Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Ethnopharmacol ; 328: 118131, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38565408

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sarcandra glabra is officially named Zhong Jie Feng as a traditional medicine. In the nationality of Yao and Zhuang, it has been used to treat digestive diseases like stomachache and dysentery. Similarly, in Dai nationality, it has been used to treat intestinal diseases like gastric ulcers. However, the effect and mechanism of S. glabra on experimental ulcerative colitis (UC) are known. AIM OF STUDY: The main objective of this study was to investigate the effect and mechanism of S. glabra on experimental UC. MATERIALS AND METHODS: The chemical components in the water extract of S. glabra (ZJF) were analyzed by UPLC-MS/MS method. The HCoEpiC cell line was used to assess the promotive effect on intestinal proliferation and restitution. RAW264.7 cells were used to assess the in vitro anti-inflammatory effect of ZJF. The 3% DSS-induced colitis model was used to evaluate the in vivo effect of ZJF (4.5 g/kg and 9.0 g/kg). Mesalazine (0.5 g/kg) was used as the positive drug. ELISA, RT-qPCR, Western blot, and multiplex immunohistochemical experiments were used to test gene levels in the colon tissue. The H&E staining method was used to monitor the pathological changes of colon tissue. TUNEL assay kit was used to detect apoptosis of epithelial colonic cells. RESULTS: ZJF could alleviate the DSS-caused colitis in colon tissues, showing a comparative effect to that of the positive drug mesalazine. Mechanism study indicated that ZJF could promote normal colonic HCoEpiC cell proliferation and restitution, inhibit overexpression of pro-inflammatory cytokines, restore the M1/M2 ratio, decrease epithelial colonic cell apoptosis, rescue tight junction protein levels, and modulate IL-17/Notch1/FoxP3 pathway to treat experimental UC. CONCLUSION: Our results indicated that S. glabra can promote intestinal cell restitution, balance immune response, and modulate IL-17/Notch1/FoxP3 pathway to treat experimental UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Mesalamina/efectos adversos , Cromatografía Liquida , Interleucina-17/metabolismo , Espectrometría de Masas en Tándem , Colon , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Factores de Transcripción/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
Chem Biol Interact ; 395: 110997, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38588969

RESUMEN

It is generally accepted that low vitamin D (VD) levels are associated with a high prevalence factor for Inflammatory bowel disease (IBD). IBD patients have observed higher levels of lipopolysaccharide (LPS), ALT, and AST than healthy people. Gut-derived LPS causes inflammatory injury in the liver and kidney. The VD-metabolizing mechanism is involved in the liver and kidney, which means IBD might impact VD metabolism. However, whether IBD affects VD metabolism has not been studied. In vitro LPS resulted in decreased CYP2R1 in liver cells as well as decreased CYP27B1 and increased CYP24A1 in kidney cells, revealing that LPS changed the activities of several hydroxylases. Mice with acute colitis had an increased LPS in serum and liver with mild hepatic injuries, while mice with chronic colitis had a significant elevation of LPS in serum, liver, and kidney with hepatorenal injuries. Thus, the liver hydroxylase for VD metabolism would be the first to be affected in IBD. Consequently, serum 25-hydroxyvitamin D declined dramatically with a significant elevation of 24,25-dihydroxyvitamin D and 1,24,25-trihydroxyvitamin D. Unchanged serum levels of 1,25-dihydroxyvitamin D might be the result of other factors in vivo. In acute colitis, a small dosage (4 IU/day) of cholecalciferol could protect the colon, decrease the serum level of LPS, and finally increase serum 25-hydroxyvitamin D. However, this improvement of cholecalciferol was fading in chronic colitis. These results suggested that VD supplementations for preventing and curing IBD in the clinic should consider hepatorenal hydroxylases and be employed as soon as possible for a better outcome.


Asunto(s)
Colitis , Lipopolisacáridos , Hígado , Vitamina D , Animales , Vitamina D/análogos & derivados , Vitamina D/metabolismo , Vitamina D/sangre , Vitamina D/farmacología , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/patología , Colitis/tratamiento farmacológico , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Humanos , Ratones Endogámicos C57BL , Vitamina D3 24-Hidroxilasa/metabolismo , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Sulfato de Dextran
3.
J Ethnopharmacol ; 326: 117995, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38428656

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Inflammatory bowel disease (IBD) presents a risk of carcinogenesis, which escalates with the duration of IBD. Persistent histological inflammation is considered to be the driving factor of colitis carcinogenesis. Effective control of inflammation is helpful to prevent and treat colitis-related colorectal cancer (CAC). Anchang Yuyang Decoction (AYD), a traditional Chinese medicine (TCM) formula, is originated from the ancient prescription of TCM for treating colitis and colorectal cancer. AYD has demonstrated efficacy in treating IBD and potential anti-carcinogenic properties. AIM OF THE STUDY: This research aims to assess the therapeutic efficacy of AYD in ameliorating experimental colitis-related carcinogenesis induced by AOM/DSS. It further seeks to elucidate its potential mechanisms by integrating multiple omics sequencing approaches. MATERIALS AND METHODS: A rat model for colitis-related carcinogenesis was developed using azoxymethane (AOM)/dextran sulfate sodium (DSS). UPLC-MS identified AYD's chemical constituents. Rats were administered varying doses of AYD (18.37, 9.19 and 4.59 g/kg) orally for 53 days, with mesalazine as a positive control. The study evaluated anti-carcinogenic effects by examining adenoma number, adenoma load, abnormal crypt foci (ACF), histopathological damage, and tumor-related protein expression. Anti-inflammatory and reparative effects were assessed through body weight, disease activity index (DAI), colon length, spleen index, inflammatory cytokine levels, and tight junction protein expression. The effects on intestinal microbiota and host metabolism were explored through 16S rRNA sequencing, targeted short-chain fatty acid (SCFA) metabonomics, and non-targeted colon metabolomics. Potential AYD targets were identified through transcriptomic sequencing and validated by qRT-PCR and western blotting. RESULTS: AYD significantly reduced adenoma number, adenoma load, neoplasm-associated lesions, ACF, and tumor-related protein expression (e.g., p53, PCNA) in AOM/DSS-induced rats, thus impeding colitis-related carcinogenesis progression. AYD also alleviated histopathological damage and inflammation, promoting intestinal mucosal barrier repair. Furthermore, AYD modulated intestinal flora structure, enhanced SCFA production, and regulated colon metabolites. Transcriptomic sequencing revealed a significant impact on the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Subsequent qRT-PCR and western blotting experiments indicated AYD's influence in up-regulating PPAR-γ and down-regulating PPAR-α, PPAR-ß/δ, and related proteins (thrombomodulin [Thbd], fatty acid binding protein 5 [Fabp5], stearoyl-CoA desaturase 2 [Scd2], phospholipid transfer protein [Pltp]). CONCLUSIONS: This study demonstrates AYD's ability to inhibit experimental colitis-related carcinogenesis induced by AOM/DSS. Its mechanism likely involves modulation of the PPAR signaling pathway, impacting intestinal microbiota and host metabolic equilibrium.


Asunto(s)
Adenoma , Colitis , Neoplasias Colorrectales , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Ratas , Animales , Ratones , Receptores Activados del Proliferador del Peroxisoma , ARN Ribosómico 16S , Cromatografía Liquida , Espectrometría de Masas en Tándem , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Inflamación/patología , Transducción de Señal , Carcinogénesis , Azoximetano/toxicidad , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Homeostasis , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colon
4.
Int J Biol Macromol ; 264(Pt 1): 130476, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428761

RESUMEN

A whole-cell biocatalyst was developed by genetically engineering pectinase PG5 onto the cell surface of Pichia pastoris using Gcw12 as the anchoring protein. Whole-cell PG5 eliminated the need for enzyme extraction and purification, while also exhibiting enhanced thermal stability, pH stability, and resistance to proteases in vitro compared to free PG5. Magnetic resonance mass spectrometry analysis revealed that whole-cell PG5 efficiently degraded citrus pectin, resulting in the production of a mixture of pectin oligosaccharides. The primary components of the mixture were trigalacturonic acid, followed by digalacturonic acid and tetragalacturonic acid. Supplementation of citrus pectin with whole-cell PG5 resulted in a more pronounced protective effect compared to free PG5 in alleviating colitis symptoms and promoting the integrity of the colonic epithelial barrier in a mouse model of dextran sulfate sodium-induced colitis. Hence, this study demonstrates the potential of utilizing whole-cell pectinase as an effective biocatalyst to promote intestinal homeostasis in vivo.


Asunto(s)
Colitis , Poligalacturonasa , Saccharomycetales , Animales , Ratones , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , Funcion de la Barrera Intestinal , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Pectinas/farmacología , Pectinas/metabolismo , Suplementos Dietéticos
5.
PLoS One ; 19(3): e0299687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512973

RESUMEN

Phytotherapy is an attractive strategy to treat inflammatory bowel disease (IBD) that could be especially useful in developing countries. We previously demonstrated the intestinal anti-inflammatory effect of the total ethereal extract from the Physalis peruviana (Cape gooseberry) calyces in TNBS-induced colitis. This work investigates the therapeutic potential of Peruviose A and B, two sucrose esters that constitute the major metabolites of its calyces. The effect of the Peruvioses A and B mixture on TNBS-induced colitis was studied after 3 (preventive) and 15-days (therapy set-up) of colitis induction in rats. Colonic inflammation was assessed by measuring macroscopic/histologic damage, MPO activity, and biochemical changes. Additionally, LPS-stimulated RAW 264.7 macrophages were treated with test compounds to determine the effect on cytokine imbalance in these cells. Peruvioses mixture ameliorated TNBS-induced colitis in acute (preventive) or established (therapeutic) settings. Although 3-day treatment with compounds did not produce a potent effect, it was sufficient to significantly reduce the extent/severity of tissue damage and the microscopic disturbances. Beneficial effects in the therapy set-up were substantially higher and involved the inhibition of pro-inflammatory enzymes (iNOS, COX-2), cytokines (TNF-α, IL-1ß, and IL-6), as well as epithelial regeneration with restoration of goblet cells numbers and expression of MUC-2 and TFF-3. Consistently, LPS-induced RAW 264.7 cells produced less NO, PGE2, TNF-α, IL-6, and MCP-1. These effects might be related to the inhibition of the NF-κB signaling pathway. Our results suggest that sucrose esters from P. peruviana calyces, non-edible waste from fruit production, might be useful as an alternative IBD treatment.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Physalis , Ribes , Ratas , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Ésteres/metabolismo , Sacarosa/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Citocinas/metabolismo , Colon/patología , Enfermedades Inflamatorias del Intestino/patología , Ácido Trinitrobencenosulfónico/toxicidad
6.
Chem Biol Interact ; 394: 110969, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38522565

RESUMEN

It is well-established that the reduced Memory B cells (MBCs) play an important role in the pathogenesis of ulcerative colitis (UC), rendering them a potential therapeutic target for UC intervention. Astragalus polysaccharide (APS), a primary active constituent derived from the classic traditional Chinese medicine Astragalus membranaceus (AM), has been used for centuries in the treatment of UC in both human and animal subjects due to its renowned immunomodulatory properties. However, it is unknown whether APS can regulate MBCs to alleviate experimental colitis. In the present investigation, the murine colitis was successfully induced using dextran sulphate sodium (DSS) and subsequently treated with APS for a duration of 7 days. APS exhibited significant efficacy in reducing the disease activity index (DAI), colonic weight index, the index of colonic weight/colonic length. Furthermore, APS mitigated colonic pathological injuries, restored the colonic length, elevated the immunoglobulin A (IgA), transforming growth factor-ß1 (TGF-ß1) and interleukin (IL)-10 levels, while concurrently suppressing IgG, IgM, IL-6, tumor necrosis factor alpha (TNF-α) levels. Crucially, the quantities of MBCs, IgA+MBCs and forkhead box P3 (Foxp3+) MBCs were notably increased along with a concurrent decrease in IgG1+MBCs, IG2a+MBCs, IgG2b+MBCs after APS administration in colitis mice. Additionally, the Mitotracker red expressions of MBCs and their subgroups demonstrated a significantly up-regulation. Meanwhile, the transcriptomics analysis identified mitochondrial metabolism as the predominant and pivotal mechanism underlying APS-mediated mitigation of DSS-induced colitis. Key differentially expressed genes, including B-cell linker (BLNK), aldehyde dehydrogenase 1A1 (ALDH1A1), B-cell lymphoma 6 (BCL-6), B-lymphocyte-induced maturation protein 1 (Blimp-1), paired box gene 5 (PAX5), purinergic 2 × 7 receptor (P2X7R), B Cell activation factor (BAFF), B Cell activation factor receptor (BAFFR), CD40, nuclear factor kappa-B (NF-κB), IL-6 and so on were implicated in this process. These mRNA expressions were validated through quantitative polymerase chain reaction (qPCR) and immunohistochemistry. These findings revealed that APS effectively restored MBCs and their balance to ameliorate DSS-induced colitis, which was potentially realized via promoting mitochondrial metabolism to maintain MBCs activation.


Asunto(s)
Planta del Astrágalo , Colitis , Sulfato de Dextran , Polisacáridos , Animales , Polisacáridos/farmacología , Polisacáridos/química , Ratones , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Planta del Astrágalo/química , Células B de Memoria/efectos de los fármacos , Células B de Memoria/metabolismo , Masculino , Ratones Endogámicos C57BL , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Inmunoglobulina A/metabolismo , Modelos Animales de Enfermedad , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo
7.
Adv Healthc Mater ; 13(13): e2303016, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431929

RESUMEN

Curcumin, a natural bioactive polyphenol with diverse molecular targets, is well known for its anti-oxidation and anti-inflammatory potential. However, curcumin exhibits low solubility (<1 µg mL-1), poor tissue-targeting ability, and rapid oxidative degradation, resulting in poor bioavailability and stability for inflammatory therapy. Here, poly(diselenide-oxalate-curcumin) nanoparticle (SeOC-NP) with dual-reactive oxygen species (ROS) sensitive chemical moieties (diselenide and peroxalate ester bonds) is fabricated by a one-step synthetic strategy. The results confirmed that dual-ROS sensitive chemical moieties endowed SeOC-NP with the ability of targeted delivery of curcumin and significantly suppress oxidative degradation of curcumin for high-efficiency inflammatory therapy. In detail, the degradation amount of curcumin for SeOC is about 4-fold lower than that of free curcumin in an oxidative microenvironment. As a result, SeOC-NP significantly enhanced the antioxidant activity and anti-inflammatory efficacy of curcumin in vitro analysis by scavenging intracellular ROS and suppressing the secretion of nitric oxide and pro-inflammatory cytokines. In mouse colitis models, orally administered SeOC-NP can remarkably alleviate the symptoms of IBD and maintain the homeostasis of gut microbiota. This work provided a simple and effective strategy to fabricate ROS-responsive micellar and enhance the oxidation stability of medicine for precise therapeutic inflammation.


Asunto(s)
Colitis , Curcumina , Nanopartículas , Especies Reactivas de Oxígeno , Curcumina/química , Curcumina/farmacología , Animales , Colitis/tratamiento farmacológico , Colitis/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas/química , Células RAW 264.7 , Oxidación-Reducción , Antioxidantes/química , Antioxidantes/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Ratones Endogámicos C57BL , Masculino
8.
Phytomedicine ; 126: 155283, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422652

RESUMEN

BACKGROUND: Portulacae Herba and Granati Pericarpium pair (PGP) is a traditional Chinese herbal medicine treatment for colitis, clinically demonstrating a relatively favorable effect on relieving diarrhea and abnormal stools. However, the underlying mechanism remain uncertain. PURPOSE: The present study intends to evaluate the efficacy of PGP in treating colitis in mice and investigate its underlying mechanism. METHODS: The protective effect of PGP against colitis was determined by monitoring body weight, colon length, colon weight, and survival rate in mice. Colonic inflammation was assessed by serum cytokine levels, colonic H&E staining, and local neutrophil infiltration. The reversal of intestinal epithelial barrier damage by PGP was subsequently analyzed with Western blot and histological staining. Furthermore, RNA-seq analysis and molecular docking were performed to identify potential pathways recruited by PGP. Following the hints of the transcriptomic results, the role of PGP through the IL-6/STAT3/SOCS3 pathway in DSS-induced colitis mice was verified by Western blot. RESULTS: DSS-induced colitis in mice was significantly curbed by PGP treatment. PGP treatment significantly mitigated DSS-induced colitis in mice, as evidenced by improvements in body weight, DAI severity, survival rate, and inflammatory cytokines levels in serum and colon. Moreover, PGP treatment up-regulated the level of Slc26a3, thereby increasing the expressions of the tight junction/adherens junction proteins ZO-1, occludin and E-cadherin in the colon. RNA-seq analysis revealed that PGP inhibits the IL-6/STAT3/SOCS3 pathway at the transcriptional level. Molecular docking indicated that the major components of PGP could bind tightly to the proteins of IL-6 and SOCS3. Meanwhile, the result of Western blot revealed that the IL-6/STAT3/SOCS3 pathway was inhibited at the protein level after PGP administration. CONCLUSION: PGP could alleviate colonic inflammation and reverse damage to the intestinal epithelial barrier in DSS-induced colitis mice. The underlying mechanism involves the inhibition of the IL-6/STAT3/SOCS3 pathway.


Asunto(s)
Colitis Ulcerosa , Colitis , Extractos Vegetales , Granada (Fruta) , Animales , Ratones , Interleucina-6/metabolismo , Simulación del Acoplamiento Molecular , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Inflamación/metabolismo , Colon/patología , Citocinas/metabolismo , Peso Corporal , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colitis Ulcerosa/tratamiento farmacológico , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/farmacología , Transportadores de Sulfato/uso terapéutico , Antiportadores/efectos adversos , Antiportadores/metabolismo
9.
J Ethnopharmacol ; 328: 117932, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38382652

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Colitis is an important risk factor for the occurrence of colorectal cancer (CRC), and the colonization of Fusobacterium nucleatum (Fn) in the intestines accelerates this transformation process. Banxia Xiexin Decoction (BXD), originating from Shanghanlun, is a classic prescription for treating gastrointestinal diseases. Current researches indicate that BXD can effectively delay the colitis-to-cancer transition, but it is still unclear whether it can inhibit Fn colonization to achieve this delaying effect. AIM OF STUDY: This study explored the effect and mechanism of BXD in inhibiting Fn intestinal colonization to delay colitis-to-cancer transition. MATERIALS AND METHODS: We constructed a mouse model of colitis-to-cancer transition by regularly gavaging Fn combined with azoxymethane (AOM)/dextran sodium sulfate (DSS), and administered BXD by gavage. We monitored the body weight of mice, measured the length and weight of their colons, and calculated the disease activity index (DAI) score. The growth status of colon tumors was observed by hematoxylin and eosin (H&E) staining, and the changes in gut microbiota in each group of mice were detected by 16S rDNA analysis. Immunohistochemistry was used to detect the expression of E-cadherin and ß-catenin in colon tissues, and immunofluorescence was used to observe the infiltration of M2 macrophages in colon tissues. In cell experiments, we established a co-culture model of Fn and colon cancer cells and intervened with BXD-containing serum. Malignant behaviors such as cell proliferation, invasion, and migration were detected, as well as changes in their cell cycle. We examined the protein levels of E-cadherin, ß-catenin, Axin2, and Cyclin D1 in each group were detected by Western blot. We used US1 strain (fadA-) as a control and observed the effects of BXD-containing serum on Fn attachment and invasion of colon cancer cells through attachment and invasion experiments. RESULTS: BXD can inhibit the colitis-to-cancer transition in mice infected with Fn, reduce crypt structure damage, improve gut microbiota dysbiosis, upregulate E-cadherin and decrease ß-catenin expression, and reduce infiltration of M2 macrophages, thus inhibiting the process of colitis-to-cancer transition. Cell experiments revealed that BXD-containing serum can inhibit the proliferation, migration, and invasion of colon cancer cells infected with Fn and regulate their cell cycle. More importantly, we found that BXD-containing serum can inhibit the binding of Fn's FadA adhesin to E-cadherin, reduce Fn's attachment and invasion of colon cancer cells, thereby downregulating the E-cadherin/ß-catenin signaling pathway. CONCLUSIONS: These findings show that BXD can inhibit Fn colonization by interfering with the binding of FadA to E-cadherin, reducing the activation of the E-cadherin/ß-catenin signaling pathway, and ultimately delaying colitis-to-cancer transition.


Asunto(s)
Colitis , Neoplasias del Colon , Medicamentos Herbarios Chinos , Animales , Ratones , beta Catenina/metabolismo , Fusobacterium nucleatum/metabolismo , Transducción de Señal , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colon
10.
Phytomedicine ; 124: 155301, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181531

RESUMEN

BACKGROUND: Despite the notable pharmacological potential of natural ginsenosides, their industrial application is hindered by low oral bioavailability. Recent research centers on the production of less-glycosylated minor ginsenosides. PURPOSE: This study aimed to explore the effect of a biologically synthesized ginsenoside CK-rich minor ginsenoside complex (AceCK40), on ameliorating colitis using DSS-induced colitis models in vitro and in vivo. METHODS: The ginsenoside composition of AceCK40 was determined by HPLC-ELSD and UHPLC-MS/MS analyses. In vitro colitis model was established using dextran sodium sulfate (DSS)-induced Caco-2 intestinal epithelial model. For in vivo experiments, DSS-induced severe colitis mouse model was established. RESULTS: In DSS-stimulated Caco-2 cells, AceCK40 downregulated mitogen-activated protein kinase (MAPK) activation (p < 0.05), inhibited monocyte chemoattractant protein-1 (MCP-1) production (p < 0.05), and enhanced MUC2 expression (p < 0.05), mediated via signaling pathway regulation. Daily AceCK40 administration at doses of 10 and 30 mg/kg/day was well tolerated by DSS-induced severe colitis mice. These doses led to significant alleviation of disease activity index score (> 36.0% decrease, p < 0.05), increased luminal immunoglobulin (Ig)G (> 37.6% increase, p < 0.001) and IgA (> 33.8% increase, p < 0.001), lowered interleukin (IL)-6 (> 65.7% decrease, p < 0.01) and MCP-1 (> 116.2% decrease, p < 0.05), as well as elevated serum IgA (> 51.4% increase, p < 0.001) and lowered serum IL-6 (112.3% decrease at 30 mg/kg, p < 0.001). Hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining revealed that DSS-mediated thickening of the muscular externa, extensive submucosal edema, crypt distortion, and decreased mucin droplets were significantly alleviated by AceCK40 administration. Additionally, daily administration of AceCK40 led to significant recovery of colonic tight junctions damaged by DSS through the elevation in the expression of adhesion molecules, including occludin, E-cadherin, and N-cadherin. CONCLUSION: This study presents the initial evidence elucidating the anti-colitis effects of AceCK40 and its underlying mechanism of action through sequential in vitro and in vivo systems employing DSS stimulation. Our findings provide valuable fundamental data for the utilization of AceCK40 in the development of novel anti-colitis candidates.


Asunto(s)
Colitis , Ginsenósidos , Humanos , Ratones , Animales , Ginsenósidos/metabolismo , Células CACO-2 , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon , Inmunoglobulina A/metabolismo , Inmunoglobulina A/farmacología , Inmunoglobulina A/uso terapéutico , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo
11.
Pharmacol Res ; 200: 107071, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218354

RESUMEN

Plant-derived exosome-like nanoparticles (ELNs) have drawn considerable attention for oral treatment of colonic diseases. However, the roles of ELNs derived from garlic on colitis remain unclear. Here, we demonstrate that garlic ELNs (GELNs), with desirable particle sizes (79.60 nm) and trafficking large amounts of functional proteins and microRNAs, stably roam in the gut and confer protection against ulcerative colitis (UC). In mice with DSS-induced colitis, orally administered GELNs effectively ameliorated bloody diarrhea, normalized the production of proinflammatory cytokines, and prevented colonic barrier impairment. Mechanistically, GELNs were taken up by gut microbes and reshaped DSS-induced gut microbiota dysbiosis, in which Bacteroides was the dominant respondent genus upon GELNs treatment. Notably, GELNs-enriched peu-MIR2916-p3 specifically promoted the growth of Bacteroides thetaiotaomicron, an intestinal symbiotic bacterium with palliative effects on colitis. Our findings provide new insights into the medicinal application of GELNs and highlight their potential as natural nanotherapeutic agents for preventing and treating UC.


Asunto(s)
Bacteroides thetaiotaomicron , Colitis Ulcerosa , Colitis , Exosomas , Ajo , Microbioma Gastrointestinal , Ratones , Animales , Exosomas/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/microbiología , Colon , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
12.
Chin J Integr Med ; 30(2): 135-142, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37434030

RESUMEN

OBJECTIVE: To investigate the effect of Huangqin Decoction (HQD) on nuclear factor erythroid 2 related-factor 2 (Nrf2)/heme oxygenase (HO-1) signaling pathway by inducing the colitis-associated carcinogenesis (CAC) model mice with azoxymethane (AOM)/dextran sodium sulfate (DSS). METHODS: The chemical components of HQD were analyzed by liquid chromatography-quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS/MS) to determine the molecular constituents of HQD. Totally 48 C57BL/6J mice were randomly divided into 6 groups by a random number table, including control, model (AOM/DSS), mesalazine (MS), low-, medium-, and high-dose HQD (HQD-L, HQD-M, and HQD-H) groups, 8 mice in each group. Except for the control group, the mice in the other groups were intraperitoneally injected with AOM (10 mg/kg) and administrated with 2.5% DSS orally for 1 week every two weeks (totally 3 rounds of DSS) to construct a colitis-associated carcinogenesis mouse model. The mice in the HQD-L, HQD-M and HQD-H groups were given HQD by gavage at doses of 2.925, 5.85, and 11.7 g/kg, respectively; the mice in the MS group was given a suspension of MS at a dose of 0.043 g/kg (totally 11 weeks). The serum levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured by enzyme-linked immunosorbent assay. The mRNA and protein expression levels of Nrf2, HO-1, and inhibitory KELCH like ECH-related protein 1 (Keap1) in colon tissue were detected by quantitative real-time PCR, immunohistochemistry, and Western blot, respectively. RESULTS: LC-Q-TOF-MS/MS analysis revealed that the chemical constituents of HQD include baicalin, paeoniflorin, and glycyrrhizic acid. Compared to the control group, significantly higher MDA levels and lower SOD levels were observed in the model group (P<0.05), whereas the expressions of Nrf2 and HO-1 were significantly decreased, and the expression of Keap1 increased (P<0.01). Compared with the model group, serum MDA level was decreased and SOD level was increased in the HQD-M, HQD-H and MS groups (P<0.05). Higher expressions of Nrf2 and HO-1 were observed in the HQD groups. CONCLUSION: HQD may regulate the expression of Nrf2 and HO-1 in colon tissue, reduce the expression of MDA and increase the expression of SOD in serum, thus delaying the progress of CAC in AOM/DSS mice.


Asunto(s)
Antioxidantes , Colitis , Ratones , Animales , Antioxidantes/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Scutellaria baicalensis/química , Scutellaria baicalensis/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Espectrometría de Masas en Tándem , Ratones Endogámicos C57BL , Colitis/complicaciones , Colitis/tratamiento farmacológico , Colitis/metabolismo , Transducción de Señal , Carcinogénesis , Azoximetano/farmacología , Superóxido Dismutasa/metabolismo
13.
Immunopharmacol Immunotoxicol ; 46(1): 107-116, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37937889

RESUMEN

OBJECTIVE: Cynarin is a derivative of hydroxycinnamic acid presented in various medicinal plants, such as Cynara scolymus L. and Onopordum illyricum L. To date, the antioxidant and antihypertensive activities of cynarin have been reported. However, whether cynarin has a therapeutic impact on ulcerative colitis (UC) is unclear. Therefore, the aim of this study was to explore the potential effect of cynarin on dextran sulfate sodium (DSS)-induced acute colitis in vivo and on lipopolysaccharide (LPS)/interferon-γ (IFN-γ)-induced RAW264.7 and J774A.1 cellular inflammation model in vitro. METHODS AND RESULTS: In this study, we investigated that cynarin alleviated clinical symptoms in animal models, including disease activity index (DAI) and histological damage. Furthermore, cynarin can attenuate colon inflammation through decreasing the proportion of neutrophils in peripheral blood, reducing the infiltration of neutrophils, and macrophages in colon tissue, inhibiting the release of pro-inflammatory cytokines and suppressing the expression of STAT3 and p65. In cellular inflammation models, cynarin inhibited the expression of M1 macrophage markers, such as TNF-α, IL-1ß, and iNOS. Besides, cynarin suppressed the expression of STAT3 and p65 as well as the phosphorylation of STAT3, p65. Cynarin inhibited the polarization of RAW264.7 and J774A.1 cells toward M1 and alleviated LPS/IFN-γ-induced cellular inflammation. CONCLUSION: Considering these results, we conclude that cynarin mitigates experimental UC partially through inhibiting the STAT3/NF-кB signaling pathways and macrophage polarization toward M1. Accordingly, cynarin might be a potential and effective therapy for UC.


Asunto(s)
Cinamatos , Colitis Ulcerosa , Colitis , Onopordum , Animales , Ratones , FN-kappa B/metabolismo , Sulfato de Dextran/toxicidad , Lipopolisacáridos/toxicidad , Modelos Animales de Enfermedad , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Inflamación/tratamiento farmacológico , Ratones Endogámicos C57BL , Colon/patología
14.
Int Immunopharmacol ; 127: 111414, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38141404

RESUMEN

5-androstenediol (ADIOL) functions as a selective estrogen receptor ß (ERß) ligand with a protective effect against many diseases. So, we conducted a novel insight into its role in acetic acid (AA)-induced colitis and investigated its effect on TLR4-Mediated PI3K/Akt and NF-κB Pathways and the potential role of ERß as contributing mechanisms. METHODS: Rats were randomized into 5 Groups; Control, Colitis, Colitis + mesalazine (MLZ), Colitis + ADIOL, and Colitis + ADIOL + PHTPP (ER-ß antagonist). The colitis was induced through a rectal enema of acetic acid (AA) on the 8th day. At the end of treatment, colons were collected for macroscopic assessment. Tissue levels of malondialdehyde (MDA), superoxide dismutase (SOD), nuclear factor kappa b (NF-κB), toll-like receptor (TLR4), and phosphorylated Protein kinase B (pAKT) were measured. Besides, Gene expression of interleukin-1beta (IL-1ß), metalloproteases 9 (Mmp9), inositol 3 phosphate kinase (PI3K), Neutrophil gelatinase-associated lipocalin (NGAL), ERß and NLRP6 were assessed. Histopathological and immunohistochemical studies were also investigated. RESULTS: Compared to the untreated AA group, the disease activity index (DAI) and macroscopic assessment indicators significantly decreased with ADIOL injections. Indeed, ADIOL significantly decreased colonic tissue levels of MDA, TLR4, pAKT, and NF-κB immunostainig while increased SOD activity and ß catenin immunostainig. ADIOL mitigated the high genetic expressions of IL1ß, NGAL, MMP9, and PI3K while increased ERß and NLRP6 gene expression. Also, the pathological changes detected in AA groups were markedly ameliorated with ADIOL. The specific ERß antagonist, PHTPP, largely diminished these protective effects of ADIOL. CONCLUSION: ADIOL could be beneficial against AA-induced colitis mostly through activating ERß.


Asunto(s)
Colitis , FN-kappa B , Ratas , Masculino , Animales , FN-kappa B/metabolismo , Ratas Wistar , Receptor beta de Estrógeno/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Toll-Like 4/metabolismo , Lipocalina 2 , Metaloproteinasa 9 de la Matriz/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ácido Acético/efectos adversos , Androstenodiol/efectos adversos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Superóxido Dismutasa/metabolismo
15.
Phytomedicine ; 123: 155223, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38134862

RESUMEN

BACKGROUND AND AIMS: Crohn's disease (CD) is characterized by an overabundance of epithelial cell death and an imbalance in microflora, both of which contribute to the dysfunction of the intestinal barrier. Arjunolic acid (AA) has anti-apoptotic effects and regulates microbiota efficacy. The objective of this study was to assess the impact of the treatment on colitis resembling Crohn's disease, along with exploring the potential underlying mechanism. METHODS: CD animal models were created using Il-10-/- mice, and the impact of AA on colitis in mice was evaluated through disease activity index, weight fluctuations, pathological examination, and assessment of intestinal barrier function. To clarify the direct role of AA on intestinal epithelial cell apoptosis, organoids were induced by LPS, and TUNEL staining was performed. To investigate the potential mechanisms of AA in protecting the intestinal barrier, various methods including bioinformatics analysis and FMT experiments were employed. RESULTS: The treatment for AA enhanced the condition of colitis and the function of the intestinal barrier in Il-10-/- mice. This was demonstrated by the amelioration of weight loss, reduction in tissue inflammation score, and improvement in intestinal permeability. Moreover, AA suppressed the apoptosis of intestinal epithelial cells in Il-10-/- mice and LPS-induced colon organoids, while also reducing the levels of Bax and C-caspase-3. In terms of mechanism, AA suppressed the activation of TLR4 signaling in Il-10-/- mice and colon organoids induced by LPS. In addition, AA increased the abundance of short-chain fatty acid-producing bacteria in the stool of Il-10-/- mice, and transplantation of feces from AA-treated mice improved CD-like colitis. CONCLUSIONS: The results of our study demonstrate that AA has a protective effect on the intestinal barrier in Crohn's disease-like colitis by preventing apoptosis. Additionally, this groundbreaking study reveals the capacity of AA to hinder TLR4 signaling and alter the makeup of the intestinal microbiome. The findings present fresh possibilities for treating individuals diagnosed with Crohn's disease. AA offers a hopeful novel strategy for managing Crohn's disease by obstructing crucial pathways implicated in intestinal inflammation and enhancing the gut microbiota.


Asunto(s)
Colitis , Enfermedad de Crohn , Microbioma Gastrointestinal , Triterpenos , Ratones , Animales , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Interleucina-10/metabolismo , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/efectos adversos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Inflamación/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Sulfato de Dextran/efectos adversos , Colon/patología
16.
J Nutr Biochem ; 123: 109493, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871768

RESUMEN

This study investigated the effects of fermented rice bran (FRB) on modulating intestinal aryl hydrocarbon receptor (AhR) expression, innate lymphoid cell (ILC)3 populations, the fecal microbiota distribution, and their associations with dextran sodium sulfate (DSS)-induced acute colitis. C57BL/6 mice were assigned to four groups: 1) NC group, normal mice fed the AIN-93M diet; 2) FRB group, normal mice fed a diet supplemented with 5% FRB; 3) NCD group, DSS-treated mice fed AIN-93M; 4) FRBD group, DSS-treated mice fed a 5% FRB-supplemented diet. DSS was administered for 5 d and followed by 5 d for recovery. At the end of the experiment, mice were sacrificed. Their blood and intestinal tissues were collected. Results showed that there were no differences in colonic biological parameters and function between the NC and FRB groups. Similar fecal microbiota diversity was noted between these two groups. Compared to the non-DSS-treated groups, DSS administration led to increased intestinal permeability, enhanced inflammatory cytokine production and disease severity, whereas tight junctions and AhR, interleukin (IL)-22 expressions were downregulated, and the ILC3 population had decreased. Also, gut microbiota diversity differs from the non-DSS-treated groups and more detrimental bacterial populations exist when compared to the FRBD group. FRB supplementation in DSS-treated mice attenuated fecal microbial dysbiosis, decreased intestinal permeability, improved the barrier integrity, upregulated AhR and IL-22 expression, maintained the ILC3 population, and pathologically mitigated colonic injury. These findings suggest enhanced ILC3- and AhR-mediated functions may be partly responsible for the anti-colitis effects of FRB supplementation in DSS-induced colitis.


Asunto(s)
Colitis , Oryza , Ratones , Animales , Inmunidad Innata , Dextranos/efectos adversos , Dextranos/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Linfocitos , Ratones Endogámicos C57BL , Colitis/metabolismo , Colon/metabolismo , Suplementos Dietéticos , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad
17.
PLoS One ; 18(12): e0295324, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38060482

RESUMEN

Xiasangju (XSJ) is a traditional Chinese herbal formula consisted of Prunella spica, Mulberry leaf and Chrysanthemi indici flos, which can be used to treat fever, headache and ulcer. To explore the effects of oligosaccharides from XSJ (OX) on colitis, we used dextran sulfate sodium (DSS) to establish colitis mouse models. After administration of OX with different doses on the control and colitis mice, we measured their body weights, disease activity indexes (DAI), lengths and histopathologic changes of colons, spleen indexes. The inflammatory cytokines and oxidative stress-related factors in serum, and the intestinal microbial community in feces were also detected. We found that colitis mice with oral administration of OX showed higher body weights and lower levels of DAI and spleen index. Tissue damages induced by DSS were also alleviated by OX treatment. The colitis mice with OX treatment exhibited lower levels of AST, ALT, BUN, CR, MDA and a down-regulated expression of IL-6 and IL-1ß, while the activity of SOD was up-regulated. Furthermore, OX improved the relative abundance of gut microbiota and restored the proportions of Bacteroidetes and Muribaculaceae. We found that oligosaccharides from XSJ alleviated the symptoms of colitis mice through its inhibitory effects on inflammation and oxidative stress, and also regulated the composition of intestinal flora, which indicates a beneficial role for patients with colitis.


Asunto(s)
Colitis Ulcerosa , Colitis , Humanos , Animales , Ratones , Sulfato de Dextran/toxicidad , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Inflamación/patología , Colon/patología , Oligosacáridos/farmacología , Oligosacáridos/uso terapéutico , Oligosacáridos/metabolismo , Peso Corporal , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colitis Ulcerosa/tratamiento farmacológico
18.
Nutrients ; 15(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38140314

RESUMEN

The prevalence of inflammatory bowel disease (IBD) is progressively rising each year, emphasizing the significance of implementing rational dietary interventions for disease prevention. Oats, being a staple agricultural product, are abundant in protein content. This study aimed to investigate the protective effects and underlying mechanisms of oat peptides (OPs) in a mouse model of acute colitis induced by dextran sulfate sodium salt (DSS) and a Caco-2 cell model. The findings demonstrated that intervention with OPs effectively mitigated the symptoms associated with DSS-induced colitis. The physicochemical characterization analysis demonstrated that the molecular weight of the OPs was predominantly below 5 kDa, with a predominant composition of 266 peptides. This study provides further evidence of the regulatory impact of OPs on the Keap1-Nrf2 signaling axis and elucidates the potential role of WGVGVRAERDA as the primary bioactive peptide responsible for the functional effects of OPs. Ultimately, the results of this investigation demonstrate that OPs effectively mitigate DSS-induced colitis by preserving the integrity of the intestinal barrier and modulating the Keap1-Nrf2 axis. Consequently, these findings establish a theoretical foundation for the utilization of OPs as dietary supplements to prevent the onset of IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Avena , Sulfato de Dextran/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo , Células CACO-2 , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Colitis/inducido químicamente , Colitis/prevención & control , Colitis/metabolismo , Cloruro de Sodio/efectos adversos , Cloruro de Sodio Dietético/efectos adversos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colon/metabolismo
19.
Nutrients ; 15(22)2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-38004229

RESUMEN

Objectives: Vitamin D (VitD) and Vitamin D receptor (VDR) are suggested to play protective roles in the intestinal barrier in ulcerative colitis (UC). However, the underlying mechanisms remain elusive. Evidence demonstrates that Na+/H+ exchanger isoform 8 (NHE8, SLC9A8) is essential in maintaining intestinal homeostasis, regarded as a promising target for UC therapy. Thus, this study aims to investigate the effects of VitD/VDR on NHE8 in intestinal protection. Methods: VitD-deficient mice, VDR-/- mice and NHE8-/- mice were employed in this study. Colitis mice were established by supplementing DSS-containing water. Caco-2 cells and 3D-enteroids were used for in vitro studies. VDR siRNA (siVDR), VDR over-expression plasmid (pVDR), TNF-α and NF-κb p65 inhibitor QNZ were used for mechanical studies. The expression of interested proteins was detected by multiple techniques. Results: In colitis mice, paricalcitol upregulated NHE8 expression was accompanied by restoring colonic mucosal injury. In VitD-deficient and VDR-/- colitis mice, NHE8 expression was compromised with more serious mucosal damage. Noteworthily, paricalcitol could not prevent intestinal barrier dysfunction and histological destruction in NHE8-/- mice. In Caco-2 cells and enteroids, siVDR downregulated NHE8 expression, further promoted TNF-α-induced NHE8 downregulation and stimulated TNF-α-induced NF-κb p65 phosphorylation. Conversely, QNZ blocked TNF-α-induced NHE8 downregulation in the absence or presence of siVDR. Conclusions: Our study indicates depressed NHE8 expression is responsible for VitD-deficient-induced colitis aggravation. These findings provide novel insights into the molecular mechanisms of VitD/VDR in intestine protection in UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Deficiencia de Vitamina D , Humanos , Animales , Ratones , Células CACO-2 , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Colitis/metabolismo , Mucosa Intestinal/metabolismo , Vitamina D/metabolismo , Deficiencia de Vitamina D/metabolismo , Ratones Endogámicos C57BL , Sulfato de Dextran/efectos adversos , Colitis Ulcerosa/metabolismo
20.
Front Cell Infect Microbiol ; 13: 1255127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915848

RESUMEN

Recently, the hybrid Broussonetia papyrifera (BP) has been extensively cultivated and predominantly utilized in ruminants because of its high protein and bioactive compound content. In the present study, the effects of an ethanolic extract of BP leaves (BPE, 200 mg/kg) on mitigating 2% dextran sodium sulfate (DSS)-induced intestinal inflammation in mice were evaluated. BPE is rich in flavonoids, polyphenols, and polysaccharides, and displays potent antioxidant and antibacterial activities against pathogenic strains such as Clostridium perfringens, Salmonella Typhimurium, and Salmonella enterica subsp. enterica in vitro. In a mouse study, oral administration of DSS resulted in weight loss, incidence of diarrhea, enlargement of the liver and spleen, impaired colonic morphology, downregulation of both gene and protein expression related to intestinal antioxidant (Nrf2) and barrier function (ZO-1), decreased diversity of colonic microbiota, and 218 differentially altered colonic metabolites; however, co-treatment with BPE did not restore these modified aspects except for the liver index and colonic bacterial diversity. The singular treatment with BPE did not manifest evident side effects in normal mice but induced a mild occurrence of diarrhea and a notable alteration in the colonic metabolite profile. Moreover, a single BPE administration augmented the abundance of the commensal beneficial bacteria Faecalibaculum and Akkermansia genera. Overall, the extract of BP leaves did not demonstrate the anticipated effectiveness in alleviating DSS-induced intestinal inflammation.


Asunto(s)
Broussonetia , Colitis , Animales , Ratones , Antioxidantes/uso terapéutico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/patología , Inflamación/patología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Diarrea/tratamiento farmacológico , Sulfato de Dextran/toxicidad , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA