Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38338448

RESUMEN

Coleus forskohlii (Willd.) Briq. is a medicinal herb of the Lamiaceae family. It is native to India and widely present in the tropical and sub-tropical regions of Egypt, China, Ethiopia, and Pakistan. The roots of C. forskohlii are edible, rich with pharmaceutically bioactive compounds, and traditionally reported to treat a variety of diseases, including inflammation, respiratory disorders, obesity, and viral ailments. Notably, the emergence of viral diseases is expected to quickly spread; consequently, these data impose a need for various approaches to develop broad active therapeutics for utilization in the management of future viral infectious outbreaks. In this study, the naturally occurring labdane diterpenoid derivative, Forskolin, was obtained from Coleus forskohlii. Additionally, we evaluated the antiviral potential of Forskolin towards three viruses, namely the herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), hepatitis A virus (HAV), and coxsackievirus B4 (COX-B4). We observed that Forskolin displayed antiviral activity against HAV, COX-B4, HSV-1, and HSV-2 with IC50 values of 62.9, 73.1, 99.0, and 106.0 µg/mL, respectively. Furthermore, we explored the Forskolin's potential antiviral target using PharmMapper, a pharmacophore-based virtual screening platform. Forskolin's modeled structure was analyzed to identify potential protein targets linked to its antiviral activity, with results ranked based on Fit scores. Cathepsin L (PDB ID: 3BC3) emerged as a top-scoring hit, prompting further exploration through molecular docking and MD simulations. Our analysis revealed that Forskolin's binding mode within Cathepsin L's active site, characterized by stable hydrogen bonding and hydrophobic interactions, mirrors that of a co-crystallized inhibitor. These findings, supported by consistent RMSD profiles and similar binding free energies, suggest Forskolin's potential in inhibiting Cathepsin L, highlighting its promise as an antiviral agent.


Asunto(s)
Herpesvirus Humano 1 , Colforsina/farmacología , Colforsina/química , Catepsina L , Simulación del Acoplamiento Molecular , Herpesvirus Humano 1/metabolismo , Antivirales/farmacología , Antivirales/química
2.
J Clin Invest ; 134(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37962961

RESUMEN

Cholera is a global health problem with no targeted therapies. The Ca2+-sensing receptor (CaSR) is a regulator of intestinal ion transport and a therapeutic target for diarrhea, and Ca2+ is considered its main agonist. We found that increasing extracellular Ca2+ had a minimal effect on forskolin-induced Cl- secretion in human intestinal epithelial T84 cells. However, extracellular Mg2+, an often-neglected CaSR agonist, suppressed forskolin-induced Cl- secretion in T84 cells by 65% at physiological levels seen in stool (10 mM). The effect of Mg2+ occurred via the CaSR/Gq signaling that led to cAMP hydrolysis. Mg2+ (10 mM) also suppressed Cl- secretion induced by cholera toxin, heat-stable E. coli enterotoxin, and vasoactive intestinal peptide by 50%. In mouse intestinal closed loops, luminal Mg2+ treatment (20 mM) inhibited cholera toxin-induced fluid accumulation by 40%. In a mouse intestinal perfusion model of cholera, addition of 10 mM Mg2+ to the perfusate reversed net fluid transport from secretion to absorption. These results suggest that Mg2+ is the key CaSR activator in mouse and human intestinal epithelia at physiological levels in stool. Since stool Mg2+ concentrations in patients with cholera are essentially zero, oral Mg2+ supplementation, alone or in an oral rehydration solution, could be a potential therapy for cholera and other cyclic nucleotide-mediated secretory diarrheas.


Asunto(s)
Cólera , Receptores Sensibles al Calcio , Ratones , Humanos , Animales , Receptores Sensibles al Calcio/genética , Magnesio/farmacología , Toxina del Cólera/farmacología , Calcio , Escherichia coli , Colforsina/farmacología , Mucosa Intestinal , Diarrea/tratamiento farmacológico , Células Epiteliales , Suplementos Dietéticos
3.
Nutrients ; 14(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36501075

RESUMEN

As one of the prominent medicinal plants listed in the Chinese pharmacopoeia (2020), Saussurea involucrata (Kar. et Kir.) Sch.-Bip was demonstrated to possess various therapeutic effects. In our recent research, we extracted the polysaccharides from S. involucrata (SIP) at optimal conditions and conducted further structure elucidation on the main fraction as well as the confirmation of its possible anti-inflammatory activity. Hence, in this work, we assessed the in vitro antioxidant activity and anti-melanogenesis effects of the crude SIP in forskolin-induced B16F10 melanoma cells. The results show that SIP possessed strong antioxidant activity and was effective in concentration-dependently decreasing melanin formation and inhibiting tyrosinase activity in forskolin-induced B16F10 cells. Based on these results, the inhibitory mechanism of melanogenesis was investigated by measuring Tyrosinase (TYR), Tyrosinase related protein-1 (TRP-1), Tyrosinase related protein-2 (TRP-2), Microphthalmia-associated transcription factor (MITF), cAMP-response element binding protein (CREB), mitogen-activated protein kinases (MAPK) signaling protein members, and ß-catenin degradation in forskolin-induced B16F10 cells. The anti-melanogenesis response of SIP might be attributed to the regulation of c-Jun N-terminal kinase (JNK) phosphorylation and ß-catenin degradation pathways. These results suggest that polysaccharides from S. involucrata possess a strong anti-melanogenic effect, and thus could be used as a high-value natural material for skin whitening in cosmeceutical industries.


Asunto(s)
Melanoma Experimental , Melanoma , Saussurea , Animales , beta Catenina , Antioxidantes/farmacología , Colforsina/farmacología , Colforsina/uso terapéutico , Línea Celular Tumoral , Melanoma/tratamiento farmacológico , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Melanoma Experimental/metabolismo
4.
Xenobiotica ; 52(4): 405-412, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35642749

RESUMEN

Previous studies have indicated that the expression levels of several transporters are altered during placental trophoblast differentiation. However, changes in the transport activities of therapeutic agents during differentiation must be comprehensively characterised. Antiepileptic drugs, including gabapentin (GBP), lamotrigine (LTG), topiramate, and levetiracetam, are increasingly prescribed during pregnancy. The objective of this study was to elucidate differences in the uptake of antiepileptic drugs during the differentiation process.Human placental choriocarcinoma BeWo cells were used as trophoblast models. For differentiation into syncytiotrophoblast-like cells, cells were treated with forskolin.The uptake of GBP and LTG was lower in differentiated BeWo cells than in undifferentiated cells. In particular, the maximum uptake rate of GBP transport was decreased in differentiated BeWo cells. Furthermore, GBP transport was trans-stimulated by the amino acids His and Met. We investigated the profiles of amino acids in undifferentiated and differentiated BeWo cells. Supplementation with His and Met, which demonstrated trans-stimulatory effects on GBP uptake, restored GBP uptake in differentiated cells. The findings of this study suggest that drug transport in BeWo cells can be altered before and after differentiation, and that the altered GBP uptake could be mediated by the intracellular amino acid status.


Asunto(s)
Anticonvulsivantes , Placenta , Aminas/metabolismo , Aminoácidos/metabolismo , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacología , Colforsina/metabolismo , Colforsina/farmacología , Femenino , Gabapentina/metabolismo , Gabapentina/farmacología , Humanos , Placenta/metabolismo , Embarazo , Trofoblastos/metabolismo
5.
Cell Cycle ; 20(22): 2402-2412, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34606419

RESUMEN

Multiple myeloma (MM) remains an incurable hematological malignancy characterized by proliferation and accumulation of plasma cells in the bone marrow. Innovative and effective therapeutic approaches that are able to improve the outcome and the survival of MM sufferers, especially the identification of novel natural compounds and investigation of their anti-MM mechanisms, are needed. Here, we investigated the effects and the potential mechanisms against MM of forskolin, a diterpene derived from the medicinal plant Coleus forskohlii, in MM cell line MM.1S. CCK-8 assay showed that forskolin significantly inhibited MM.1S cells viability in a time- and dose-dependent manner. Furthermore, we demonstrated that forskolin induced G2/M phase arrest with a remarkable increase of p-cdc25c, p-cdc2, and a decrease of cyclin B1, indicating the suppression of cdc25C/cdc2/cyclin B pathway. Moreover, we found that forskolin induced mitochondrion-dependent apoptosis which was accompanied by the increase of pro-apoptotic proteins Bax, Bad, Bim and Bid, the decrease of anti-apoptotic proteins Bcl-2 and Bcl-xl, the changes of the mitochondrial membrane potential (MMP) and increase of cleaved caspase-9, cleaved caspase-3 and cleaved PARP. Of note, we demonstrated that forskolin induced a decrease of p-C-Raf, p-MEK, p-ERK1/2 and p-p90Rsk, and an increase of p-PERK, p-eIF2α and CHOP, which indicated that the inhibition of Raf/MEK/ERK pathway and activation of PERK/eIF2α/CHOP pathway were involved, at least partially, in forskolin-induced MM.1S cells apoptosis. These findings confirm the anti-MM action of forskolin and extend the understanding of its anti-MM mechanism in MM.1S cells, as well as reinforcing the evidence for forskolin as a natural chemotherapeutic compound against MM.


Asunto(s)
Apoptosis , Colforsina , Puntos de Control de la Fase G2 del Ciclo Celular , Línea Celular Tumoral , Colforsina/farmacología , Ciclina B1/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Mitocondrias/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
6.
Cells ; 10(7)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34359837

RESUMEN

Induced pluripotent stem (iPS) cells constitute a perfect tool to study human embryo development processes such as myogenesis, thanks to their ability to differentiate into three germ layers. Currently, many protocols to obtain myogenic cells have been described in the literature. They differ in many aspects, such as media components, including signaling modulators, feeder layer constituents, and duration of culture. In our study, we compared three different myogenic differentiation protocols to verify, side by side, their efficiency. Protocol I was based on embryonic bodies differentiation induction, ITS addition, and selection with adhesion to collagen I type. Protocol II was based on strong myogenic induction at the embryonic bodies step with BIO, forskolin, and bFGF, whereas cells in Protocol III were cultured in monolayers in three special media, leading to WNT activation and TGF-ß and BMP signaling inhibition. Myogenic induction was confirmed by the hierarchical expression of myogenic regulatory factors MYF5, MYOD, MYF6 and MYOG, as well as the expression of myotubes markers MYH3 and MYH2, in each protocol. Our results revealed that Protocol III is the most efficient in obtaining myogenic cells. Furthermore, our results indicated that CD56 is not a specific marker for the evaluation of myogenic differentiation.


Asunto(s)
Técnicas de Cultivo de Célula , Medios de Cultivo/farmacología , Cuerpos Embrioides/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Colforsina/farmacología , Colágeno Tipo I/farmacología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Humanos , Indoles/farmacología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Insulina/farmacología , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Oximas/farmacología , Selenio/farmacología , Transferrina/farmacología
7.
Phytomedicine ; 91: 153701, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34438230

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by limited airflow due to pulmonary and alveolar abnormalities from exposure to cigarette smoke (CS). Current therapeutic drugs are limited and the development of novel treatments to prevent disease progression is challenging. Isoforskolin (ISOF) from the plant Coleus forskohlii is an effective activator of adenylyl cyclase (AC) isoforms. Previously we found ISOF could attenuate acute lung injury in animal models, while the effect of ISOF on COPD has not been elucidated. PURPOSE: In this study, we aimed to evaluate the efficacy of ISOF on COPD and reveal its potential mechanisms. METHODS: A rat model of COPD was established by long-term exposure to CS, then the rats were orally administered with ISOF (0.5, 1 and 2 mg/kg). The pulmonary function, lung morphology, inflammatory cells and cytokines in serum or bronchoalveolar lavage fluid (BALF) were evaluated. Transcriptomics, proteomics and network pharmacology analysis were utilized to identify potential mechanisms of ISOF. Droplet digital PCR was used to detect the mRNA expression of AC1-10 in donor lung tissues. AC activation was determined in recombinant human embryonic kidney 293 (HEK293) cells stably expressing human AC isoforms. In addition, ISOF caused trachea relaxation ex vivo were assessed in isolated trachea rings from guinea pigs. RESULTS: ISOF significantly ameliorated pathological damage of lung tissue and improved pulmonary function in COPD rats. ISOF treatment decreased the number of inflammatory cells in peripheral blood, and also the levels of pro-inflammatory cytokines in serum and BALF. Consistent with omics-based analyses, ISOF markedly downregulated the mTOR level in lung tissue. Flow cytometry analysis revealed that ISOF treatment reduced the ratio of Th17/Treg cells in peripheral blood. Furthermore, the expression levels of AC1 and AC2 are relatively higher than other AC isoforms in normal lung tissues, and ISOF could potently activate AC1 and AC2 in vitro and significantly relax isolated guinea pig trachea. CONCLUSION: Collectively, our studies suggest that ISOF exerts its anti-COPD effect by improving lung function, anti-inflammation and trachea relaxation, which may be related to AC activation, mTOR signaling and Th17/Treg balance.


Asunto(s)
Adenilil Ciclasas , Colforsina/farmacología , Enfermedad Pulmonar Obstructiva Crónica , Humo , Animales , Coleus/química , Cobayas , Células HEK293 , Humanos , Fitoquímicos/farmacología , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Ratas , Humo/efectos adversos , Fumar
8.
J Ethnopharmacol ; 273: 113994, 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-33711439

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Barley maiya from gramineous plants (Hordeum vulgare L.) is obtained from ripe fruits through germination and drying. It is often used to treat diseases associated with high prolactin levels. OBJECTIVE: To investigate the anti-hyperprolactinemia (anti-HPRL) mechanisms of total barley maiya alkaloids (TBMA) and hordenine. METHODS: This experiment included 9 groups: Normal group, TBMA group, hordenine group, TBMA + haloperidol group, TBMA + forskolin group, TBMA + 8-bromo-cAMP group, hordenine + haloperidol group, hordenine + forskolin group, and hordenine + 8-bromo-cAMP group. The prolactin (PRL) concentration in the supernatant and the total cAMP concentration in the cells were detected by ELISA. The expression levels of PRL, dopamine D2 receptor (DRD2) and cAMP/PKA/CREB protein were measured by Western Blot. RESULTS: In the TBMA group and the hordenine group, the PRL level in MMQ cells was significantly decreased, but in GH3 cells there was no change. DRD2 expression level was markedly increased, cAMP concentration was decreased, and the activity of PKA and CREB declined in MMQ cells. Compared with the TBMA group, there was a significant decrease of DRD2 expression level, a remarkable increase of PRL secretion and an increase of cAMP/PKA/CREB expression in MMQ cells within the TBMA + haloperidol group. Compared with the forskolin group, there was no significant change in PRL secretion and cAMP/PKA/CREB expression level in MMQ cells within the TBMA + forskolin group. There was a decrease in PRL secretion and cAMP/PKA/CREB expression level in MMQ cells within the TBMA + 8-bromo-cAMP group compared with the 8-bromo-cAMP group. Compared with the hordenine group, DRD2 expression level was significantly decreased, PRL secretion was markedly increased, and cAMP/PKA/CREB expression level was increased in MMQ cells within the hordenine + haloperidol group. There was no significant change in PRL secretion and cAMP/PKA/CREB expression level in MMQ cells within the hordenine + forskolin group compared with the forskolin group and within the hordenine + 8-bromo-cAMP group compared with the 8-bromo-cAMP group. CONCLUSION: TBMA and hordenine can both play an anti-HPRL role via DRD2, and TBMA can also act on PKA targets to exert its anti-HPRL effect. TBMA and hordenine may be potential treatment strategies for HPRL.


Asunto(s)
Alcaloides/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hordeum/química , Prolactina/antagonistas & inhibidores , Tiramina/análogos & derivados , Alcaloides/química , Animales , Antieméticos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colforsina/química , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Haloperidol/farmacología , Ratas , Receptores de Dopamina D2 , Transducción de Señal , Tiramina/química , Tiramina/farmacología
9.
Phytochemistry ; 184: 112654, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33461046

RESUMEN

To understand the compatibility of three native endophytic fungi Phialemoniopsis cornearis (SF1), Macrophomina pseudophaseolina (SF2) and Fusarium redolens (RF1) with Trichoderma viride (TV1) on Coleus forskohlii in enhancing plant growth and forskolin content, field experiments were conducted. Co-inoculation of RF1+TV1 showed significant improvement in plant growth (52%), root biomass (67%), and in-planta forskolin content (94%), followed by treatment with SF2+TV1 and SF1+TV1. qRT-PCR was carried out to quantify expression of five key forskolin biosynthetic pathway genes (CfTPS2, CfTPS3, CfTPS4, CfCYP76AH15, and CfACT1-8) in RF1+TV1 treated C. forskohlii plants. Elevated expression of CfTPS2, CfTPS4, CfCYP76AH15 and CfACT1-8 genes was observed with RF1+TV1 combination as compared to uninoculated C. forskohlii plants. Besides, RF1+TV1 treatment considerably reduced the severity of nematode infection of C. forskohlii plants under field conditions. Thus, congruent properties of F. redolens (RF1) were witnessed with co-inoculation of T. viride (TV1) under field conditions which resulted in enhanced forskolin content, root biomass, and reduced nematode infections in C. forskohlii. Overall, this approach could be an economical and sustainable step towards cultivation of commercially important medicinal plants.


Asunto(s)
Plectranthus , Trichoderma , Ascomicetos , Colforsina/farmacología , Endófitos , Fusarium , Hypocreales , Raíces de Plantas
10.
Mol Pain ; 16: 1744806920970368, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33307981

RESUMEN

The embryonic rat dorsal root ganglion (DRG) neuron-derived 50B11 cell line is a promising sensory neuron model expressing markers characteristic of NGF and GDNF-dependent C-fibre nociceptors. Whether these cells have the capacity to develop into distinct nociceptive subtypes based on NGF- or GDNF-dependence has not been investigated. Here we show that by augmenting forskolin (FSK) and growth factor supplementation with NGF or GDNF, 50B11 cultures can be driven to acquire differential functional responses to common nociceptive agonists capsaicin and ATP respectively. In addition, to previous studies, we also demonstrate that a differentiated neuronal phenotype can be maintained for up to 7 days. Western blot analysis of nociceptive marker proteins further demonstrates that the 50B11 cells partially recapitulate the functional phenotypes of classical NGF-dependent (peptidergic) and GDNF-dependent (non-peptidergic) neuronal subtypes described in DRGs. Further, 50B11 cells differentiated with NGF/FSK, but not GDNF/FSK, show sensitization to acute prostaglandin E2 treatment. Finally, RNA-Seq analysis confirms that differentiation with NGF/FSK or GDNF/FSK produces two 50B11 cell subtypes with distinct transcriptome expression profiles. Gene ontology comparison of the two subtypes of differentiated 50B11 cells to rodent DRG neurons studies shows significant overlap in matching or partially matching categories. This transcriptomic analysis will aid future suitability assessment of the 50B11 cells as a high-throughput nociceptor model for a broad range of experimental applications. In conclusion, this study shows that the 50B11 cell line is capable of partially recapitulating features of two distinct types of embryonic NGF and GDNF-dependent nociceptor-like cells.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Ganglios Espinales/citología , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Factor de Crecimiento Nervioso/farmacología , Nociceptores/citología , Potenciales de Acción/efectos de los fármacos , Adenosina Trifosfato/farmacología , Animales , Biomarcadores/metabolismo , Capsaicina/farmacología , Diferenciación Celular/genética , Línea Celular , Forma de la Célula/efectos de los fármacos , Colforsina/farmacología , Dinoprostona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Variación Genética , Proyección Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nociceptores/efectos de los fármacos , Fenotipo , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Canales de Sodio/metabolismo
11.
Nutrients ; 12(10)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081127

RESUMEN

Glaucoma, a leading cause of irreversible blindness worldwide, is an optic neuropathy characterized by the progressive death of retinal ganglion cells (RGCs). Elevated intraocular pressure (IOP) is recognized as the main risk factor. Despite effective IOP-lowering therapies, the disease progresses in a significant number of patients. Therefore, alternative IOP-independent strategies aiming at halting or delaying RGC degeneration is the current therapeutic challenge for glaucoma management. Here, we review the literature on the neuroprotective activities, and the underlying mechanisms, of natural compounds and dietary supplements in experimental and clinical glaucoma.


Asunto(s)
Productos Biológicos/administración & dosificación , Suplementos Dietéticos , Glaucoma/prevención & control , Glaucoma/terapia , Fármacos Neuroprotectores , Fitoterapia , Amidas/administración & dosificación , Amidas/farmacología , Productos Biológicos/farmacología , Colforsina/administración & dosificación , Colforsina/farmacología , Curcumina/administración & dosificación , Curcumina/farmacología , Citidina Difosfato Colina/administración & dosificación , Citidina Difosfato Colina/farmacología , Etanolaminas/administración & dosificación , Etanolaminas/farmacología , Ácidos Grasos Insaturados/administración & dosificación , Ácidos Grasos Insaturados/farmacología , Flavonoides/administración & dosificación , Flavonoides/farmacología , Ginkgo biloba , Humanos , Melatonina/administración & dosificación , Melatonina/farmacología , Ácidos Palmíticos/administración & dosificación , Ácidos Palmíticos/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Resveratrol/administración & dosificación , Resveratrol/farmacología , Taurina/administración & dosificación , Taurina/farmacología , , Ubiquinona/administración & dosificación , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Vitaminas/administración & dosificación , Vitaminas/farmacología
12.
Biochem Biophys Res Commun ; 529(4): 1186-1194, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819584

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disorder which manifests progressive renal cyst formation and leads to end-stage kidney disease. Around 85% of cases are caused by PKD1 heterozygous mutations, exhibiting relatively poorer renal outcomes than those with mutations in other causative gene PKD2. Although many disease models have been proposed for ADPKD, the pre-symptomatic pathology of the human disease remains unknown. To unveil the mechanisms of early cytogenesis, robust and genetically relevant human models are needed. Here, we report a novel ADPKD model using kidney organoids derived from disease-specific human induced pluripotent stem cells (hiPSCs). Importantly, we found that kidney organoids differentiated from gene-edited heterozygous PKD1-mutant as well as ADPKD patient-derived hiPSCs can reproduce renal cysts. Further, we demonstrated the possibility of ADPKD kidney organoids serving as drug screening platforms. This newly developed model will contribute to identifying novel therapeutic targets, extending the field of ADPKD research.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Riñón/patología , Modelos Biológicos , Organoides/patología , Riñón Poliquístico Autosómico Dominante/patología , Secuencia de Aminoácidos , Secuencia de Bases , Diferenciación Celular/efectos de los fármacos , Línea Celular , Colforsina/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Mutación/genética , Fenotipo , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/genética
13.
Int Immunopharmacol ; 88: 106914, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32829087

RESUMEN

Certain natural products, derived from medicinal plants, exhibit anti-inflammatory properties, but the mechanism of action of many remains unclear. Borrelia burgdorferi spirochetes are responsible for causing Lyme arthritis through activation of the Toll-like receptor (TLR) signaling pathway. In this study, we investigated the mechanisms by which Isoforskolin (ISOF) and Cucurbitacin IIa (CuIIa), compounds derived from Chinese herbs, can exert anti-inflammatory effects by modulating single immunoglobulin interleukin-1 receptor-related receptor (SIGIRR; also known as Toll/interleukin-1 receptor 8, TIR8) and thereby inhibiting B. burgdorferi basic membrane protein A (BmpA)-induced TLR signaling in human macrophages, specifically the THP-1 human monocytic cell line. After THP-1 cells were exposed in vitro to: i) recombinant (r)BmpA, ii) rBmpA and ISOF or iii) rBmpA and CuIIa, Cytotoxicity assay (Cell Counting Kit-8, CCK-8) are used to measure the effects of ISOF and CuIIa on cell viability. Meanwhile, real-time polymerase chain reaction and Western blotting were used to quantify SIGIRR mRNA and protein levels, respectively, at 6, 12, 24 and 48 h time points post-stimulation. In addition, proinflammatory cytokine tumor necrosis factor-α (TNF-α) was determined by ELISA analysis. Our study showed that rBmpA stimulation of THP-1 cells resulted in a drop in SIGIRR levels in THP-1 cells. More importantly, SIGIRR levels increased significantly in rBmpA-stimulated THP-1 cells following ISOF or CuIIa administration, and the results of ELISA analysis suggested that ISOF or CuIIa reduced the secretion of the proinflammatory cytokine TNF-α. In conclusion, These results reveal new possibilities for the treatment of Lyme arthritis.


Asunto(s)
Antiinflamatorios/farmacología , Proteínas Bacterianas/farmacología , Borrelia burgdorferi , Colforsina/análogos & derivados , Colforsina/farmacología , Cucurbitacinas/farmacología , Macrófagos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Macrófagos/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Células THP-1 , Factor de Necrosis Tumoral alfa/metabolismo
14.
J Med Chem ; 63(13): 7369-7391, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32515588

RESUMEN

The hallmark of joint diseases, such as osteoarthritis (OA), is pain, originating from both inflammatory and neuropathic components, and compounds able to modulate the signal transduction pathways of the cannabinoid type-2 receptor (CB2R) can represent a helpful option in the treatment of OA. In this perspective, a set of 18 cannabinoid type-2 receptor (CB2R) ligands was developed based on an unprecedented structure. With the aim of improving the physicochemical properties of previously reported 4-hydroxy-2-quinolone-3-carboxamides, a structural optimization program led to the discovery of isosteric 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamide derivatives. These new compounds are endowed with high affinity for the CB2R and moderate to good selectivity over the cannabinoid type-1 receptor (CB1R), associated with good physicochemical characteristics. As to the functional activity at the CB2R, compounds able to act either as agonists or as inverse agonists/antagonists were discovered. Among them, compound 51 emerged as a potent CB2R agonist able to reduce pain in rats carrying OA induced by injection of monoiodoacetic acid (MIA).


Asunto(s)
Antiasmáticos/farmacología , Condrocitos/efectos de los fármacos , Osteoartritis/tratamiento farmacológico , Receptor Cannabinoide CB2/metabolismo , 4-Quinolonas/química , Animales , Antiasmáticos/química , Células CHO , Agonistas de Receptores de Cannabinoides/síntesis química , Agonistas de Receptores de Cannabinoides/farmacología , Condrocitos/metabolismo , Condrocitos/patología , Colforsina/farmacología , Cricetulus , Modelos Animales de Enfermedad , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Ácido Yodoacético/toxicidad , Ligandos , Masculino , Ratones , Células 3T3 NIH , Osteoartritis/inducido químicamente , Ratas Wistar , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/genética , Relación Estructura-Actividad , Caminata
15.
Nutrients ; 12(4)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340314

RESUMEN

There is indication that nutritional supplements protect retinal cells from degeneration. In a previous study, we demonstrated that dietary supplementation with an association of forskolin, homotaurine, spearmint extract and B vitamins efficiently counteracts retinal dysfunction associated with retinal ganglion cell (RGC) death caused by optic nerve crush. We extended our investigation on the efficacy of dietary supplementation with the use of a mouse model in which RGC degeneration depends as closely as possible on intraocular pressure (IOP) elevation. In this model, injecting the anterior chamber of the eye with methylcellulose (MCE) causes IOP elevation leading to RGC dysfunction. The MCE model was characterized in terms of IOP elevation, retinal dysfunction as determined by electrophysiological recordings, RGC loss as determined by brain-specific homeobox/POU domain protein 3A immunoreactivity and dysregulated levels of inflammatory and apoptotic markers. Except for IOP elevation, dysfunctional retinal parameters were all recovered by dietary supplementation indicating the involvement of non-IOP-related neuroprotective mechanisms of action. Our hypothesis is that the diet supplement may be used to counteract the inflammatory processes triggered by glial cell activation, thus leading to spared RGC loss and the preservation of visual dysfunction. In this respect, the present compound may be viewed as a potential remedy to be added to the currently approved drug therapies for improving RGC protection.


Asunto(s)
Colforsina/farmacología , Suplementos Dietéticos , Glaucoma/patología , Degeneración Nerviosa/prevención & control , Fármacos Neuroprotectores , Fenómenos Fisiológicos de la Nutrición/fisiología , Células Ganglionares de la Retina/efectos de los fármacos , Taurina/análogos & derivados , Complejo Vitamínico B/farmacología , Animales , Colforsina/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Glaucoma/etiología , Presión Intraocular , Masculino , Ratones Endogámicos C57BL , Degeneración Nerviosa/etiología , Degeneración Nerviosa/patología , Hipertensión Ocular/complicaciones , Células Ganglionares de la Retina/patología , Taurina/administración & dosificación , Taurina/farmacología , Complejo Vitamínico B/administración & dosificación
16.
FASEB J ; 34(1): 974-987, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914667

RESUMEN

Drinking behavior and osmotic regulatory mechanisms exhibit clear daily variation which is necessary for achieving the homeostatic osmolality. In mammals, the master clock in the brain's suprachiasmatic nuclei has long been held as the main driver of circadian (24 h) rhythms in physiology and behavior. However, rhythmic clock gene expression in other brain sites raises the possibility of local circadian control of neural activity and function. The subfornical organ (SFO) and the organum vasculosum laminae terminalis (OVLT) are two sensory circumventricular organs (sCVOs) that play key roles in the central control of thirst and water homeostasis, but the extent to which they are subject to intrinsic circadian control remains undefined. Using a combination of ex vivo bioluminescence and in vivo gene expression, we report for the first time that the SFO contains an unexpectedly robust autonomous clock with unusual spatiotemporal characteristics in core and noncore clock gene expression. Furthermore, putative single-cell oscillators in the SFO and OVLT are strongly rhythmic and require action potential-dependent communication to maintain synchrony. Our results reveal that these thirst-controlling sCVOs possess intrinsic circadian timekeeping properties and raise the possibility that these contribute to daily regulation of drinking behavior.


Asunto(s)
Ritmo Circadiano , Hipotálamo/fisiología , Prosencéfalo/fisiología , Animales , Órganos Circunventriculares/fisiología , Colforsina/farmacología , Regulación de la Expresión Génica , Homeostasis , Luminiscencia , Masculino , Ratones , Neuronas/fisiología , Oscilometría , Órgano Subfornical/fisiología , Tetrodotoxina/farmacología
17.
Molecules ; 24(17)2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31450838

RESUMEN

The discovery of new active compounds of natural products tends to be increasingly more challenging due to chemical complexity and unpredictable matrices. Forskolin is an active natural labdane-type diterpenoid ingredient widely used worldwide for the treatment of glaucoma, heart failure, hypertension, diabetes, and asthma, and is expected to be a promising anticancer, anti-inflammation, and anti-HIV agent. In recent years, demand for forskolin in the medicine market has increased dramatically. However, natural forskolin originates exclusively from traditional Indian herb medicine Coleus forskohlii (Willd.) Briq. In a previous study, we isolated a series of diterpenoids including an 8,13-epoxy-14ene labdane carbon skeleton from Blumea aromatica DC. In order to identify alternative plant resources, a novel and effective strategy was proposed for the screening of potential forskolin-type diterpenoids (FSKD) compounds obtained from B. aromatica, using the mass defect filtering (MDF) strategy via ultra-high-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) approach. Within a narrow, well-defined mass defect range, the strategy developed could significantly improve the detection efficiency of selected FSKD compounds by filtering out certain major or moderate interference compounds. Additionally, the MS/MS cleavage behavior and the characteristic diagnostic ions of the FSKD compounds were proposed to be used in aiding structural identification of the filtration compounds. As a result, a total of 38 FSKD of B. aromatica were filtered out and tentatively identified. To the best of our knowledge, it was the first time that these forskolin-type diterpenoids were identified in B. aromatica, which significantly expands our understanding of the chemical constituents of Blumea species, and allows B. aromatica to be used as a potential alternative plant resource that contains these forskolin-type active compounds. The strategy proposed was proven efficient and reliable for the discovery of novel compounds of herbal extracts.


Asunto(s)
Asteraceae/química , Colforsina/química , Colforsina/farmacología , Diterpenos/química , Diterpenos/farmacología , Cromatografía Líquida de Alta Presión , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
18.
J Gen Physiol ; 151(9): 1094-1115, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31358556

RESUMEN

Somatostatin secretion from pancreatic islet δ-cells is stimulated by elevated glucose levels, but the underlying mechanisms have only partially been elucidated. Here we show that glucose-induced somatostatin secretion (GISS) involves both membrane potential-dependent and -independent pathways. Although glucose-induced electrical activity triggers somatostatin release, the sugar also stimulates GISS via a cAMP-dependent stimulation of CICR and exocytosis of somatostatin. The latter effect is more quantitatively important and in mouse islets depolarized by 70 mM extracellular K+ , increasing glucose from 1 mM to 20 mM produced an ∼3.5-fold stimulation of somatostatin secretion, an effect that was mimicked by the application of the adenylyl cyclase activator forskolin. Inhibiting cAMP-dependent pathways with PKI or ESI-05, which inhibit PKA and exchange protein directly activated by cAMP 2 (Epac2), respectively, reduced glucose/forskolin-induced somatostatin secretion. Ryanodine produced a similar effect that was not additive to that of the PKA or Epac2 inhibitors. Intracellular application of cAMP produced a concentration-dependent stimulation of somatostatin exocytosis and elevation of cytoplasmic Ca2+ ([Ca2+]i). Both effects were inhibited by ESI-05 and thapsigargin (an inhibitor of SERCA). By contrast, inhibition of PKA suppressed δ-cell exocytosis without affecting [Ca2+]i Simultaneous recordings of electrical activity and [Ca2+]i in δ-cells expressing the genetically encoded Ca2+ indicator GCaMP3 revealed that the majority of glucose-induced [Ca2+]i spikes did not correlate with δ-cell electrical activity but instead reflected Ca2+ release from the ER. These spontaneous [Ca2+]i spikes are resistant to PKI but sensitive to ESI-05 or thapsigargin. We propose that cAMP links an increase in plasma glucose to stimulation of somatostatin secretion by promoting CICR, thus evoking exocytosis of somatostatin-containing secretory vesicles in the δ-cell.


Asunto(s)
Calcio/metabolismo , AMP Cíclico/metabolismo , Glucosa/farmacología , Páncreas/citología , Células Secretoras de Somatostatina/efectos de los fármacos , Somatostatina/metabolismo , Adyuvantes Inmunológicos/farmacología , Animales , Membrana Celular/fisiología , Colforsina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Células Secretoras de Somatostatina/metabolismo , Tapsigargina/farmacología
19.
Biomed Res Int ; 2019: 1345402, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984775

RESUMEN

Remodelling of the peripheral lung tissue and fibrotic foci are the main pathologies of idiopathic pulmonary fibrosis (IPF), a disease that is difficult to treat. TGF-ß activation of peripheral lung fibroblasts is indicated as the major cause of tissue remodelling in IPF and is resulting in fibroblast hyperplasia and deposition of extracellular matrix. Soluble guanylate cyclase (sGC) stimulators combined with cyclic AMP (cAMP) activators have been reported to reduce proliferation and matrix deposition in other conditions than IPF. Therefore, this drug combination may present a novel therapeutic concept for IPF. This study investigated the effect of BAY 41-2272 and forskolin on remodelling parameters in primary human lung fibroblasts. The study determined TGF-ß induced proliferation by direct cell counts after 3 days; and deposition of collagen type-I, type III, and fibronectin. BAY 41-2272 significantly reduced TGF-ß induced fibroblast proliferation, but did not reduce viability. This inhibitory effect was further supported by forskolin. Both BAY 41-2272 and forskolin alone reduced TGF-ß induced collagen and fibronectin de novo synthesis as well as deposition. This effect was significantly stronger when the two compounds were combined. Furthermore, the TGF-ß induced expression of fibrilar α-smooth muscle actin was reduced by BAY 41-2272 and this effect was strengthened by forskolin. In addition, BAY 41-2272 and forskolin reduced TGF-ß induced ß-catenin. All effects of BAY 41-2272 were concentration dependent. The findings suggest that BAY 41-2272 in combination with cAMP stimulation may present a novel therapeutic strategy to reduce tissue remodelling in IPF.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Pulmón/efectos de los fármacos , Factor de Crecimiento Transformador beta/genética , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Colforsina/farmacología , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , AMP Cíclico/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibronectinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Pulmón/patología , Cultivo Primario de Células , Pirazoles/farmacología , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , beta Catenina/genética
20.
Phytother Res ; 33(3): 602-609, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30637903

RESUMEN

The principal active component of isoforskolin (ISOF) is from the plant Coleus forskohlii, native to China, which has attracted much attention for its biological effects. We hypothesize that ISOF and forskolin (FSK) pretreatment attenuates inflammation induced by lipopolysaccharide (LPS) related to toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor kappa B (NF-κB) signaling. Mononuclear leukocytes (MLs) from healthy donors' blood samples were separated by using density gradient centrifugation. Protein levels of TLR4, MyD88, and NF-κB were detected using western blot and inflammatory cytokines interleukin (IL) 1ß, IL-2, IL-6, IL-21, IL-23, tumor necrosis factor (TNF) α, and TNF-ß were tested by enzyme-linked immunosorbent assay and Quantibody array in MLs. Our results showed that LPS augmented the protein levels of TLR4, MyD88, and NF-κB in MLs and the production of IL-1ß, IL-2, IL-6, IL-21, IL-23, TNF-α, and TNF-ß in supernatants of MLs. Despite treatment with ISOF and FSK prior to LPS, the protein levels of TLR4, MyD88, NF-κB, IL-1ß, IL-2, IL-6, IL-21, IL-23, TNF-α, and TNF-ß in MLs were apparently decreased. roflumilast (RF) and dexamethasone (DM) had a similar effect on MLs with ISOF and FSK. Our results, for the first time, have shown that ISOF and FSK attenuate inflammation in MLs induced by LPS through down-regulating protein levels of IL-1ß and TNF-α, in which TLR4/MyD88/NF-κB signal pathway could be involved.


Asunto(s)
Colforsina/farmacología , Inflamación/tratamiento farmacológico , Leucocitos Mononucleares/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/fisiología , FN-kappa B/fisiología , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/fisiología , Citocinas/análisis , Humanos , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA