05). No significant difference was in the incidence of adverse events between the two groups (P>0.05). It could be suggested that cupping moxibustion could be applied in the treatment of functional diarrhea, improving the clinical symptoms, relieving anxiety, enhancing gastrointestinal and immune functions, and promoting the quality of life of patients significantly.


Asunto(s)
Moxibustión , Bentonita , Colecistoquinina , Diarrea/terapia , Gastrinas , Humanos , Inmunidad , Motilina , Polvos , Calidad de Vida
11.
Life Sci ; 309: 120947, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36096244

RESUMEN

Eating behavior is regulated by central and peripheral signals, which interact to modulate the response to nutrient intake. Central control is mediated by the hypothalamus through neuropeptides that activate the orexigenic and anorexigenic pathways. Energy homeostasis depends on the efficiency of these regulatory mechanisms. This neuroendocrine regulation of hunger and appetite can be modulated by nutritional sensors such as adenosine monophosphate-activated protein kinase (AMPK). Thus, this systematic review discusses the literature on correlations between AMPK and hypothalamic neuropeptides regarding control of eating behavior. Lilacs, PubMed/Medline, ScienceDirect, and Web of Science were searched for articles published from 2009 to 2021 containing combinations of the following descriptors: "eating behavior," "hypothalamus," "neuropeptide," and "AMPK." Of the 1330 articles found initially, 27 were selected after application of the inclusion and exclusion criteria. Of the selected articles, 15 reported decreased AMPK activity, due to interventions using angiotensin II infusion, fructose, glucose, cholecystokinin, leptin, or lipopolysaccharide (LPS) injection; dietary control through a low-protein diet or a high-fat diet (60 % fat); induction of hyperthyroidism; or injection of AMPK inhibitors. Seven studies showed a decrease in neuropeptide Y (NPY) through CV4 AICAR administration; fructose, glucose, leptin, or angiotensin II injections; or infusion of LPS from Escherichia coli and liver kinase B1 (LKB1) overexpression. Eleven studies reported a decrease in food consumption due to a decrease in AMPK activity and/or hypothalamic neuropeptides such as NPY. The results indicate that there is a relationship between AMPK and the control of eating behavior: a decrease in AMPK activity due to a dietary or non-dietary stimulus is associated with a consequent decrease in food intake. Furthermore, AMPK activity can be modulated by glucose, thyroid hormones, estradiol, leptin, and ghrelin.


Asunto(s)
Leptina , Neuropéptidos , Leptina/metabolismo , Ghrelina/metabolismo , Neuropéptido Y/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Lipopolisacáridos/metabolismo , Angiotensina II/metabolismo , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Conducta Alimentaria , Ingestión de Alimentos , Colecistoquinina/metabolismo , Glucosa/metabolismo , Hormonas Tiroideas/metabolismo , Estradiol/metabolismo , Adenosina Monofosfato/metabolismo , Fructosa
12.
Res Vet Sci ; 150: 89-97, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-35809418

RESUMEN

Gastrointestinal tract (GIT) epithelial cells detect nutrients in the lumen via G-protein coupled receptors (GPRs) located in the gut epithelial cells especially in enteroendocrine cells. Dietary free fatty acids (FFA) are the major energy source and also acts as signalling molecules for FFA receptors. Long chain fatty acids (LCFA) activate LCFA receptors, GPR40/FFAR1 and GPR120/FFAR4 which trigger intracellular signalling and release gut hormones or modifies gene expression that facilitate fat digestion and absorption. However, there is a paucity of information on chemosensing of nutrients and digestion in ruminants. Hence, present study was aimed to evaluate chemosensing of fat digestion and absorption by the expression pattern of GPR40, GPR120, chylomicron forming genes, fatty acid translocase (CD36/FAT), microsomal triglyceride transfer protein (MTTP) and apolipoprotein B (APOB) in the various segments of GIT in sheep supplemented with calcium salts of long chain fatty acids (CSLCFAs) along with the secretory patterns of gut peptides cholecystokinin (CCK) and peptide tyrosine tyrosine (PYY). The study was carried out for a period 60 days with eighteen adult ewes of 8-12 months of age and they were divided into three groups with six animals each as group-I, group-II and group-III. All the experimental animals were stall fed with a basal diet and maintained as per animal husbandry standards. Group-II and group-III were supplemented additionally with 3% and 5% CSLCFAs, respectively on dry matter intake. The results from the study indicated that the supplementation of CSLCFAs upregulated (P < 0.05) the relative mRNA expression of GPR40 and GPR120 in the various segments of GIT of sheep in correspondence to level of dietary fat. Abundance of mRNA expression of CD36, MTTP and APOB increased (P < 0.05) in the GIT of sheep in accordance to quantity of LCFAs in the diet where these genes facilitate fatty acid uptake. Feeding of CSLCFAs enhanced (P < 0.05) pre-feeding level of CCK from day 15 onwards, whereas, post-feeding CCK and PYY increased in all the experimental sheep. However, the increase was higher (P < 0.05) in sheep supplemented with CSLCFAs by 10.80 ± 1.45% and 14.25 ± 1.17%, respectively in comparison to group-I. The comprehensive results of the study concluded that feeding of additional CSLCFAs upregulated the expression of GPR40, GPR120, CD36, and chemosensing of LCFAs by these genes triggered the signalling transduction that enhanced CCK and PYY levels to facilitate fat digestion and absorption in accordance with quantity of dietary fat. This was further evident from the significant upregulation of MTTP and APOB in the various segments of GIT supported the high content of dietary fat at cellular fat metabolism in the gut that regulates the fatty acid uptake.


Asunto(s)
Antígenos CD36 , Receptores Acoplados a Proteínas G , Animales , Apolipoproteínas B/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Colecistoquinina/metabolismo , Grasas de la Dieta/metabolismo , Grasas de la Dieta/farmacología , Digestión , Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados , Femenino , ARN Mensajero , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ovinos/genética , Tirosina
13.
Food Funct ; 13(11): 6233-6243, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35587126

RESUMEN

The demand for plant-based proteins has been rapidly increasing due to sustainability, ethical and health reasons. The present study aimed to investigate the digestion characteristics of three plant proteins (quinoa, barley and mungbean) based on an in vitro digestion model and the effect of their simulated gastrointestinal digests on satiety hormone cholecystokinin (CCK) secretion in enteroendocrine STC-1 cells. The nitrogen distribution in the digestion process, the relative molecular weight (MW) of peptides and the amino acid composition in simulated gastrointestinal digests were characterized. Quinoa protein had the highest proportion of soluble nitrogen after gastrointestinal digestion (85.79%), followed by barley protein (74.98%) and mungbean protein (64.14%), suggesting that quinoa protein was more easily digested than barley and mungbean proteins. The peptides but not free amino acids were the main components in the gastrointestinal digests of quinoa, barley, and mungbean proteins. The gastrointestinal digest of quinoa protein had a well balanced amino acid pattern, whereas that of barley protein was lacking Lys, and that of the mungbean protein was short of sulfur amino acids (Phe + Tyr) but rich in Lys. In terms of the ability to stimulate CCK secretion, the gastrointestinal digest of barley protein had a strong stimulatory effect on CCK secretion, while that of quinoa and mungbean proteins had only a weak stimulatory effect. After pretreatment with a specific calcium-sensing receptor (CaSR) antagonist NPS 2143, CCK secretion induced by the barley protein digest was greatly suppressed, indicating that CaSR was involved in barley protein digest-induced CCK secretion. These results show that quinoa protein has good nutritional quality, while barley protein is an excellent plant protein source to stimulate CCK secretion and has a potential application as a dietary supplement for obesity management.


Asunto(s)
Chenopodium quinoa , Hordeum , Vigna , Aminoácidos/metabolismo , Chenopodium quinoa/química , Colecistoquinina/metabolismo , Digestión , Células Enteroendocrinas , Hordeum/metabolismo , Nitrógeno/metabolismo , Péptidos/farmacología , Proteínas de Plantas/metabolismo , Receptores Sensibles al Calcio/metabolismo
14.
Chem Senses ; 472022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35427413

RESUMEN

Administration of cholecystokinin (CCK) or the glucagon-like peptide 1 (GLP-1) receptor agonist Exendin-4 (Ex-4) reduces food intake. Findings in the literature suggest CCK reduces intake primarily as a satiety signal whereas GLP-1 may play a role in both satiety and reward-related feeding signals. Compounds that humans describe as âsweetâ and âfattyâ are palatable yet are signaled via separate transduction pathways. Here, unconditioned lick responses to sucrose and intralipid were measured in a brief-access lick procedure in food-restricted male rats in response to i.p. administration of Ex-4 (3 h before test), CCK (30 min before test), or a combination of both. The current experimental design measures lick responses to water and varying concentrations of both sucrose (0.03, 0.1, and 0.5 M) and intralipid (0.2%, 2%, and 20%) during 10-s trials across a 30-min single test session. This design minimized postingestive influences. Compared with saline-injected controls, CCK (1.0, 3.0, or 6.0 µg/kg) did not change lick responses to sucrose or intralipid. Number of trials initiated and lick responses to both sucrose and intralipid were reduced in rats injected with 3.0 µg/kg, but not 1.0 µg/kg Ex-4. The supplement of CCK did not alter lick responses or trials initiated compared with Ex-4 administration alone. These findings support a role for GLP-1 but not CCK in the oral responsiveness to palatable stimuli. Furthermore, Ex-4-induced reductions were observed for both sucrose and intralipid, compounds representing âsweetâ and âfat,â respectively.


Asunto(s)
Colecistoquinina , Sacarosa , Animales , Colecistoquinina/farmacología , Ingestión de Alimentos , Emulsiones , Exenatida/farmacología , Péptido 1 Similar al Glucagón/farmacología , Masculino , Fosfolípidos , Ratas , Aceite de Soja , Sacarosa/farmacología
15.
Am J Physiol Gastrointest Liver Physiol ; 322(6): G561-G570, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35293263

RESUMEN

Proper mitochondrial function and adequate cellular ATP are necessary for normal pancreatic protein synthesis and sorting, maintenance of intracellular organelles and enzyme secretion. Inorganic phosphate is required for generating ATP and its limited availability may lead to reduced ATP production causing impaired Ca2+ handling, defective autophagy, zymogen activation, and necrosis, which are all features of acute pancreatitis. We hypothesized that reduced dietary phosphate leads to hypophosphatemia and exacerbates pancreatitis severity of multiple causes. We observed that mice fed a low-phosphate diet before the induction of pancreatitis by either repeated caerulein administration or pancreatic duct injection as a model of pressure-induced pancreatitis developed hypophosphatemia and exhibited more severe pancreatitis than normophosphatemic mice. Pancreatitis severity was significantly reduced in mice treated with phosphate. In vitro modeling of secretagogue- and pressure-induced pancreatic injury was evaluated in isolated pancreatic acini using cholecystokinin and the mechanoreceptor Piezo1 agonist, Yoda1, under low and normal phosphate conditions. Isolated pancreatic acini were more sensitive to cholecystokinin- and Yoda1-induced acinar cell damage and mitochondrial dysfunction under low-phosphate conditions and improved following phosphate supplementation. Importantly, even mice on a normal phosphate diet exhibited less severe pancreatitis when treated with supplemental phosphate. Thus, hypophosphatemia sensitizes animals to pancreatitis and phosphate supplementation reduces pancreatitis severity. These appear to be direct effects of phosphate on acinar cells through restoration of mitochondrial function. We propose that phosphate administration may be useful in the treatment of acute pancreatitis.NEW & NOTEWORTHY Impaired ATP synthesis disrupts acinar cell homeostasis and is an early step in pancreatitis. We report that reduced phosphate availability impairs mitochondrial function and worsens pancreatic injury. Phosphate supplementation improves mitochondrial function and protects against experimental pancreatitis, raising the possibility that phosphate supplementation may be useful in treating pancreatitis.


Asunto(s)
Hipofosfatemia , Pancreatitis , Enfermedad Aguda , Adenosina Trifosfato/metabolismo , Animales , Ceruletida/farmacología , Colecistoquinina/metabolismo , Hipofosfatemia/metabolismo , Canales Iónicos/metabolismo , Ratones , Páncreas/metabolismo , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo , Fosfatos/metabolismo
16.
Am J Physiol Endocrinol Metab ; 322(1): E10-E23, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34779255

RESUMEN

Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.


Asunto(s)
Temperatura Corporal/efectos de los fármacos , Colecistoquinina/administración & dosificación , Ciclooxigenasa 2/metabolismo , Hipertermia/inducido químicamente , Hipertermia/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Anorexia/inducido químicamente , Benzodiazepinas/administración & dosificación , Regulación de la Temperatura Corporal/efectos de los fármacos , Colecistoquinina/efectos adversos , Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Modelos Animales de Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Fiebre/inducido químicamente , Fiebre/tratamiento farmacológico , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Inyecciones Intraventriculares , Lipopolisacáridos/efectos adversos , Masculino , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar , Receptor de Colecistoquinina B/antagonistas & inhibidores , Resultado del Tratamiento
17.
Front Endocrinol (Lausanne) ; 12: 684656, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149622

RESUMEN

Cholecystokinin is a gastrointestinal peptide hormone with important roles in metabolic physiology and the maintenance of normal nutritional status, as well as potential roles in the prevention and management of obesity, currently one of the dominant causes of direct or indirect morbidity and mortality. In this review, we discuss the roles of this hormone and its receptors in maintaining nutritional homeostasis, with a particular focus on appetite control. Targeting this action led to the development of full agonists of the type 1 cholecystokinin receptor that have so far failed in clinical trials for obesity. The possible reasons for clinical failure are discussed, along with alternative pharmacologic strategies to target this receptor for prevention and management of obesity, including development of biased agonists and allosteric modulators. Cellular cholesterol is a natural modulator of the type 1 cholecystokinin receptor, with elevated levels disrupting normal stimulus-activity coupling. The molecular basis for this is discussed, along with strategies to overcome this challenge with a corrective positive allosteric modulator. There remains substantial scope for development of drugs to target the type 1 cholecystokinin receptor with these new pharmacologic strategies and such drugs may provide new approaches for treatment of obesity.


Asunto(s)
Colecistoquinina/metabolismo , Obesidad/tratamiento farmacológico , Receptores de Colecistoquinina/agonistas , Regulación Alostérica , Animales , Colesterol/metabolismo , Humanos , Obesidad/metabolismo , Receptores de Colecistoquinina/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33658359

RESUMEN

The central nucleus of the inferior colliculus (ICC) integrates information about different features of sound and then distributes this information to thalamocortical circuits. However, the lack of clear definitions of circuit elements in the ICC has limited our understanding of the nature of these circuit transformations. Here, we combine virus-based genetic access with electrophysiological and optogenetic approaches to identify a large family of excitatory, cholecystokinin-expressing thalamic projection neurons in the ICC of the Mongolian gerbil. We show that these neurons form a distinct cell type, displaying uniform morphology and intrinsic firing features, and provide powerful, spatially restricted excitation exclusively to the ventral auditory thalamus. In vivo, these neurons consistently exhibit V-shaped receptive field properties but strikingly diverse temporal responses to sound. Our results indicate that temporal response diversity is maintained within this population of otherwise uniform cells in the ICC and then relayed to cortex through spatially restricted thalamic subdomains.


Asunto(s)
Vías Auditivas/metabolismo , Colecistoquinina/metabolismo , Potenciales Evocados Auditivos , Mesencéfalo/metabolismo , Neuronas/metabolismo , Tálamo/metabolismo , Animales , Femenino , Gerbillinae , Masculino
19.
Artículo en Inglés | MEDLINE | ID: mdl-33785435

RESUMEN

Cholecystokinin (CCK) and peptide YY (PYY) have been investigated as gut hormones that send satiation signals to the brain in mammals. There is evidence that chicken PYY mRNA expression was the highest in the pancreas compared to other tissues. We recently suggested that insulin-like growth factor (IGF)-1 and its binding proteins (IGFBPs) may be involved in the appetite regulation system in chicks. In the present study, in order to evaluate the possible roles of CCK, PYY, and IGF-related proteins in the appetite regulation system in chicks, we analyzed changes in the mRNA levels of these genes in response to fasting and re-feeding in layer and hyperphagic broiler chicks. In layer chicks, 12 h of fasting reduced the mRNA levels of intestinal CCK, PYY, Y2 receptor, and pancreatic PYY, and these changes were reversed by 12 h of re-feeding. On the other hand, in broiler chicks 12 h of fasting reduced the mRNA levels of intestinal PYY and Y2 receptor, but not intestinal CCK and pancreatic PYY, and these changes were reversed by 12 h of re-feeding. Hypothalamic NPY mRNA significantly increased by 12 h of fasting in both chicks, and these changes were reversed by re-feeding. Also, 12 h of fasting significantly increased the mRNA levels of hypothalamic agouti-related protein and reduced the mRNA levels of hepatic IGF-1 only in broiler chicks, and 12 h of re-feeding did not change these. IGFBP-1 and -2 mRNA levels were markedly increased by 12 h of fasting in both chicks, and these changes were reversed by re-feeding. IGFBP-3 mRNA levels were increased by 12 h of fasting only in layer chicks, while re-feeding reduced the mRNA levels of IGFBP-3 in both types of chicks. These results suggest that several peripheral hormones, such as pancreatic PYY and intestinal CCK, may not play important roles in the regulation of food intake in broiler chicks.


Asunto(s)
Colecistoquinina/metabolismo , Ayuno/fisiología , Páncreas/metabolismo , Péptido YY/fisiología , Animales , Regulación del Apetito , Pollos , Ingestión de Alimentos/fisiología , Conducta Alimentaria , Privación de Alimentos , Regulación de la Expresión Génica , Hormonas/metabolismo , Hiperfagia , Hipotálamo/metabolismo , Íleon/metabolismo , Masculino , Neuropéptidos/metabolismo
20.
Zhen Ci Yan Jiu ; 45(11): 875-81, 2020 Nov 25.
Artículo en Chino | MEDLINE | ID: mdl-33269830

RESUMEN

OBJECTIVE: To investigate the effect of electroacupuncture (EA) on gastrointestinal motility and expression of leptin(LEP) and cholecystokinin(CCK) in the small intestine in obese rats,so as to explore the mechanism of EA underlying improvement of obesity. METHODS: Male Wistar rats were randomized into 5 groups: normal control, obesity model, abdominal acupoints ["Guanyuan" (CV4), "Zhongwan" (CV12) and bilateral "Tianshu" (ST25)], lower-leg acupoints [bilateral "Zusanli" (ST36) and bilateral "Fenglong" (ST40)], and abdominal+ lower-leg acupoints (n=10 rats in each group). The obesity model was established by feeding the animals with high-fat diet for 8 weeks. EA was applied to the abovementioned acupoints for 20 min every time, 3 times a week for 8 weeks. The food intake and body mass were recorded. The white adipose tissue around the testicles and in the abdominal region was weighed. The serum total cholesterol (TC), triglyceride (TG) and non-esterified fatty acid(NEFA) were detected by using automatic biochemical analyzer. The gastric empty rate and intestinal propulsive rate were calculated. The contents of serum CCK and LEP were detected by using ELISA, and the expression levels of CCK and LEP proteins in the small intestine were detected by using Western blot. RESULTS: Following modeling, the food intake, body mass, weight of white adipose around the testicles and abdomen, the gastric empty rate, and serum TC, TG, NEFA and LEP contents as well as intestinal LEP expression were significantly increased (P<0.05, P<0.01), while the intestinal propulsive rate, serum CCK content and intestinal CCK expression were evidently decreased (P<0.01) in the model group relevant to the normal control group. After EA interventions and compared with the model group, the increased levels of food intake, body mass, white adipose weight, gastric empty rate, TC, TG, and LEP in serum and small intestine, and the decreased levels of intestinal propulsive rate, CCK in the serum and intestine were reversed in the abdominal acupoints, lower-leg acupoints and abdominal+lower-leg acupoints groups (P<0.05, P<0.01). No significant differences were found in the effects of the three EA groups in down-regulating food intake, body mass, white adipose weight, gastric empty rate, serum TC, TG and LEP levels (except NEFA) and in up-regulating intestinal propulsive rate and CCK level (P>0.05). CONCLUSION: EA stimulation of the abdominal and lower-leg acupoints or both can reduce body weight on obesity rats, which is associated with its functions in regulating intestinal motility, food intake, and secretion of LEP and CCK.


Asunto(s)
Electroacupuntura , Puntos de Acupuntura , Animales , Colecistoquinina/genética , Motilidad Gastrointestinal , Intestinos , Leptina/genética , Lípidos , Masculino , Obesidad/genética , Obesidad/terapia , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA