Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Med Sci ; 20(8): 1000-1008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37484801

RESUMEN

In traditional Korean medicine, the 16-herb concoction Bojanggunbi-tang (BGT) is used to treat various gastrointestinal (GI) diseases. In this study, we investigated the regulatory mechanism underlying the influence of BGT on the interstitial cells of Cajal (ICCs), pacemaker cells in the GI tract. Within 12 h of culturing ICCs in the small intestines of mice, the pacemaker potential of ICCs was recorded through an electrophysiological method. An increase in the BGT concentration induced depolarization and decreased firing frequency. This reaction was suppressed by cholinergic receptor muscarinic 3 (CHRM3) antagonists, as well as 5-hydroxytryptamine receptor (5HTR) 3 and 4 antagonists. Nonselective cation channel inhibitors, such as thapsigargin and flufenamic acid, along with protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) inhibitors, also suppressed the BGT reaction. Guanylate cyclase and protein kinase G (PKG) antagonists inhibited BGT, but adenylate cyclase and protein kinase A antagonists had no effect. In conclusion, we demonstrated that BGT acts through CHRM3, 5HTR3, and 5HTR4 to regulate intracellular Ca2+ concentrations and the PKC, MAPK, guanylate cycle, and PKG signaling pathways.


Asunto(s)
Células Intersticiales de Cajal , Animales , Ratones , Potenciales de la Membrana , Células Intersticiales de Cajal/metabolismo , Transducción de Señal , Intestino Delgado/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Colinérgicos/metabolismo , Colinérgicos/farmacología , Ratones Endogámicos BALB C , Células Cultivadas
2.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901896

RESUMEN

Mild thiamine deficiency aggravates Zn accumulation in cholinergic neurons. It leads to the augmentation of Zn toxicity by its interaction with the enzymes of energy metabolism. Within this study, we tested the effect of Zn on microglial cells cultivated in a thiamine-deficient medium, containing 0.003 mmol/L of thiamine vs. 0.009 mmol/L in a control medium. In such conditions, a subtoxic 0.10 mmol/L Zn concentration caused non-significant alterations in the survival and energy metabolism of N9 microglial cells. Both activities of the tricarboxylic acid cycle and the acetyl-CoA level were not decreased in these culture conditions. Amprolium augmented thiamine pyrophosphate deficits in N9 cells. This led to an increase in the intracellular accumulation of free Zn and partially aggravated its toxicity. There was differential sensitivity of neuronal and glial cells to thiamine-deficiency-Zn-evoked toxicity. The co-culture of neuronal SN56 with microglial N9 cells reduced the thiamine-deficiency-Zn-evoked inhibition of acetyl-CoA metabolism and restored the viability of the former. The differential sensitivity of SN56 and N9 cells to borderline thiamine deficiency combined with marginal Zn excess may result from the strong inhibition of pyruvate dehydrogenase in neuronal cells and no inhibition of this enzyme in the glial ones. Therefore, ThDP supplementation can make any brain cell more resistant to Zn excess.


Asunto(s)
Microglía , Deficiencia de Tiamina , Humanos , Microglía/metabolismo , Acetilcoenzima A/metabolismo , Deficiencia de Tiamina/metabolismo , Neuronas Colinérgicas/metabolismo , Tiamina Pirofosfato/metabolismo , Colinérgicos/metabolismo , Zinc/metabolismo
3.
Niger J Physiol Sci ; 38(1): 91-99, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38243363

RESUMEN

Decline in cholinergic function and oxidative/nitrosative stress play a central role in Alzheimer's disease (AD). Previous quantitative HPLC profiling analysis has revealed the presence of Pinostrobin, formononetin, vitexin and other neuroprotective flavonoids in Cajanus cajan seed extract. This study was designed to investigate the protective action of Cajanus cajan ethanol seed extract (CC) on learning and memory functions using scopolamine mouse model of amnesia. Materials and methods: Adult mice were pretreated with CC (50, 100, or 200mg/kg, p.o) or vehicle (10ml/kg, p.o) for 16 days consecutively. Scopolamine, a competitive muscarinic cholinergic receptor antagonist (1mg/kg, i.p.) was given an hour after CC pretreatment from days 3 to 16.  The mice were subjected to behavioural tests from day 11 (open field test (OFT)/ Y-maze test (YMT) and Morris water maze task (MWM) from days 12-16. Animals were euthanized 1h after behavioral test on day 16 and discrete brain regions isolated for markers of oxidative stress and cholinergic signaling. Molecular docking analysis was undertaken to predict the possible mechanism(s) of CC-induced anti-amnesic action.  pre-administration of CC significantly reversed working memory and learning deficits caused by scopolamine in YMT and MWM tests, respectively. Moreover, CC prevented scopolamine-induced oxidative and nitrosative stress radicals in the hippocampus evidenced in significant increase in glutathione (GSH) level, superoxide dismutase (SOD) and catalase (CAT) activities with a marked decrease in malondialdehyde (MDA) production, as well as significant inhibition of hippocampal scopolamine-induced increase in acetylcholinesterase activity by CC. The molecular docking analysis showed that out of the 19 compounds, the following had the highest binding affinity; Pinostrobin (-8.7 Kcal/mol), friedeline (-7.5kCal/mol), and lupeol (-8.2 Kcal/mol), respectively, to neuronal muscarinic M1 acetylcholine receptor, α7 nicotinic acetylcholine receptor and amyloid beta peptide binding pockets, which further supports the ability of CC to enhance neuronal cholinergic signaling and possible inhibition of amyloid beta aggregation. This study showed that Cajanus cajan seeds extract improved working memory and learning through enhancement of cholinergic signaling, antioxidant capacity and reduction in amyloidogenesis.


Asunto(s)
Antioxidantes , Cajanus , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Escopolamina/farmacología , Cajanus/metabolismo , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/farmacología , Péptidos beta-Amiloides/efectos adversos , Péptidos beta-Amiloides/metabolismo , Simulación del Acoplamiento Molecular , Aprendizaje por Laberinto , Amnesia/inducido químicamente , Amnesia/tratamiento farmacológico , Amnesia/prevención & control , Estrés Oxidativo , Glutatión/metabolismo , Transmisión Sináptica , Hipocampo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Colinérgicos/efectos adversos , Colinérgicos/metabolismo , Mecanismos de Defensa , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo
4.
Nutrients ; 14(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296985

RESUMEN

Butyrate, a by-product of gut bacteria fermentation as well as the digestion of fat in mother's milk, exerts a wide spectrum of beneficial effects in the gastrointestinal tissues. The present study aimed to determine the effects of sodium butyrate on small intestine contractility in neonatal piglets. Piglets were fed milk formula alone (group C) or milk formula supplemented with sodium butyrate (group B). After a 7-day treatment period, isometric recordings of whole-thickness segments of the duodenum and middle jejunum were obtained by electric field stimulation under the influence of increasing doses of Ach (acetylocholine) in the presence of TTX (tetrodotoxin) and atropine. Moreover, structural properties of the intestinal wall were assessed, together with the expression of cholinergic and muscarinic receptors (M1 and M2). In both intestinal segments (duodenum and middle jejunum), EFS (electric field stimulation) impulses resulted in increased contractility and amplitude of contractions in group B compared to group C. Additionally, exposure to dietary butyrate led to a significant increase in tunica muscularis thickness in the duodenum, while mitotic and apoptotic indices were increased in the middle jejunum. The expression of M1 and M2 receptors in the middle jejunum was significantly higher after butyrate treatment. The results indicate increased cholinergic signaling and small intestinal growth and renewal in response to feeding with milk formula enriched with sodium butyrate in neonatal piglets.


Asunto(s)
Intestino Delgado , Leche , Porcinos , Animales , Ácido Butírico/farmacología , Ácido Butírico/metabolismo , Leche/metabolismo , Tetrodotoxina/metabolismo , Tetrodotoxina/farmacología , Intestino Delgado/metabolismo , Colinérgicos/metabolismo , Colinérgicos/farmacología , Derivados de Atropina/metabolismo , Derivados de Atropina/farmacología
5.
Elife ; 112022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35815934

RESUMEN

The tonic activity of striatal cholinergic interneurons (CINs) is modified differentially by their afferent inputs. Although their unitary synaptic currents are identical, in most CINs cortical inputs onto distal dendrites only weakly entrain them, whereas proximal thalamic inputs trigger abrupt pauses in discharge in response to salient external stimuli. To test whether the dendritic expression of the active conductances that drive autonomous discharge contribute to the CINs' capacity to dissociate cortical from thalamic inputs, we used an optogenetics-based method to quantify dendritic excitability in mouse CINs. We found that the persistent sodium (NaP) current gave rise to dendritic boosting, and that the hyperpolarization-activated cyclic nucleotide-gated (HCN) current gave rise to a subhertz membrane resonance. This resonance may underlie our novel finding of an association between CIN pauses and internally-generated slow wave events in sleeping non-human primates. Moreover, our method indicated that dendritic NaP and HCN currents were preferentially expressed in proximal dendrites. We validated the non-uniform distribution of NaP currents: pharmacologically; with two-photon imaging of dendritic back-propagating action potentials; and by demonstrating boosting of thalamic, but not cortical, inputs by NaP currents. Thus, the localization of active dendritic conductances in CIN dendrites mirrors the spatial distribution of afferent terminals and may promote their differential responses to thalamic vs. cortical inputs.


Asunto(s)
Interneuronas , Tálamo , Animales , Colinérgicos/metabolismo , Cuerpo Estriado/fisiología , Dendritas/fisiología , Interneuronas/fisiología , Ratones , Tálamo/fisiología
6.
Tissue Eng Regen Med ; 19(5): 1063-1075, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35857260

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) are considered a potential tool for regenerating damaged tissues due to their great multipotency into various cell types. Here, we attempted to find the appropriate conditions for neuronal differentiation of tonsil-derived MSCs (TMSCs) and expand the potential application of TMSCs for treating neurological diseases. METHODS: The TMSCs were differentiated in DMEM/F-12 (Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12) supplemented with various neurotrophic factors for 7-28 days to determine the optimal neuronal differentiation condition for the TMSCs. The morphologies as well as the levels of the neural markers and neurotransmitters were assessed to determine neuronal differentiation potentials and the neuronal lineages of the differentiated TMSCs. RESULTS: Our initial study demonstrated that DMEM/F12 supplemented with 50 ng/mL basic fibroblast growth factor with 10 µM forskolin was the optimal condition for neuronal differentiation for the TMSCs. TMSCs had higher protein expression of neuronal markers, including neuron-specific enolase (NSE), GAP43, postsynaptic density protein 95 (PSD95), and synaptosomal-associated protein of 25 kDa (SNAP25) compared to the undifferentiated TMSCs. Immunofluorescence staining also validated the increased mature neuron markers, NeuN and synaptophysin, in the differentiated TMSCs. The expression of glial fibrillar acidic protein and ionized calcium-binding adaptor molecule 1 the markers of astrocytes and microglia, were also slightly increased. Additionally, the differentiated TMSCs released a significantly higher level of acetylcholine, the cholinergic neurotransmitter, as analyzed by the liquid chromatography-tandem mass spectrometry and showed an enhanced choline acetyltransferase immunoreactivity compared to the undifferentiated cells. CONCLUSION: Our study suggests that the optimized condition favors the TMSCs to differentiate into cholinergic neuron-like phenotype, which could be used as a possible therapeutic tool in treating certain neurological disorders such as Alzheimer's disease.


Asunto(s)
Células Madre Mesenquimatosas , Tonsila Palatina , Acetilcolina/metabolismo , Calcio/metabolismo , Colina O-Acetiltransferasa/metabolismo , Colinérgicos/metabolismo , Colforsina/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Sinaptofisina/metabolismo
7.
J Food Biochem ; 46(3): e14050, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34981523

RESUMEN

Copper (Cu) is an essential metal and it is important for metabolism. However, in high concentrations, it becomes toxic. Metal-induced toxicity is the cause of many neurodegenerative diseases. So it is necessary to search mechanisms to find ways of healthy aging. Natural compounds and diets based on fruits are increasingly common and could lead to a healthy life. Pitaya (Hylocereus undatus) is a tropical and Latin American, fruit that is gaining more popularity due to its antioxidant properties. Here, we evaluate the preventive and curative effect of different doses of microencapsulated pulp H. undatus extract on copper-induced toxicity. For this we use the nematode Caenorhabditis elegans, to investigate the effects of pitaya extract on behavior, lipid peroxidation, antioxidant chaperon, and cholinergic nervous system (ColNS). Results showed behavioral changes, decreased cell death biomarkers, and lipid peroxidation caused by copper, and these toxic effects were prevented and reverted by Pitaya's extract. After all, the extract can be used in diet as a supplement and studied to treat or prevent specific diseases, some of them linked to contamination and senility-related conditions. PRACTICAL APPLICATIONS: This research has been aimed to provide the uses of Hylocereus undatus microencapsulated pulp extract for the prevention and treatment of copper-induced toxicity. We have been shown that Pitaya is a good source of antioxidant compounds that can ameliorate the antioxidant system as well as the cholinergic nervous system avoiding behavior changes before and after the metal toxicity of copper. Therefore, the potential applications and common use of this extract can serve as food supplementation to prevent metal oxidative damage as well as to repair clinical cases of copper poisoning.


Asunto(s)
Cactaceae , Frutas , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Caenorhabditis elegans , Colinérgicos/metabolismo , Cobre/toxicidad , Frutas/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología
8.
Mar Drugs ; 19(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34436273

RESUMEN

The anti-amnesic effect of a mixture (4:6 = phlorotannin:fucoidan from Ecklonia cava, P4F6) was evaluated on amyloid-beta peptide (Aß)-induced cognitive deficit mice. The cognitive function was examined by Y-maze, passive avoidance, and Morris water maze tests, and the intake of the mixture (P4F6) showed an ameliorating effect on Aß-induced learning and memory impairment. After the behavioral tests, superoxide dismutase (SOD) activity and thiobarbituric acid-reactive substances (TBARS) contents were confirmed in brain tissue, and in the results, the mixture (P4F6) attenuated Aß-induced oxidative stress. In addition, mitochondrial activity was evaluated by mitochondrial reactive oxygen species (ROS) content, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, and mitochondria-mediated apoptotic signaling pathway, and the mixture (P4F6) enhanced mitochondrial function. Furthermore, the mixture (P4F6) effectively regulated tau hyperphosphorylation by regulating the protein kinase B (Akt) pathway, and promoted brain-derived neurotrophic factor (BDNF) in brain tissue. Moreover, in the cholinergic system, the mixture (P4F6) ameliorated acetylcholine (ACh) content by regulating acetylcholinesterase (AChE) activity and choline acetyltransferase (ChAT) expression in brain tissue. Based on these results, we suggest that this mixture of phlorotannin and fucoidan (P4F6) might be a substance for improving cognitive function by effectively regulating cognition-related molecules.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Kelp , Fármacos Neuroprotectores/administración & dosificación , Polisacáridos/administración & dosificación , Taninos/administración & dosificación , Acetilcolina/metabolismo , Animales , Organismos Acuáticos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Colinérgicos/metabolismo , Modelos Animales de Enfermedad , Quimioterapia Combinada , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Mitocondrias/metabolismo , Fármacos Neuroprotectores/farmacología , Fitoterapia , Polisacáridos/farmacología , Taninos/farmacología
9.
Sci Rep ; 11(1): 16080, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373525

RESUMEN

We assessed the structure-function relationship of the human cholinergic system and hypothesized that structural measures are associated with short-latency sensory afferent inhibition (SAI), an electrophysiological measure of central cholinergic signal transmission. Healthy volunteers (n = 36) and patients with mild cognitive impairment (MCI, n = 20) underwent median nerve SAI and 3T structural MRI to determine the volume of the basal forebrain and the thalamus. Patients with MCI had smaller basal forebrain (p < 0.001) or thalamus volumes (p < 0.001) than healthy volunteers. Healthy SAI responders (> 10% SAI) had more basal forebrain volume than non-responders (p = 0.004) or patients with MCI (p < 0.001). More basal forebrain volume was associated with stronger SAI in healthy volunteers (r = 0.33, p < 0.05) but not patients with MCI. There was no significant relationship between thalamus volumes and SAI. Basal forebrain volume is associated with cholinergic function (SAI) in healthy volunteers but not in MCI patients. The in-vivo investigation of the structure-function relationship could further our understanding of the human cholinergic system in patients with suspected or known cholinergic system degeneration.


Asunto(s)
Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiopatología , Colinérgicos/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Tálamo/metabolismo , Tálamo/fisiopatología , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Inhibición Neural/fisiología , Pruebas Neuropsicológicas
10.
Indian J Pharmacol ; 53(1): 50-59, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33975999

RESUMEN

AIM: The present study explored Cynodon dactylon hydro-ethanolic extract (CDE) effect on scopolamine-induced amnesic rats. MATERIALS AND METHODS: C. dactylon extract was subjected to antioxidant (DPPH and H2O2) and acetylcholinesterase enzyme tests by in vitro methods. Scopolamine (1 mg/kg, i.p) was administered to rats except for normal control. Donepezil (3 mg/kg, p.o), CDE (100, 200, and 400 mg/kg p.o) were administered to treatment groups. Behavioral paradigm: Morris water maze (MWM), elevated plus maze (EPM), and passive avoidance test (PAT) were conducted. Later, rats were sacrificed and brain homogenate was tested for levels of acetylcholinesterase, glutathione, and lipid peroxidase. Histopathology examination of cortex and hippocampus of all the groups was done. STATISTICAL METHOD: The statistical methods used were ANOVA and Tukey's post hoc test. RESULTS: CDE antioxidant activity was demonstrated by decreasing DPPH and H2O2 levels confirmed through in vitro analysis. Treatment group rats reversed scopolamine induced amnesia by improvement in spatial memory, decreased transfer latency and increased step through latency significantly (P<0.001) in behavior models such as morris water maze, elevated plus maze and passive avoidance task respectively. CDE modulated acetylcholine transmission by decreased acetylcholinesterase enzyme level (P < 0.001) and scavenging scopolamine-induced oxidative stress by increased reduced glutathione levels and decreased lipid peroxidation levels in the rat brain. CDE and donepezil-treated rats showed mild neurodegeneration in comparison to scopolamine-induced severe neuronal damage on histopathology examination. CONCLUSION: C. dactylon extract provides evidence of anti-amnesic activity by the mechanism of decreased acetylcholinesterase enzyme level and increased antioxidant levels in scopolamine-induced amnesia in rats.


Asunto(s)
Amnesia/prevención & control , Cynodon , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Amnesia/inducido químicamente , Animales , Colinérgicos/metabolismo , Modelos Animales de Enfermedad , Aprendizaje por Laberinto/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Extractos Vegetales/uso terapéutico , Ratas , Ratas Wistar , Escopolamina
11.
Int J Nanomedicine ; 15: 6339-6353, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922005

RESUMEN

INTRODUCTION: Epilepsy is a chronic neurological condition characterized by behavioral, molecular, and neurochemical alterations. Current antiepileptic drugs are associated with various adverse impacts. The main goal of the current study is to investigate the possible anticonvulsant effect of selenium nanoparticles (SeNPs) against pentylenetetrazole (PTZ)-mediated epileptic seizures in mice hippocampus. Sodium valproate (VPA) was used as a standard anti-epileptic drug. METHODS: Mice were assigned into five groups (n=15): control, SeNPs (5 mg/kg, orally), PTZ (60 mg/kg, intraperitoneally), SeNPs+PTZ and VPA (200 mg/kg)+PTZ. All groups were treated for 10 days. RESULTS: PTZ injection triggered a state of oxidative stress in the hippocampal tissue as represented by the elevated lipoperoxidation, heat shock protein 70 level, and nitric oxide formation while decreased glutathione level and antioxidant enzymes activity. Additionally, the blotting analysis showed downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the epileptic mice. A state of neuroinflammation was recorded following the developed seizures represented by the increased pro-inflammatory cytokines. Moreover, neuronal apoptosis was recorded following the development of epileptic convulsions. At the neurochemical level, acetylcholinesterase activity and monoamines content were decreased in the epileptic mice, accompanied by high glutamate and low GABA levels in the hippocampal tissue. However, SeNP supplementation was found to delay the onset and decreased the duration of tonic, myoclonic, and generalized seizures following PTZ injection. Moreover, SeNPs were found to provide neuroprotection through preventing the development of oxidative challenge via the upregulation of Nrf2 and HO-1, inhibiting the inflammatory response and apoptotic cascade. Additionally, SeNPs reversed the changes in the activity and levels of neuromodulators following the development of epileptic seizures. CONCLUSION: The obtained results suggest that SeNPs could be used as a promising anticonvulsant drug due to its potent antioxidant, anti-inflammatory, and neuromodulatory activities.


Asunto(s)
Nanopartículas/química , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Convulsiones/tratamiento farmacológico , Selenio/uso terapéutico , Aminoácidos , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Anticonvulsivantes/efectos adversos , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Apoptosis/efectos de los fármacos , Colinérgicos/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Ratones , Nanopartículas/administración & dosificación , Neuronas/efectos de los fármacos , Neurotransmisores/metabolismo , Oxidación-Reducción , Pentilenotetrazol , Convulsiones/inducido químicamente , Convulsiones/prevención & control , Selenio/administración & dosificación , Selenio/farmacología
12.
Cell Rep ; 28(4): 1003-1014.e3, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340139

RESUMEN

The release of acetylcholine from cholinergic interneurons (ChIs) directly modulates striatal output via muscarinic receptors on medium spiny neurons (MSNs). While thalamic inputs provide strong excitatory input to ChIs, cortical inputs primarily regulate MSN firing. Here, we found that, while thalamic inputs do drive ChI firing, a subset of ChIs responds robustly to stimulation of cortical inputs as well. To examine how input-evoked changes in ChI firing patterns drive acetylcholine release at cholinergic synapses onto MSNs, muscarinic M4-receptor-mediated synaptic events were measured in MSNs overexpressing G-protein gated potassium channels (GIRK2). Stimulation of both cortical and thalamic inputs was sufficient to equally drive muscarinic synaptic events in MSNs, resulting from the broad synaptic innervation of the stimulus-activated ChI population across many MSNs. Taken together, this indicates an underappreciated role for the extensive cholinergic network, in which small populations of ChIs can drive substantial changes in post-synaptic receptor activity across the striatum.


Asunto(s)
Corteza Cerebral/fisiología , Colinérgicos/metabolismo , Neuronas Colinérgicas/fisiología , Neostriado/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Acetilcolina/metabolismo , Potenciales de Acción , Animales , Dendritas/fisiología , Femenino , Interneuronas/fisiología , Masculino , Ratones Endogámicos C57BL , Plasticidad Neuronal , Optogenética , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología
13.
J Appl Toxicol ; 36(2): 211-22, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25943520

RESUMEN

Hexachlorophene (HCP) has been shown to induce myelin vacuolation due to intramyelinic edema of the nerve fibers in animal neural tissue. We investigated the maternal exposure effect of HCP on hippocampal neurogenesis in the offspring of pregnant mice supplemented with 0 (control), 33 or 100 ppm HCP in diet from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, offspring as examined in males exhibited decreased granule cell lineage populations expressing paired box 6, sex-determining region Y-box 2 and eomesodermin in the hippocampal subgranular zone (SGZ) accompanied by myelin vacuolation involving white matter tracts of the hippocampal fimbria at ≥ 33 ppm. However, SGZ cellular populations expressing brain lipid binding protein and doublecortin were unchanged at any dose. Transcript expression of cholinergic receptor genes, Chrna4 and Chrnb2, and glutamate receptor genes, Grm1 and Grin2d, examined at 100 ppm, decreased in the dentate gyrus. HCP exposure did not alter the number of proliferating or apoptotic cells in the SGZ, or reelin- or calcium-binding protein-expressing γ-aminobutyric acid (GABA)ergic interneurons in the dentate hilus, on PND 21 and PND 77. All neurogenesis-related changes observed in HCP-exposed offspring on PND 21 disappeared on PND 77, suggesting that maternal HCP exposure at ≥ 33 ppm reversibly decreased type 2 intermediate-stage progenitor cells in the hippocampal neurogenesis. Myelin vacuolation might be responsible for changes in neurogenesis possibly by reducing nerve conduction velocity of cholinergic inputs from the septal-hippocampal pathway to granule cell lineages and/or GABAergic interneurons, and of glutamatergic inputs to granule cell lineages.


Asunto(s)
Hexaclorofeno/toxicidad , Hipocampo/efectos de los fármacos , Exposición Materna/efectos adversos , Vaina de Mielina/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Células Madre/efectos de los fármacos , Animales , Colinérgicos/metabolismo , Fármacos actuantes sobre Aminoácidos Excitadores/metabolismo , Femenino , Masculino , Ratones , Embarazo , Proteína Reelina
14.
Chin J Integr Med ; 18(9): 699-707, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22936324

RESUMEN

OBJECTIVE: To observe the effects of repeated electroacupuncture (EA) of Zusanli (ST36)- Yanglingquan (GB34) on hypothalamic acetylcholinesterase (AchE) and vesicular acetylcholine (ACh) transporter (VAChT) activities and choline acetyltransferase (ChAT) mRNA and muscarinic M1 receptor (M1R) mRNA expression in chronic constrictive injury (CCI) and/or ovariectomy (OVX) rats so as to reveal its underlying mechanism in cumulative analgesia. METHODS: A total of 103 female Wistar rats were randomly divided into normal control (n =15), CCI (n =15), CCI+EA2d (n =15), CCI+EA2W (n =15), OVX+CCI =13), OVX+CCI+EA2d (n =15), and OVX+CCI+EA2W groups (n =15). CCI model was established by ligature of the unilateral sciatic nerve with surgical suture. Memory impairment model was established by removal of the bilateral ovaries. Morris water test was conducted to evaluate the OVX rats' memory learning ability, and the thermal pain threshold (PT) of the bilateral paws was detected the next morning after EA. EA (2/15 Hz, 1 mA) was applied to bilateral ST36-GB34 for 30 min, once daily for 2 days or 2 weeks, respectively. Hypothalamic AChE activity was detected by histochemistry, VAChT immunoactivity was determined by immunohistochemistry, and ChAT mRNA and M1R mRNA expressions were assayed by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: In comparison with the normal control group, the AChE activity in hypothalamic arcuate nucleus (ARC) and supraoptic nucleus (SON) regions of CCI group, AChE activity in paraventricular nucleus (PVN), ARC, and SON regions of OVX+CCI group, and hypothalamic muscarinic M1R mRNA expression levels in both CCI and OVX+CCI groups were down-regulated significantly (P <0.05). Compared with the CCI group, the AChE activities in hypothalamic ARC and SON regions of CCI+EA2d and CCI+EA2W groups and PVN region of CCI+EA2W group and hypothalamic ChAT mRNA and M1R mRNA expression levels in CCI+EA2W group were up-regulated considerably (P <0.05). In comparison with the OVX+CCI group, the AChE activities in PVN, ARC, and SON regions and the expressions of hypothalamic ChAT mRNA and VAChT in ARC region of OVX+CCI+EA2W group were up-regulated remarkably (P <0.05). The effects in rats of CCI+EA2W group were evidently superior to those of OVX+CCI+EA2d group in up-regulating AChE activities in PVN, ARC, and SON regions, VAChT immunoactivity in ARC region, and expression levels of hypothalamic ChAT mRNA and M1R mRNA (P <0.05). Similar situations were found in OVX+CCI rats after EA2W. It suggested a cumulative effect after repeated EA of ST36-GB34. Comparison between CCI+EA2W and OVX+CCI+EA2W groups showed that the effects in rats of the former group were evidently better than those of the latter group in up-regulating AChE activity in ARC and SON regions and the expressions of hypothalamic ChAT mRNA and M1 mRNA (P <0.05), suggesting a reduction of EA2W effects after OVX. CONCLUSION: Repeated EA can significantly up-regulate AChE and VAChT activities and ChAT mRNA and M1R mRNA expressions in the hypothalamus of CCI and OVX+CCI rats, which may contribute to the cumulative analgesic effects of repeated EA and be closely related to the animals' neuromemory ability.


Asunto(s)
Analgesia por Acupuntura , Colinérgicos/metabolismo , Dolor Crónico/metabolismo , Electroacupuntura , Hipotálamo/metabolismo , Hipotálamo/patología , Neuralgia/metabolismo , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Animales , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Dolor Crónico/enzimología , Dolor Crónico/patología , Constricción Patológica , Femenino , Regulación de la Expresión Génica , Hipotálamo/enzimología , Neuralgia/enzimología , Neuralgia/patología , Ovariectomía , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
15.
J Neurosci ; 31(31): 11133-43, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21813675

RESUMEN

Tonically active neurons in the primate striatum, believed to be cholinergic interneurons (CINs), respond to sensory stimuli with a pronounced pause in firing. Although inhibitory and neuromodulatory mechanisms have been implicated, it is not known how sensory stimuli induce firing pauses in CINs in vivo. Here, we used intracellular recordings in anesthetized rats to investigate the effectiveness of a visual stimulus at modulating spike activity in CINs. Initially, no neuron was visually responsive. However, following pharmacological activation of tecto-thalamic pathways, the firing pattern of most CINs was significantly modulated by a light flashed into the contralateral eye. Typically, this induced an excitation followed by a pause in spike firing, via an underlying depolarization-hyperpolarization membrane sequence. Stimulation of thalamic afferents in vitro evoked similar responses that were independent of synaptic inhibition. Thus, visual stimulation likely induces an initial depolarization via a subcortical tecto-thalamo-striatal pathway, pausing CIN firing through an intrinsic afterhyperpolarization.


Asunto(s)
Potenciales de Acción/fisiología , Colinérgicos/metabolismo , Cuerpo Estriado/citología , Potenciales Evocados Visuales/fisiología , Interneuronas/fisiología , Luz , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/métodos , Electroencefalografía , Antagonistas de Aminoácidos Excitadores/farmacología , Lateralidad Funcional , Antagonistas de Receptores de GABA-A/farmacología , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Masculino , Modelos Biológicos , Ácidos Fosfínicos/farmacología , Estimulación Luminosa/métodos , Propanolaminas/farmacología , Piridazinas/farmacología , Ratas , Ratas Long-Evans , Análisis de Regresión , Estadísticas no Paramétricas , Tálamo/fisiología , Valina/análogos & derivados , Valina/farmacología , Vías Visuales/fisiología
16.
Epilepsy Behav ; 17(3): 332-5, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20144879

RESUMEN

The study described here was carried out to investigate the anticonvulsant effect of different extracts of Centella asiatica with respect to cholinergic activity on pentylenetetrazol (PTZ)-induced seizures. Rats were randomly divided into eight groups of six rats each: nonepileptic rats treated with saline; PTZ (60 mg/kg, IP)-induced seizure rats treated with saline; PTZ-induced seizure rats pretreated with n-hexane, chloroform, ethyl acetate, n-butanol, and water extracts of C. asiatica; and PTZ-induced seizure rats pretreated with diazepam (2mg/kg body wt). The seized rats pretreated with different extracts were administered a dose of 200mg/kg body wt orally for 1 week before induction of epilepsy. Increased acetylcholine content and decreased acetylcholinesterase activity were recorded in different brain regions during PTZ-induced seizures. Pretreatment with C. asiatica extracts caused recovery of the levels of acetylcholine and acetylcholinesterase. These findings suggest that C. asiatica causes perceptible changes in the cholinergic system as one of the facets of its anticonvulsant activity.


Asunto(s)
Anticonvulsivantes/farmacología , Encéfalo/efectos de los fármacos , Centella/química , Colinérgicos/metabolismo , Fitoterapia , Preparaciones de Plantas/farmacología , Convulsiones , Acetilcolina/metabolismo , Acetilcolinesterasa/metabolismo , Análisis de Varianza , Animales , Anticonvulsivantes/uso terapéutico , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Masculino , Pentilenotetrazol , Preparaciones de Plantas/uso terapéutico , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico
17.
Acta Paediatr ; 98(11): 1768-75, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19706020

RESUMEN

AIM: To determine whether biochemical parameters of cholinergic and oxidative stress function including red cell acetylcholinesterase (AChE), serum/plasma thyroglobulin, selenium, iron, ferritin, vitamins C, E, and A affect risk in apparent life-threatening event (ALTE), sudden infant death syndrome (SIDS), and sudden unexpected death in infancy (SUDI). To assess these biochemical parameters as a function of age; and for influence of pharmacology and epidemiology, including infant health, care, and feeding practices. METHODS: A multicentre, case-control study with blood samples from 34 ALTE and 67 non-ALTE (control) infants matched for age, and 30 SIDS/SUDI and four non-SIDS/non-SUDI (post-mortem control) infants. RESULTS: Levels/activity of the biochemical parameters were not significantly different in ALTE vs. control infants, with the exception of higher vitamin C levels in the ALTE group (p = 0.009). In ALTE and control groups, AChE and thyroglobulin levels increased and decreased respectively from birth to attain normal adult levels from 6 months. Levels of iron and ferritin were higher in the first 6 month period for all infant groups studied, intersecting with vitamin C levels peaking around 4 months of age. CONCLUSION: Lower AChE levels and higher combined levels of iron and vitamin C in the first 6 months of life may augment cholinergic and oxidative stress effect, particularly at the age when SIDS is most prevalent. This may contribute to risk of ALTE and SIDS/SUDI events during infancy.


Asunto(s)
Acetilcolinesterasa/sangre , Colinérgicos/metabolismo , Estrés Oxidativo/fisiología , Muerte Súbita del Lactante/etiología , Factores de Edad , Análisis de Varianza , Estudios de Casos y Controles , Ferritinas/sangre , Humanos , Lactante , Fenómenos Fisiológicos Nutricionales del Lactante , Hierro/sangre , Nueva Zelanda/epidemiología , Valores de Referencia , Factores de Riesgo , Selenio/sangre , Encuestas y Cuestionarios , Tiroglobulina/sangre , Vitaminas/sangre
18.
J Acupunct Meridian Stud ; 2(4): 288-93, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20633504

RESUMEN

This study aimed to elucidate the mechanism(s) of the spasmogenic action of Loranthus ferrugineus in isolated guinea pig ileum. Thus the contractile responses of guinea pig ileum to graded additions of either L. ferrugineus methanol extract or its n-butanol fraction were tested in the presence and absence of various pharmacological interventions. The data showed that L. ferrugineus methanol extract and the n-butanol fraction produced a concentration-dependent spasmogenic effect in isolated guinea pig ileum segments. These effects were significantly inhibited in the presence of 1 microM atropine. In contrast, the response to the lowest concentrations of L. ferrugineus methanol extract (0.25, 0.5 and 1 mg/mL) and n-butanol fraction of L. ferrugineus (0.125, 0.25 and 0.5 mg/mL) were considerably enhanced in the presence of 0.05 microM neostigmine. Neither L. ferrugineus methanol extract nor n-butanol fraction contractile responses were affected upon the incubation of the ileal segments with 100 microM hexamethonium. The results of this study show that the spasmogenic effect of L. ferrugineus is possibly mediated through a direct action on intestinal muscarinic receptors. It is suggested that the bioactive constituents of L. ferrugineus serve as a substrate for acetylcholinesterase.


Asunto(s)
Colinérgicos/farmacología , Íleon/efectos de los fármacos , Loranthaceae/química , Extractos Vegetales/farmacología , Animales , Colinérgicos/metabolismo , Femenino , Cobayas , Íleon/metabolismo , Técnicas In Vitro , Masculino , Antagonistas Muscarínicos/metabolismo , Antagonistas Muscarínicos/farmacología , Extractos Vegetales/metabolismo , Unión Proteica , Receptores Muscarínicos/metabolismo
19.
J Neurosci ; 15(8): 5526-34, 1995 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-7543947

RESUMEN

Galanin is associated with multiple projection neurons, and its immunoreactivity in the cerebral cortex may be derived from diverse sources. We investigated the effects of subcortical lesions on cerebral cortical galanin concentrations. Lesions of the anterior noradrenergic bundle (ANB) comparably reduced cerebral cortical galanin and norepinephrine (NE) concentrations. The effects of the ANB lesions on galanin were immediate and became most pronounced 1 week later. Extensive unilateral lesions of the nucleus basalis of Meynert (NBM) decreased galanin concentrations, although not as markedly as after ANB lesions. The NBM lesions had no additional effect in the presence of an ANB lesion. Decreases in cerebral cortical galanin concentrations depended upon the extent and the duration of the NBM lesion and were not as pronounced as the decreases in markers of cholinergic activity. Acute treatments with physostigmine, which inhibit cerebral cortical AChE, had no effect on galanin concentrations. The depletion of galanin following an NBM lesion was most pronounced within hours of the insult, while the depletion of ChAT following the same lesions required several days to develop. Cortical concentrations of galanin and 5-HT increased 1 hr after dorsal raphe nucleus (DRN) lesions and then decreased 7 d later. Six weeks later, galanin concentrations recovered in the cerebral cortex despite the continued depletion of 5-HT. These studies suggest that a substantial portion of cerebral cortical galanin may derive from noradrenergic neurons and may be modulated by cortically-projecting ACh and 5-HT neurons.


Asunto(s)
Lóbulo Frontal/metabolismo , Neurotransmisores/metabolismo , Péptidos/metabolismo , Animales , Aminas Biogénicas/metabolismo , Colina O-Acetiltransferasa/metabolismo , Colinérgicos/metabolismo , Colinérgicos/farmacología , Lóbulo Frontal/patología , Galanina , Masculino , Neuropéptidos/metabolismo , Norepinefrina/fisiología , Concentración Osmolar , Ratas , Sustancia Innominada/patología , Sustancia Innominada/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA