Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
J Org Chem ; 89(8): 5741-5745, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38568052

RESUMEN

The skeletal transformations of diterpenoid forskolin were achieved by employing an oxidative rearrangement strategy. A library of 36 forskolin analogues with structural diversity was effectively generated. Computational analysis shows that 12 CTD compounds with unique scaffolds and ring systems were produced during the course of this work.


Asunto(s)
Diterpenos , Terpenos , Terpenos/química , Colforsina/química , Diterpenos/química , Extractos Vegetales , Estrés Oxidativo
2.
Molecules ; 29(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38338448

RESUMEN

Coleus forskohlii (Willd.) Briq. is a medicinal herb of the Lamiaceae family. It is native to India and widely present in the tropical and sub-tropical regions of Egypt, China, Ethiopia, and Pakistan. The roots of C. forskohlii are edible, rich with pharmaceutically bioactive compounds, and traditionally reported to treat a variety of diseases, including inflammation, respiratory disorders, obesity, and viral ailments. Notably, the emergence of viral diseases is expected to quickly spread; consequently, these data impose a need for various approaches to develop broad active therapeutics for utilization in the management of future viral infectious outbreaks. In this study, the naturally occurring labdane diterpenoid derivative, Forskolin, was obtained from Coleus forskohlii. Additionally, we evaluated the antiviral potential of Forskolin towards three viruses, namely the herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), hepatitis A virus (HAV), and coxsackievirus B4 (COX-B4). We observed that Forskolin displayed antiviral activity against HAV, COX-B4, HSV-1, and HSV-2 with IC50 values of 62.9, 73.1, 99.0, and 106.0 µg/mL, respectively. Furthermore, we explored the Forskolin's potential antiviral target using PharmMapper, a pharmacophore-based virtual screening platform. Forskolin's modeled structure was analyzed to identify potential protein targets linked to its antiviral activity, with results ranked based on Fit scores. Cathepsin L (PDB ID: 3BC3) emerged as a top-scoring hit, prompting further exploration through molecular docking and MD simulations. Our analysis revealed that Forskolin's binding mode within Cathepsin L's active site, characterized by stable hydrogen bonding and hydrophobic interactions, mirrors that of a co-crystallized inhibitor. These findings, supported by consistent RMSD profiles and similar binding free energies, suggest Forskolin's potential in inhibiting Cathepsin L, highlighting its promise as an antiviral agent.


Asunto(s)
Herpesvirus Humano 1 , Colforsina/farmacología , Colforsina/química , Catepsina L , Simulación del Acoplamiento Molecular , Herpesvirus Humano 1/metabolismo , Antivirales/farmacología , Antivirales/química
3.
J Clin Invest ; 134(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37962961

RESUMEN

Cholera is a global health problem with no targeted therapies. The Ca2+-sensing receptor (CaSR) is a regulator of intestinal ion transport and a therapeutic target for diarrhea, and Ca2+ is considered its main agonist. We found that increasing extracellular Ca2+ had a minimal effect on forskolin-induced Cl- secretion in human intestinal epithelial T84 cells. However, extracellular Mg2+, an often-neglected CaSR agonist, suppressed forskolin-induced Cl- secretion in T84 cells by 65% at physiological levels seen in stool (10 mM). The effect of Mg2+ occurred via the CaSR/Gq signaling that led to cAMP hydrolysis. Mg2+ (10 mM) also suppressed Cl- secretion induced by cholera toxin, heat-stable E. coli enterotoxin, and vasoactive intestinal peptide by 50%. In mouse intestinal closed loops, luminal Mg2+ treatment (20 mM) inhibited cholera toxin-induced fluid accumulation by 40%. In a mouse intestinal perfusion model of cholera, addition of 10 mM Mg2+ to the perfusate reversed net fluid transport from secretion to absorption. These results suggest that Mg2+ is the key CaSR activator in mouse and human intestinal epithelia at physiological levels in stool. Since stool Mg2+ concentrations in patients with cholera are essentially zero, oral Mg2+ supplementation, alone or in an oral rehydration solution, could be a potential therapy for cholera and other cyclic nucleotide-mediated secretory diarrheas.


Asunto(s)
Cólera , Receptores Sensibles al Calcio , Ratones , Humanos , Animales , Receptores Sensibles al Calcio/genética , Magnesio/farmacología , Toxina del Cólera/farmacología , Calcio , Escherichia coli , Colforsina/farmacología , Mucosa Intestinal , Diarrea/tratamiento farmacológico , Células Epiteliales , Suplementos Dietéticos
4.
J Cyst Fibros ; 22(3): 548-559, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37147251

RESUMEN

BACKGROUND: Preclinical cell-based assays that recapitulate human disease play an important role in drug repurposing. We previously developed a functional forskolin induced swelling (FIS) assay using patient-derived intestinal organoids (PDIOs), allowing functional characterization of CFTR, the gene mutated in people with cystic fibrosis (pwCF). CFTR function-increasing pharmacotherapies have revolutionized treatment for approximately 85% of people with CF who carry the most prevalent F508del-CFTR mutation, but a large unmet need remains to identify new treatments for all pwCF. METHODS: We used 76 PDIOs not homozygous for F508del-CFTR to test the efficacy of 1400 FDA-approved drugs on improving CFTR function, as measured in FIS assays. The most promising hits were verified in a secondary FIS screen. Based on the results of this secondary screen, we further investigated CFTR elevating function of PDE4 inhibitors and currently existing CFTR modulators. RESULTS: In the primary screen, 30 hits were characterized that elevated CFTR function. In the secondary validation screen, 19 hits were confirmed and categorized in three main drug families: CFTR modulators, PDE4 inhibitors and tyrosine kinase inhibitors. We show that PDE4 inhibitors are potent CFTR function inducers in PDIOs where residual CFTR function is either present, or created by additional compound exposure. Additionally, upon CFTR modulator treatment we show rescue of CF genotypes that are currently not eligible for this therapy. CONCLUSION: This study exemplifies the feasibility of high-throughput compound screening using PDIOs. We show the potential of repurposing drugs for pwCF carrying non-F508del genotypes that are currently not eligible for therapies. ONE-SENTENCE SUMMARY: We screened 1400 FDA-approved drugs in CF patient-derived intestinal organoids using the previously established functional FIS assay, and show the potential of repurposing PDE4 inhibitors and CFTR modulators for rare CF genotypes.


Asunto(s)
Fibrosis Quística , Inhibidores de Fosfodiesterasa 4 , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/uso terapéutico , Reposicionamiento de Medicamentos , Evaluación Preclínica de Medicamentos , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Mutación , Colforsina , Genotipo , Organoides
5.
Fitoterapia ; 164: 105353, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36402264

RESUMEN

A ring distortion strategy was applied to the synthesis of a series of intramolecular cross-coupled analogues of forskolin 1. Treatment with palladium acetate, forskolin underwent an intramolecular cross-coupling reaction to generate a novel cycloalkene ether 2 in 85% yield. Under the same conditions, a series of forskolin ester analogues 4a-4d were prepared from 1-OH ester derivatives of forskolin 3a-3d in 85-93% yields. Treating cycloalkene ether 2 with aryl iodides in the presence of a palladium catalyst afforded Z-isomers arylation products 5a-5e in a stereoselective manner in 70-85% yields.


Asunto(s)
Cicloparafinas , Estructura Molecular , Colforsina , Paladio , Ésteres , Éteres , Catálisis
6.
Nutrients ; 14(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36501075

RESUMEN

As one of the prominent medicinal plants listed in the Chinese pharmacopoeia (2020), Saussurea involucrata (Kar. et Kir.) Sch.-Bip was demonstrated to possess various therapeutic effects. In our recent research, we extracted the polysaccharides from S. involucrata (SIP) at optimal conditions and conducted further structure elucidation on the main fraction as well as the confirmation of its possible anti-inflammatory activity. Hence, in this work, we assessed the in vitro antioxidant activity and anti-melanogenesis effects of the crude SIP in forskolin-induced B16F10 melanoma cells. The results show that SIP possessed strong antioxidant activity and was effective in concentration-dependently decreasing melanin formation and inhibiting tyrosinase activity in forskolin-induced B16F10 cells. Based on these results, the inhibitory mechanism of melanogenesis was investigated by measuring Tyrosinase (TYR), Tyrosinase related protein-1 (TRP-1), Tyrosinase related protein-2 (TRP-2), Microphthalmia-associated transcription factor (MITF), cAMP-response element binding protein (CREB), mitogen-activated protein kinases (MAPK) signaling protein members, and ß-catenin degradation in forskolin-induced B16F10 cells. The anti-melanogenesis response of SIP might be attributed to the regulation of c-Jun N-terminal kinase (JNK) phosphorylation and ß-catenin degradation pathways. These results suggest that polysaccharides from S. involucrata possess a strong anti-melanogenic effect, and thus could be used as a high-value natural material for skin whitening in cosmeceutical industries.


Asunto(s)
Melanoma Experimental , Melanoma , Saussurea , Animales , beta Catenina , Antioxidantes/farmacología , Colforsina/farmacología , Colforsina/uso terapéutico , Línea Celular Tumoral , Melanoma/tratamiento farmacológico , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Melanoma Experimental/metabolismo
7.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(6): 1021-1027, 2022 Nov.
Artículo en Chino | MEDLINE | ID: mdl-36443046

RESUMEN

Objective: To investigate the regulatory effect and mechanism of vitamin D on the local renin-angiotensin system at maternal-fetal interface in the pathological process of preeclampsia (PE). Methods: The mRNA and protein expression of renin in decidua of normal pregnancy and PE placentas was determined by RT-PCR and Western blot. Normal decidual tissues were treated with active and inactive vitamin D for 48 h in vitro and the expressions of renin and vitamin D deactivating enzyme CYP24A1 were determined by RT-PCR and Western blot. Normal decidual stromal cells and glandular epithelial cells were isolated and purified, and identified by immunocytochemical staining. RT-PCR was used to examine the mRNA of vdr, cyp27 b1, cyp24 a1, and renin in the two types of cells and in decidual tissue, and the mRNA products were subjected to gel electrophoresis. These two cell types were treated with active and inactive vitamin D in vitro and the expressions of renin and vitamin D deactivating enzyme CYP24A1 were determined by RT-PCR and Western blot. Decidual gland epithelial cells were treated with protein kinase A (PKA) activator forskolin or inhibitor H89 to explore the interaction between PKA pathway and vitamin D in the regulation of renin expression. Results: The expression of renin in PE decidua was significantly higher than that of normal control at transcriptional and translational levels ( P<0.05). Vitamin D treatment could significantly down-regulate the expression of renin in normal decidua tissues ( P<0.05), while it significantly up-regulated CYP24A1 expression ( P<0.001). Decidual stromal cells and gland epithelial cells were successfully isolated from decidual tissue. Compared with that in decidual stromal cells, the mRNA level of vitamin D-related molecules in gland epithelial cells was more similar to that in decidual tissue. Active or inactive vitamin D treatment significantly inhibited the expression of renin in glandular epithelial cells ( P<0.05), but the expression of renin in decidual stromal cells was not affected. However, the treatment of active or inactive vitamin D in these two kinds of cells significantly increased the expression of CYP24A1 ( P<0.001). Active vitamin D could significantly inhibit the upregulation of renin by PKA agonist forskolin, and could inhibit the expression of renin through synergy with PKA inhibitor H89. Conclusion: The expression of renin in placental decidua is up-regulated in patients with PE, and the activation of local renin-angiotensin system at the maternal-fetal interface may be involved in the pathogenesis of PE. Vitamin D can specifically down-regulate renin expression in human decidual gland epithelial cells by competing with the PKA pathway. Vitamin D supplementation may have potential value for clinical intervention of PE.


Asunto(s)
Preeclampsia , Vitamina D , Embarazo , Humanos , Femenino , Vitamina D/farmacología , Renina , Vitamina D3 24-Hidroxilasa/genética , Colforsina , Placenta , ARN Mensajero
8.
Cells ; 11(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36291112

RESUMEN

Plectranthus ornatus Codd, the genus Plectranthus of the Lamiaceae family, has been used as traditional medicine in Africa, India and Australia. Pharmacological studies show the use of this plant to treat digestive problems. In turn, leaves were used for their antibiotic properties in some regions of Brazil to treat skin infections. The present study examines the anti-inflammatory, antioxidant and cytotoxic effects of the halimane and labdane diterpenes (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and 1α,6ß-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and the forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from P. ornatus on lung (A549) and leukemia (CCRF-CEM) cancer cell lines, and on normal human retinal pigment epithelial (ARPE-19) cell line in vitro. Additionally, molecular docking and computational approaches were used. ADMET properties were analysed through SwissADME and proTox-II-Prediction. The results indicate that all tested compounds significantly reduced the viability of the cancer cells and demonstrated no cytotoxic effects against the non-neoplastic cell line. The apoptosis indicators showed increased ROS levels for both the tested A549 and CCRF-CEM cancer cell lines after treatment. Furthermore, computational studies found HAL to exhibit moderate antioxidant activity. In addition, selected compounds changed mitochondrial membrane potential (MMP), and increased DNA damage and mitochondrial copy number for the CCRF-CEM cancer cell line; they also demonstrated anti-inflammatory effects on the ARPE-19 normal cell line upon lipopolysaccharide (LPS) treatment, which was associated with the modulation of IL-6, IL-8, TNF-α and GM-CSF genes expression. Docking studies gave indication about the lowest binding energy for 1,6-di-O-acetylforskolin docked into IL-6, TNF-α and GM-CSF, and 1,6-di-O-acetyl-9-deoxyforskolin docked into IL-8. The ADMET studies showed drug-likeness properties for the studied compounds. Thus, halimane and labdane diterpenes isolated from P. ornatus appear to offer biological potential; however, further research is necessary to understand their interactions and beneficial properties.


Asunto(s)
Diterpenos , Plectranthus , Humanos , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Antioxidantes/metabolismo , Colforsina , Diterpenos/química , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolisacáridos/metabolismo , Simulación del Acoplamiento Molecular , Plectranthus/química , Plectranthus/metabolismo , Protoporfirinógeno-Oxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pigmentos Retinianos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
9.
Tissue Eng Regen Med ; 19(5): 1063-1075, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35857260

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) are considered a potential tool for regenerating damaged tissues due to their great multipotency into various cell types. Here, we attempted to find the appropriate conditions for neuronal differentiation of tonsil-derived MSCs (TMSCs) and expand the potential application of TMSCs for treating neurological diseases. METHODS: The TMSCs were differentiated in DMEM/F-12 (Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12) supplemented with various neurotrophic factors for 7-28 days to determine the optimal neuronal differentiation condition for the TMSCs. The morphologies as well as the levels of the neural markers and neurotransmitters were assessed to determine neuronal differentiation potentials and the neuronal lineages of the differentiated TMSCs. RESULTS: Our initial study demonstrated that DMEM/F12 supplemented with 50 ng/mL basic fibroblast growth factor with 10 µM forskolin was the optimal condition for neuronal differentiation for the TMSCs. TMSCs had higher protein expression of neuronal markers, including neuron-specific enolase (NSE), GAP43, postsynaptic density protein 95 (PSD95), and synaptosomal-associated protein of 25 kDa (SNAP25) compared to the undifferentiated TMSCs. Immunofluorescence staining also validated the increased mature neuron markers, NeuN and synaptophysin, in the differentiated TMSCs. The expression of glial fibrillar acidic protein and ionized calcium-binding adaptor molecule 1 the markers of astrocytes and microglia, were also slightly increased. Additionally, the differentiated TMSCs released a significantly higher level of acetylcholine, the cholinergic neurotransmitter, as analyzed by the liquid chromatography-tandem mass spectrometry and showed an enhanced choline acetyltransferase immunoreactivity compared to the undifferentiated cells. CONCLUSION: Our study suggests that the optimized condition favors the TMSCs to differentiate into cholinergic neuron-like phenotype, which could be used as a possible therapeutic tool in treating certain neurological disorders such as Alzheimer's disease.


Asunto(s)
Células Madre Mesenquimatosas , Tonsila Palatina , Acetilcolina/metabolismo , Calcio/metabolismo , Colina O-Acetiltransferasa/metabolismo , Colinérgicos/metabolismo , Colforsina/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Sinaptofisina/metabolismo
10.
Xenobiotica ; 52(4): 405-412, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35642749

RESUMEN

Previous studies have indicated that the expression levels of several transporters are altered during placental trophoblast differentiation. However, changes in the transport activities of therapeutic agents during differentiation must be comprehensively characterised. Antiepileptic drugs, including gabapentin (GBP), lamotrigine (LTG), topiramate, and levetiracetam, are increasingly prescribed during pregnancy. The objective of this study was to elucidate differences in the uptake of antiepileptic drugs during the differentiation process.Human placental choriocarcinoma BeWo cells were used as trophoblast models. For differentiation into syncytiotrophoblast-like cells, cells were treated with forskolin.The uptake of GBP and LTG was lower in differentiated BeWo cells than in undifferentiated cells. In particular, the maximum uptake rate of GBP transport was decreased in differentiated BeWo cells. Furthermore, GBP transport was trans-stimulated by the amino acids His and Met. We investigated the profiles of amino acids in undifferentiated and differentiated BeWo cells. Supplementation with His and Met, which demonstrated trans-stimulatory effects on GBP uptake, restored GBP uptake in differentiated cells. The findings of this study suggest that drug transport in BeWo cells can be altered before and after differentiation, and that the altered GBP uptake could be mediated by the intracellular amino acid status.


Asunto(s)
Anticonvulsivantes , Placenta , Aminas/metabolismo , Aminoácidos/metabolismo , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacología , Colforsina/metabolismo , Colforsina/farmacología , Femenino , Gabapentina/metabolismo , Gabapentina/farmacología , Humanos , Placenta/metabolismo , Embarazo , Trofoblastos/metabolismo
11.
J Chromatogr Sci ; 60(10): 916-925, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-35511495

RESUMEN

Coleus forskohlii Briq. is an important medicinal herb, endowed with a wide range of medicinal properties against the variety of ailments. Seven germplasm of C. forskohlii collected from different phyto-geographical locations and identification of elite chemotype was performed with the help of high performance thin layer chromatography. Data of soil analysis correlated with the bioactive compounds and inhibitory potential of the species. Quantification of forskolin and its isomer (iso-forskolin) content were done in all the collected samples of C. forskohlii, which revealed a wide range of variations, varying from 1.15-0.004% and 0.0091 to 0.1077% per dry weights basic, respectively. Variation in the bioactive content may be due to the soil nature and environmental factors. Soil analysis of collected samples demonstrated that there is significant variation in available NPK and micronutrient content and may be reasoned for existing chemotypic variability. In vitro biological activity (antioxidant and antidiabetic) analyses were performed, which reveals that germplasms have a high amount of forskolin and iso-forskolin, both show more activity. The aim of this study was to elucidate the effect of elicitors and precursors on the production of bioactive compounds and identification of best elite germplasm among the populations, to provide basic lead to the industry for commercial exploitability including its location-specific commercial cultivation.


Asunto(s)
Coleus , Plectranthus , Coleus/química , Colforsina/análisis , Colforsina/química , Cromatografía en Capa Delgada , Suelo
12.
Cell Cycle ; 20(22): 2402-2412, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34606419

RESUMEN

Multiple myeloma (MM) remains an incurable hematological malignancy characterized by proliferation and accumulation of plasma cells in the bone marrow. Innovative and effective therapeutic approaches that are able to improve the outcome and the survival of MM sufferers, especially the identification of novel natural compounds and investigation of their anti-MM mechanisms, are needed. Here, we investigated the effects and the potential mechanisms against MM of forskolin, a diterpene derived from the medicinal plant Coleus forskohlii, in MM cell line MM.1S. CCK-8 assay showed that forskolin significantly inhibited MM.1S cells viability in a time- and dose-dependent manner. Furthermore, we demonstrated that forskolin induced G2/M phase arrest with a remarkable increase of p-cdc25c, p-cdc2, and a decrease of cyclin B1, indicating the suppression of cdc25C/cdc2/cyclin B pathway. Moreover, we found that forskolin induced mitochondrion-dependent apoptosis which was accompanied by the increase of pro-apoptotic proteins Bax, Bad, Bim and Bid, the decrease of anti-apoptotic proteins Bcl-2 and Bcl-xl, the changes of the mitochondrial membrane potential (MMP) and increase of cleaved caspase-9, cleaved caspase-3 and cleaved PARP. Of note, we demonstrated that forskolin induced a decrease of p-C-Raf, p-MEK, p-ERK1/2 and p-p90Rsk, and an increase of p-PERK, p-eIF2α and CHOP, which indicated that the inhibition of Raf/MEK/ERK pathway and activation of PERK/eIF2α/CHOP pathway were involved, at least partially, in forskolin-induced MM.1S cells apoptosis. These findings confirm the anti-MM action of forskolin and extend the understanding of its anti-MM mechanism in MM.1S cells, as well as reinforcing the evidence for forskolin as a natural chemotherapeutic compound against MM.


Asunto(s)
Apoptosis , Colforsina , Puntos de Control de la Fase G2 del Ciclo Celular , Línea Celular Tumoral , Colforsina/farmacología , Ciclina B1/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Mitocondrias/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
13.
Cells ; 10(7)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34359837

RESUMEN

Induced pluripotent stem (iPS) cells constitute a perfect tool to study human embryo development processes such as myogenesis, thanks to their ability to differentiate into three germ layers. Currently, many protocols to obtain myogenic cells have been described in the literature. They differ in many aspects, such as media components, including signaling modulators, feeder layer constituents, and duration of culture. In our study, we compared three different myogenic differentiation protocols to verify, side by side, their efficiency. Protocol I was based on embryonic bodies differentiation induction, ITS addition, and selection with adhesion to collagen I type. Protocol II was based on strong myogenic induction at the embryonic bodies step with BIO, forskolin, and bFGF, whereas cells in Protocol III were cultured in monolayers in three special media, leading to WNT activation and TGF-ß and BMP signaling inhibition. Myogenic induction was confirmed by the hierarchical expression of myogenic regulatory factors MYF5, MYOD, MYF6 and MYOG, as well as the expression of myotubes markers MYH3 and MYH2, in each protocol. Our results revealed that Protocol III is the most efficient in obtaining myogenic cells. Furthermore, our results indicated that CD56 is not a specific marker for the evaluation of myogenic differentiation.


Asunto(s)
Técnicas de Cultivo de Célula , Medios de Cultivo/farmacología , Cuerpos Embrioides/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Colforsina/farmacología , Colágeno Tipo I/farmacología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Humanos , Indoles/farmacología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Insulina/farmacología , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Oximas/farmacología , Selenio/farmacología , Transferrina/farmacología
14.
Phytomedicine ; 91: 153701, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34438230

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by limited airflow due to pulmonary and alveolar abnormalities from exposure to cigarette smoke (CS). Current therapeutic drugs are limited and the development of novel treatments to prevent disease progression is challenging. Isoforskolin (ISOF) from the plant Coleus forskohlii is an effective activator of adenylyl cyclase (AC) isoforms. Previously we found ISOF could attenuate acute lung injury in animal models, while the effect of ISOF on COPD has not been elucidated. PURPOSE: In this study, we aimed to evaluate the efficacy of ISOF on COPD and reveal its potential mechanisms. METHODS: A rat model of COPD was established by long-term exposure to CS, then the rats were orally administered with ISOF (0.5, 1 and 2 mg/kg). The pulmonary function, lung morphology, inflammatory cells and cytokines in serum or bronchoalveolar lavage fluid (BALF) were evaluated. Transcriptomics, proteomics and network pharmacology analysis were utilized to identify potential mechanisms of ISOF. Droplet digital PCR was used to detect the mRNA expression of AC1-10 in donor lung tissues. AC activation was determined in recombinant human embryonic kidney 293 (HEK293) cells stably expressing human AC isoforms. In addition, ISOF caused trachea relaxation ex vivo were assessed in isolated trachea rings from guinea pigs. RESULTS: ISOF significantly ameliorated pathological damage of lung tissue and improved pulmonary function in COPD rats. ISOF treatment decreased the number of inflammatory cells in peripheral blood, and also the levels of pro-inflammatory cytokines in serum and BALF. Consistent with omics-based analyses, ISOF markedly downregulated the mTOR level in lung tissue. Flow cytometry analysis revealed that ISOF treatment reduced the ratio of Th17/Treg cells in peripheral blood. Furthermore, the expression levels of AC1 and AC2 are relatively higher than other AC isoforms in normal lung tissues, and ISOF could potently activate AC1 and AC2 in vitro and significantly relax isolated guinea pig trachea. CONCLUSION: Collectively, our studies suggest that ISOF exerts its anti-COPD effect by improving lung function, anti-inflammation and trachea relaxation, which may be related to AC activation, mTOR signaling and Th17/Treg balance.


Asunto(s)
Adenilil Ciclasas , Colforsina/farmacología , Enfermedad Pulmonar Obstructiva Crónica , Humo , Animales , Coleus/química , Cobayas , Células HEK293 , Humanos , Fitoquímicos/farmacología , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Ratas , Humo/efectos adversos , Fumar
15.
Bioorg Med Chem Lett ; 44: 128119, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34019977

RESUMEN

Forskolin (1) is a diterpene found in the Coleus forskohlii plant that has been examined for its medical properties resulting from adenylyl cyclase activation. This article describes a straightforward purification method of 1 from commercially available weight loss capsules. In addition, there has been some ambiguity with respect to the use of the name 'forskolin' to describe 1 and related diterpenes, which this report serves to eliminate. Herein we detail the complete spectroscopic characterization of purified 1 as well as its single crystal X-ray structure.


Asunto(s)
Colforsina/aislamiento & purificación , Diterpenos/aislamiento & purificación , Plectranthus/química , Colforsina/química , Suplementos Dietéticos , Diterpenos/química , Conformación Molecular
16.
J Ethnopharmacol ; 273: 113994, 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-33711439

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Barley maiya from gramineous plants (Hordeum vulgare L.) is obtained from ripe fruits through germination and drying. It is often used to treat diseases associated with high prolactin levels. OBJECTIVE: To investigate the anti-hyperprolactinemia (anti-HPRL) mechanisms of total barley maiya alkaloids (TBMA) and hordenine. METHODS: This experiment included 9 groups: Normal group, TBMA group, hordenine group, TBMA + haloperidol group, TBMA + forskolin group, TBMA + 8-bromo-cAMP group, hordenine + haloperidol group, hordenine + forskolin group, and hordenine + 8-bromo-cAMP group. The prolactin (PRL) concentration in the supernatant and the total cAMP concentration in the cells were detected by ELISA. The expression levels of PRL, dopamine D2 receptor (DRD2) and cAMP/PKA/CREB protein were measured by Western Blot. RESULTS: In the TBMA group and the hordenine group, the PRL level in MMQ cells was significantly decreased, but in GH3 cells there was no change. DRD2 expression level was markedly increased, cAMP concentration was decreased, and the activity of PKA and CREB declined in MMQ cells. Compared with the TBMA group, there was a significant decrease of DRD2 expression level, a remarkable increase of PRL secretion and an increase of cAMP/PKA/CREB expression in MMQ cells within the TBMA + haloperidol group. Compared with the forskolin group, there was no significant change in PRL secretion and cAMP/PKA/CREB expression level in MMQ cells within the TBMA + forskolin group. There was a decrease in PRL secretion and cAMP/PKA/CREB expression level in MMQ cells within the TBMA + 8-bromo-cAMP group compared with the 8-bromo-cAMP group. Compared with the hordenine group, DRD2 expression level was significantly decreased, PRL secretion was markedly increased, and cAMP/PKA/CREB expression level was increased in MMQ cells within the hordenine + haloperidol group. There was no significant change in PRL secretion and cAMP/PKA/CREB expression level in MMQ cells within the hordenine + forskolin group compared with the forskolin group and within the hordenine + 8-bromo-cAMP group compared with the 8-bromo-cAMP group. CONCLUSION: TBMA and hordenine can both play an anti-HPRL role via DRD2, and TBMA can also act on PKA targets to exert its anti-HPRL effect. TBMA and hordenine may be potential treatment strategies for HPRL.


Asunto(s)
Alcaloides/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hordeum/química , Prolactina/antagonistas & inhibidores , Tiramina/análogos & derivados , Alcaloides/química , Animales , Antieméticos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colforsina/química , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Haloperidol/farmacología , Ratas , Receptores de Dopamina D2 , Transducción de Señal , Tiramina/química , Tiramina/farmacología
17.
Phytochemistry ; 184: 112654, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33461046

RESUMEN

To understand the compatibility of three native endophytic fungi Phialemoniopsis cornearis (SF1), Macrophomina pseudophaseolina (SF2) and Fusarium redolens (RF1) with Trichoderma viride (TV1) on Coleus forskohlii in enhancing plant growth and forskolin content, field experiments were conducted. Co-inoculation of RF1+TV1 showed significant improvement in plant growth (52%), root biomass (67%), and in-planta forskolin content (94%), followed by treatment with SF2+TV1 and SF1+TV1. qRT-PCR was carried out to quantify expression of five key forskolin biosynthetic pathway genes (CfTPS2, CfTPS3, CfTPS4, CfCYP76AH15, and CfACT1-8) in RF1+TV1 treated C. forskohlii plants. Elevated expression of CfTPS2, CfTPS4, CfCYP76AH15 and CfACT1-8 genes was observed with RF1+TV1 combination as compared to uninoculated C. forskohlii plants. Besides, RF1+TV1 treatment considerably reduced the severity of nematode infection of C. forskohlii plants under field conditions. Thus, congruent properties of F. redolens (RF1) were witnessed with co-inoculation of T. viride (TV1) under field conditions which resulted in enhanced forskolin content, root biomass, and reduced nematode infections in C. forskohlii. Overall, this approach could be an economical and sustainable step towards cultivation of commercially important medicinal plants.


Asunto(s)
Plectranthus , Trichoderma , Ascomicetos , Colforsina/farmacología , Endófitos , Fusarium , Hypocreales , Raíces de Plantas
18.
Mol Pain ; 16: 1744806920970368, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33307981

RESUMEN

The embryonic rat dorsal root ganglion (DRG) neuron-derived 50B11 cell line is a promising sensory neuron model expressing markers characteristic of NGF and GDNF-dependent C-fibre nociceptors. Whether these cells have the capacity to develop into distinct nociceptive subtypes based on NGF- or GDNF-dependence has not been investigated. Here we show that by augmenting forskolin (FSK) and growth factor supplementation with NGF or GDNF, 50B11 cultures can be driven to acquire differential functional responses to common nociceptive agonists capsaicin and ATP respectively. In addition, to previous studies, we also demonstrate that a differentiated neuronal phenotype can be maintained for up to 7 days. Western blot analysis of nociceptive marker proteins further demonstrates that the 50B11 cells partially recapitulate the functional phenotypes of classical NGF-dependent (peptidergic) and GDNF-dependent (non-peptidergic) neuronal subtypes described in DRGs. Further, 50B11 cells differentiated with NGF/FSK, but not GDNF/FSK, show sensitization to acute prostaglandin E2 treatment. Finally, RNA-Seq analysis confirms that differentiation with NGF/FSK or GDNF/FSK produces two 50B11 cell subtypes with distinct transcriptome expression profiles. Gene ontology comparison of the two subtypes of differentiated 50B11 cells to rodent DRG neurons studies shows significant overlap in matching or partially matching categories. This transcriptomic analysis will aid future suitability assessment of the 50B11 cells as a high-throughput nociceptor model for a broad range of experimental applications. In conclusion, this study shows that the 50B11 cell line is capable of partially recapitulating features of two distinct types of embryonic NGF and GDNF-dependent nociceptor-like cells.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Ganglios Espinales/citología , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Factor de Crecimiento Nervioso/farmacología , Nociceptores/citología , Potenciales de Acción/efectos de los fármacos , Adenosina Trifosfato/farmacología , Animales , Biomarcadores/metabolismo , Capsaicina/farmacología , Diferenciación Celular/genética , Línea Celular , Forma de la Célula/efectos de los fármacos , Colforsina/farmacología , Dinoprostona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Variación Genética , Proyección Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nociceptores/efectos de los fármacos , Fenotipo , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Canales de Sodio/metabolismo
19.
Nutrients ; 12(10)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081127

RESUMEN

Glaucoma, a leading cause of irreversible blindness worldwide, is an optic neuropathy characterized by the progressive death of retinal ganglion cells (RGCs). Elevated intraocular pressure (IOP) is recognized as the main risk factor. Despite effective IOP-lowering therapies, the disease progresses in a significant number of patients. Therefore, alternative IOP-independent strategies aiming at halting or delaying RGC degeneration is the current therapeutic challenge for glaucoma management. Here, we review the literature on the neuroprotective activities, and the underlying mechanisms, of natural compounds and dietary supplements in experimental and clinical glaucoma.


Asunto(s)
Productos Biológicos/administración & dosificación , Suplementos Dietéticos , Glaucoma/prevención & control , Glaucoma/terapia , Fármacos Neuroprotectores , Fitoterapia , Amidas/administración & dosificación , Amidas/farmacología , Productos Biológicos/farmacología , Colforsina/administración & dosificación , Colforsina/farmacología , Curcumina/administración & dosificación , Curcumina/farmacología , Citidina Difosfato Colina/administración & dosificación , Citidina Difosfato Colina/farmacología , Etanolaminas/administración & dosificación , Etanolaminas/farmacología , Ácidos Grasos Insaturados/administración & dosificación , Ácidos Grasos Insaturados/farmacología , Flavonoides/administración & dosificación , Flavonoides/farmacología , Ginkgo biloba , Humanos , Melatonina/administración & dosificación , Melatonina/farmacología , Ácidos Palmíticos/administración & dosificación , Ácidos Palmíticos/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Resveratrol/administración & dosificación , Resveratrol/farmacología , Taurina/administración & dosificación , Taurina/farmacología , , Ubiquinona/administración & dosificación , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Vitaminas/administración & dosificación , Vitaminas/farmacología
20.
Zhongguo Zhong Yao Za Zhi ; 45(16): 3790-3796, 2020 Aug.
Artículo en Chino | MEDLINE | ID: mdl-32893572

RESUMEN

Forskolin is a complex labdane plant diterpenoid, which has been used in the treatment of a variety of diseases based on its activity as an activator of adenosine monophosphate(cAMP) cyclase. Natural forskolin exists only in the cork layer of the root of Coleus forskohlii. Due to the complexity of the extraction and chemical synthesis processes, the yield and purity of forskolin cannot meet commercial requirements. In recent years, with the rapid development of synthetic biology and the analysis and interpretation of many diterpene biosynthetic pathways, a new approach has been provided for the green production of forskolin. In this paper, the structure, activity, biosynthetic pathway and the heterologous biosynthesis of forskolin were reviewed. The problems and solutions in the heterologous biosynthesis of forskolin were also discussed and summarized, which will provide references for the construction of high-yielding forskolin engineering strains.


Asunto(s)
Vías Biosintéticas , Colforsina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA