Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Mol Model ; 28(2): 35, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35022913

RESUMEN

The escalating burden of tuberculosis disease and drastic effects of current medicine has stimulated a search for alternative drugs. A medicinal plant Warburgia salutaris has been reported to possess inhibitory properties against M. tuberculosis. In this study, we apply computational methods to investigate the probability of W. salutaris compounds as potential inhibitors of M. tuberculosis QcrB protein. We performed molecular docking, molecular dynamics simulations, radius of gyration, principal component analysis (PCA), and molecular mechanics-generalized born surface area (MM-GBSA) binding-free energy calculations in explicit solvent to achieve our objective. The results suggested that ursolic acid (UA) and ursolic acid acetate (UAA) could serve as preferred potential inhibitors of mycobacterial QcrB compared to lansoprazole sulphide (LSPZ) and telacebec (Q203)-UA and UAA have a higher binding affinity to QcrB compared to LSPZ and Q203 drugs. UA binding affinity is attributed to hydrogen bond formation with Val120, Arg364 and Arg366, and largely resonated from van der Waals forces resulting from UA interactions with hydrophobic amino acids in its vicinity. UAA binds to the porphyrin ring binding site with higher binding affinity compared to LSPZ. The binding affinity results primarily from van der Waals forces between UAA and hydrophobic residues of QcrB in the porphyrin ring binding site where UAA binds competitively. UA and UAA formed stable complexes with the protein with reduced overall residue mobility, consequently supporting the magnitude of binding affinity of the respective ligands. UAA could potentially compete with the porphyrin ring for the binding site and deprive the mycobacterial cell from oxygen, consequently disturbing mycobacterial oxygen-dependent metabolic processes. Therefore, discovery of a compound that competes with porphyrin ring for the binding site may be useful in QcrB pharmocological studies. UA proved to be a superior compound, although its estimated toxicity profile revealed UA to be hepatotoxic within acceptable parameters. Although preliminary findings of this report still warrant experimental validation, they could serve as a baseline for the development of new anti-tubercular drugs from natural resources that target QcrB.


Asunto(s)
Antituberculosos/química , Proteínas Bacterianas/química , Complejo III de Transporte de Electrones/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Triterpenos/química , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Sitios de Unión , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Ligandos , Conformación Molecular , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Unión Proteica , Relación Estructura-Actividad , Triterpenos/farmacología , Ácido Ursólico
2.
Molecules ; 26(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299598

RESUMEN

In this work we introduce a novel filtering and molecular modeling pipeline based on a fingerprint and descriptor similarity procedure, coupled with molecular docking and molecular dynamics (MD), to select potential novel quoinone outside inhibitors (QoI) of cytochrome bc1 with the aim of determining the same or different chromophores to usual. The study was carried out using the yeast cytochrome bc1 complex with its docked ligand (stigmatellin), using all the fungicides from FRAC code C3 mode of action, 8617 Drugbank compounds and 401,624 COCONUT compounds. The introduced drug repurposing pipeline consists of compound similarity with C3 fungicides and molecular docking (MD) simulations with final QM/MM binding energy determination, while aiming for potential novel chromophores and perserving at least an amide (R1HN(C=O)R2) or ester functional group of almost all up to date C3 fungicides. 3D descriptors used for a similarity test were based on the 280 most stable Padel descriptors. Hit compounds that passed fingerprint and 3D descriptor similarity condition and had either an amide or an ester group were submitted to docking where they further had to satisfy both Chemscore fitness and specific conformation constraints. This rigorous selection resulted in a very limited number of candidates that were forwarded to MD simulations and QM/MM binding affinity estimations by the ORCA DFT program. In this final step, stringent criteria based on (a) sufficiently high frequency of H-bonds; (b) high interaction energy between protein and ligand through the whole MD trajectory; and (c) high enough QM/MM binding energy scores were applied to further filter candidate inhibitors. This elaborate search pipeline led finaly to four Drugbank synthetic lead compounds (DrugBank) and seven natural (COCONUT database) lead compounds-tentative new inhibitors of cytochrome bc1. These eleven lead compounds were additionally validated through a comparison of MM/PBSA free binding energy for new leads against those obtatined for 19 QoIs.


Asunto(s)
Complejo III de Transporte de Electrones/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/enzimología , Evaluación Preclínica de Medicamentos , Complejo III de Transporte de Electrones/química , Proteínas de Saccharomyces cerevisiae/química
3.
Biochem Biophys Res Commun ; 547: 162-168, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33610916

RESUMEN

Although acute myeloid leukemia (AML) is a highly heterogeneous disease with diverse genetic subsets, one hallmark of AML blasts is myeloid differentiation blockade. Extensive evidence has indicated that differentiation induction therapy represents a promising treatment strategy. Here, we identified that the pharmacological inhibition of the mitochondrial electron transport chain (ETC) complex III by antimycin A inhibits proliferation and promotes cellular differentiation of AML cells. Mechanistically, we showed that the inhibition of dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme in de novo pyrimidine biosynthesis, is involved in antimycin A-induced differentiation. The activity of antimycin A could be reversed by supplement of excessive amounts of exogenous uridine as well as orotic acid, the product of DHODH. Furthermore, we also found that complex III inhibition exerts a synergistic effect in differentiation induction combined with DHODH inhibitor brequinar as well as with the pyrimidine salvage pathway inhibitor dipyridamole. Collectively, our study uncovered the link between mitochondrial complex III and AML differentiation and may provide further insight into the potential application of mitochondrial complex III inhibitor as a mono or combination treatment in differentiation therapy of AML.


Asunto(s)
Antimicina A/análogos & derivados , Compuestos de Bifenilo/farmacología , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Antimicina A/farmacología , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dihidroorotato Deshidrogenasa , Complejo III de Transporte de Electrones/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo
4.
FEBS Lett ; 594(18): 2935-2952, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32573760

RESUMEN

The cytochrome bc1 complex is a key component of the mitochondrial respiratory chains of many eukaryotic microorganisms that are pathogenic for plants or humans, such as fungi responsible for crop diseases and Plasmodium falciparum, which causes human malaria. Cytochrome bc1 is an enzyme that contains two (ubi)quinone/quinol-binding sites, which can be exploited for the development of fungicidal and chemotherapeutic agents. Here, we review recent progress in determination of the structure and mechanism of action of cytochrome bc1 , and the associated development of antimicrobial agents (and associated resistance mechanisms) targeting its activity.


Asunto(s)
Antifúngicos/farmacología , Antimaláricos/uso terapéutico , Complejo III de Transporte de Electrones , Proteínas Fúngicas , Hongos/enzimología , Malaria Falciparum , Enfermedades de las Plantas/microbiología , Plasmodium falciparum/enzimología , Proteínas Protozoarias , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Complejo III de Transporte de Electrones/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/metabolismo , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/enzimología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo
5.
ACS Infect Dis ; 5(2): 239-249, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30485737

RESUMEN

Respiration is a promising target for the development of new antimycobacterial agents, with a growing number of compounds in clinical development entering this target space. However, more candidate inhibitors are needed to expand the therapeutic options available for drug-resistant Mycobacterium tuberculosis infection. Here, we characterize a putative respiratory complex III (QcrB) inhibitor, TB47: a pyrazolo[1,5- a]pyridine-3-carboxamide. TB47 is active (MIC between 0.016 and 0.500 µg/mL) against a panel of 56 M. tuberculosis clinical isolates, including 37 multi-drug-resistant and two extensively drug-resistant strains. Pharmacokinetic and toxicity studies showed promising profiles, including negligible CYP450 interactions, cytotoxicity, and hERG channel inhibition. Consistent with other reported QcrB inhibitors, TB47 inhibits oxygen consumption only when the alternative oxidase, cytochrome bd, is deleted. A point mutation in the qcrB cd2-loop (H190Y, M. smegmatis numbering) rescues the inhibitory effects of TB47. Metabolomic profiling of TB47-treated M. tuberculosis H37Rv cultures revealed accumulation of steps in the TCA cycle and pentose phosphate pathway that are linked to reducing equivalents, suggesting that TB47 causes metabolic redox stress. In mouse infection models, a TB47 monotherapy was not bactericidal. However, TB47 was strongly synergistic with pyrazinamide and rifampicin, suggesting a promising role in combination therapies. We propose that TB47 is an effective lead compound for the development of novel tuberculosis chemotherapies.


Asunto(s)
Antituberculosos/farmacología , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Animales , Antituberculosos/farmacocinética , Femenino , Metabolómica , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Piridinas/farmacología
6.
ACS Infect Dis ; 4(11): 1574-1584, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30117728

RESUMEN

Cytochrome bc1 inhibitors have been broadly studied as human and veterinary medicines and agricultural fungicides. For the most part, cytochrome bc1 inhibitors compete with ubiquinol at the ubiquinol oxidation (Qo) site or with ubiquinone at the quinone reduction (Qi) site. 4(1 H)-Quinolones with 3-position substituents may inhibit either site based on quinolone ring substituents. 4(1 H)-Quinolones that inhibit the Qi site are highly effective against toxoplasmosis, malaria, and babesiosis and do not inhibit human cytochrome bc1. We tested a series of 4(1 H)-Quinolones against wild-type and drug resistant strains of Toxoplasma gondii and Plasmodium falciparum. These experiments identified very potent compounds that inhibit T. gondii proliferation at picomolar concentrations. The most potent compounds target the Qo site, and for these compounds, an alkyl side chain confers potency against T. gondii greater than that of bulkier side chains. Our experiments also show that substituents on the quinolone ring influenced selectivity between T. gondii and P. falciparum and between Qo and Qi site-mediated activity. Comparison of the parasite cytochrome b sequences identified amino acids that are associated with drug resistance in P. falciparum that exist naturally in wild-type T. gondii. These underlying differences may influence drug susceptibility. Finally, a Qo site active 4(1 H)-quinolone-3-diarylether tested in a murine model of toxoplasmosis was superior to atovaquone, resulting in survival from Type I strain T. gondii infection. These experiments identify highly effective compounds for toxoplasmosis and provide valuable insight into the structure-activity relationship of cytochrome bc1 inhibitors.


Asunto(s)
Antiprotozoarios/farmacología , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Éteres Fenílicos/farmacología , Plasmodium falciparum/efectos de los fármacos , Quinolonas/farmacología , Toxoplasma/efectos de los fármacos , Toxoplasmosis/tratamiento farmacológico , Animales , Células Cultivadas , Descubrimiento de Drogas , Resistencia a Medicamentos , Humanos , Malaria Falciparum/tratamiento farmacológico , Ratones , Estructura Molecular , Relación Estructura-Actividad
7.
J Biol Chem ; 293(26): 10363-10380, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29739855

RESUMEN

Reactive oxygen and nitrogen species (ROS/RNS) such as superoxide (O2̇̄), hydrogen peroxide, lipid hydroperoxides, peroxynitrite, and hypochlorous and hypobromous acids play a key role in many pathophysiological processes. Recent studies have focused on mitochondrial ROS as redox signaling species responsible for promoting cell division, modulating and regulating kinases and phosphatases, and activating transcription factors. Many ROS also stimulate cell death and senescence. The extent to which these processes occur is attributed to ROS levels (low or high) in cells. However, the exact nature of ROS remains unknown. Investigators have used redox-active probes that, upon oxidation by ROS, yield products exhibiting fluorescence, chemiluminescence, or bioluminescence. Mitochondria-targeted probes can be used to detect ROS generated in mitochondria. However, because most of these redox-active probes (untargeted and mitochondria-targeted) are oxidized by several ROS species, attributing redox probe oxidation to specific ROS species is difficult. It is conceivable that redox-active probes are oxidized in common one-electron oxidation pathways, resulting in a radical intermediate that either reacts with another oxidant (including oxygen to produce O2̇̄) and forms a stable fluorescent product or reacts with O2̇̄ to form a fluorescent marker product. Here, we propose the use of multiple probes and complementary techniques (HPLC, LC-MS, redox blotting, and EPR) and the measurement of intracellular probe uptake and specific marker products to identify specific ROS generated in cells. The low-temperature EPR technique developed to investigate cellular/mitochondrial oxidants can easily be extended to animal and human tissues.


Asunto(s)
Mitocondrias/metabolismo , Técnicas de Sonda Molecular , Especies Reactivas de Oxígeno/metabolismo , Aconitato Hidratasa/metabolismo , Línea Celular , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Mitocondrias/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Superóxidos/metabolismo
8.
Interdiscip Sci ; 10(4): 781-791, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28921079

RESUMEN

Respiratory chain ubiquinol-cytochrome (cyt) c oxidoreductase (cyt bc 1 or complex III) has been demonstrated as a promising target for numerous antibiotics and fungicide applications. In this study, a virtual screening of NCI diversity database was carried out in order to find novel Qo/Qi cyt bc 1 complex inhibitors. Structure-based virtual screening and molecular docking methodology were employed to further screen compounds with inhibition activity against cyt bc 1 complex after extensive reliability validation protocol with cross-docking method and identification of the best score functions. Subsequently, the application of rational filtering procedure over the target database resulted in the elucidation of a novel class of cyt bc 1 complex potent inhibitors with comparable binding energies and biological activities to those of the standard inhibitor, antimycin.


Asunto(s)
Benzoquinonas/química , Bioensayo , Evaluación Preclínica de Medicamentos , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Isoindoles/síntesis química , Isoindoles/farmacología , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Bovinos , Complejo III de Transporte de Electrones/química , Inhibidores Enzimáticos/química , Isoindoles/química , Ligandos , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Reproducibilidad de los Resultados
9.
J Nutr Biochem ; 34: 8-16, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27156147

RESUMEN

Cardiovascular health is influenced by dietary composition and the western diet is composed of varying types/amounts of fat. Conjugated linoleic acid (cLA) is an abundant dietary unsaturated fatty acid associated with health benefits but its biological signaling is not well understood. Nitrite is enriched in vegetables within the diet and can impact signaling of unsaturated fatty acids; however, its role on cLA signaling is not well understood. Elucidating how nitrite may impact the biological signaling of cLA is important due to the dietary consumption of both cLA and nitrite in the western diet. Since co-administration of cLA and nitrite results in cardioprotection during myocardial infarction (MI), it was hypothesized that cLA and nitrite may affect cardiac mitochondrial respiratory function and complex activity in MI. C57BL/6J mice were treated with cLA and nitrite for either 10 or 13days, where MI was induced on day 3. Following treatment, respiration and complex activity were measured. Among the major findings of this study, cLA treatment (10days) decreases state 3 respiration in vivo. Following MI, nitrite alone and in combination with cLA attenuates increased state 3 respiration and decreases hydrogen peroxide levels. Further, nitrite and cLA co-treatment attenuates increased complex III activity after MI. These results suggest that cLA, nitrite and the combination significantly alter cardiac mitochondrial respiratory and electron transport chain activity in vivo and following MI. Overall, the daily consumption of cLA and nitrite in the diet can have diverse cardiovascular implications, some of which occur at the mitochondrial level.


Asunto(s)
Cardiotónicos/uso terapéutico , Suplementos Dietéticos , Modelos Animales de Enfermedad , Ácidos Linoleicos Conjugados/uso terapéutico , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Nitrito de Sodio/uso terapéutico , Animales , Cardiotónicos/administración & dosificación , Ecocardiografía , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Corazón/diagnóstico por imagen , Peróxido de Hidrógeno/antagonistas & inhibidores , Peróxido de Hidrógeno/metabolismo , Ácidos Linoleicos Conjugados/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/enzimología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/metabolismo , Factores de Acoplamiento de la Fosforilación Oxidativa/metabolismo , Estrés Oxidativo
10.
Lasers Med Sci ; 30(1): 173-80, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25118663

RESUMEN

Effects of laser (442 and 532 nm) and light-emitting diode (LED) (650 nm) radiation on mitochondrial respiration and mitochondrial electron transport rate (complexes II-III and IV) in the presence of nitric oxide (NO) were investigated. It was found that nitric oxide (300 nM-10 µM) suppresses mitochondrial respiration. Laser irradiation of mitochondria (442 nm, 3 J cm(-2)) partly restored mitochondrial respiration (approximately by 70 %). Irradiation with green laser (532 nm) or red LED (650 nm) in the same dose had no reliable effect. Evaluation of mitochondrial electron transport rate in complexes II-III and IV and effects of nitric oxide demonstrated almost similar sensitivity of complex II-III and IV to NO, with approximately 50 % inhibition at NO concentration of 3 µM. Subsequent laser or LED irradiation (3 J cm(-2)) showed partial recovery of electron transport only in complex IV and only under irradiation with blue light (442 nm). Our results support the hypothesis of the crucial role of cytochrome c oxidase (complex IV) in photoreactivation of mitochondrial respiration suppressed by NO.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Terapia por Luz de Baja Intensidad , Mitocondrias Hepáticas/metabolismo , Óxido Nítrico/farmacología , Animales , Complejo II de Transporte de Electrones/antagonistas & inhibidores , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Láseres de Gas , Masculino , Mitocondrias Hepáticas/efectos de la radiación , Consumo de Oxígeno , Ratas
11.
Chem Biol Drug Des ; 83(1): 71-80, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23919901

RESUMEN

Antimycin and cyazofamid are specific inhibitors of the mitochondrial respiratory chain and bind to the Qi site of the cytochrome bc1 complex. With the aim to understand the detailed molecular inhibition mechanism of Qi inhibitors, we performed a comparative investigation of the inhibitory kinetics of them against the porcine bc1 complex. The results showed that antimycin is a slow tight-binding inhibitor of succinate-cytochrome c reductase (SCR) with Ki  = 0.033 ± 0.00027 nm and non-competitive inhibition with respect to cytochrome c. Cyazofamid is a classical inhibitor of SCR with Ki  = 12.90 ± 0.91 µm and a non-competitive inhibitor with respect to cytochrome c. Both of them show competitive inhibition with respect to substrate DBH2 . Further molecular docking and quantum mechanics calculations were performed. The results showed that antimycin underwent significant conformational change upon the binding. The energy barrier between the conformations in the crystal and in the binding pocket is ~13.63 kcal/mol. Antimycin formed an H-bond with Asp228 and two water-bridged H-bonds with Lys227 and His201, whereas cyazofamid formed only one H-bond with Asp228. The conformational change and the different hydrogen bonding network might account for why antimycin is a slow tight-binding inhibitor, whereas cyazofamid is a classic inhibitor.


Asunto(s)
Antimicina A/análogos & derivados , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Imidazoles/química , Sulfonamidas/química , Animales , Antimicina A/química , Antimicina A/metabolismo , Sitios de Unión , Complejo III de Transporte de Electrones/metabolismo , Inhibidores Enzimáticos/metabolismo , Enlace de Hidrógeno , Imidazoles/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Teoría Cuántica , Sulfonamidas/metabolismo , Porcinos , Termodinámica
12.
Nat Med ; 19(9): 1157-60, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23913123

RESUMEN

New therapeutic strategies are needed to combat the tuberculosis pandemic and the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) forms of the disease, which remain a serious public health challenge worldwide. The most urgent clinical need is to discover potent agents capable of reducing the duration of MDR and XDR tuberculosis therapy with a success rate comparable to that of current therapies for drug-susceptible tuberculosis. The last decade has seen the discovery of new agent classes for the management of tuberculosis, several of which are currently in clinical trials. However, given the high attrition rate of drug candidates during clinical development and the emergence of drug resistance, the discovery of additional clinical candidates is clearly needed. Here, we report on a promising class of imidazopyridine amide (IPA) compounds that block Mycobacterium tuberculosis growth by targeting the respiratory cytochrome bc1 complex. The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing. Together, our data indicate that Q203 is a promising new clinical candidate for the treatment of tuberculosis.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Imidazoles/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Piperidinas/farmacología , Piridinas/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Complejo III de Transporte de Electrones/genética , Imidazoles/farmacocinética , Ratones , Ratones Endogámicos BALB C , Piperidinas/farmacocinética , Piridinas/farmacocinética , Ratas , Ratas Sprague-Dawley
13.
Proc Natl Acad Sci U S A ; 109(39): 15936-41, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23019377

RESUMEN

Toxoplasma gondii is a widely distributed protozoan pathogen that causes devastating ocular and central nervous system disease. We show that the endochin-like quinolone (ELQ) class of compounds contains extremely potent inhibitors of T. gondii growth in vitro and is effective against acute and latent toxoplasmosis in mice. We screened 50 ELQs against T. gondii and selected two lead compounds, ELQ-271 and ELQ-316, for evaluation. ELQ-271 and ELQ-316, have in vitro IC(50) values of 0.1 nM and 0.007 nM, respectively. ELQ-271 and ELQ-316 have ED(50) values of 0.14 mg/kg and 0.08 mg/kg when administered orally to mice with acute toxoplasmosis. Moreover, ELQ-271 and ELQ-316 are highly active against the cyst form of T. gondii in mice at low doses, reducing cyst burden by 76-88% after 16 d of treatment. To investigate the ELQ mechanism of action against T. gondii, we demonstrate that endochin and ELQ-271 inhibit cytochrome c reduction by the T. gondii cytochrome bc(1) complex at 8 nM and 31 nM, respectively. We also show that ELQ-271 inhibits the Saccharomyces cerevisiae cytochrome bc(1) complex, and an M221Q amino acid substitution in the Q(i) site of the protein leads to >100-fold resistance. We conclude that ELQ-271 and ELQ-316 are orally bioavailable drugs that are effective against acute and latent toxoplasmosis, likely acting as inhibitors of the Q(i) site of the T. gondii cytochrome bc(1) complex.


Asunto(s)
Antiprotozoarios/farmacología , Inhibidores Enzimáticos/farmacología , Quinolinas/farmacología , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Femenino , Humanos , Ratones , Proteínas Protozoarias/antagonistas & inhibidores , Ratas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Toxoplasma/enzimología , Toxoplasmosis/enzimología
14.
Biochim Biophys Acta ; 1803(9): 1072-82, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20488213

RESUMEN

The inhibition of the complex III of the mitochondrial respiratory chain under hypoxia-ischemia has been observed. However, the downstream events of this inhibition remain to be studied. In this paper, we used the Q(i) site inhibitor antimycin A and the Q(o) site inhibitor myxothiazol to inhibit the Q(i) site and the Q(o) site of the complex III and studied the effect and mechanism of the inhibition of these sites on voltage-gated Ca(2+) currents (I(Ca)) in rat prefrontal neurons with whole cell patch-clamp method in slices. The results showed that antimycin A inhibited I(Ca), but myxothiazol increased it. Further mechanism study showed that antimycin A inhibited I(Ca) via the H(2)O(2)-hydroxyl radicals/cPKC (mainly PKCbetaI) pathway, whereas myxothiazol increased I(Ca) via the superoxide anion/nPKC (mainly the PKCdelta) pathway.


Asunto(s)
Señalización del Calcio , Corteza Cerebral/metabolismo , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Neuronas/fisiología , Oxidantes/farmacología , Proteína Quinasa C/fisiología , Animales , Antimicina A/farmacología , Canales de Calcio/metabolismo , Canales de Calcio/fisiología , Señalización del Calcio/efectos de los fármacos , Dominio Catalítico/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Isoenzimas/metabolismo , Isoenzimas/fisiología , Metacrilatos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Potenciales Sinápticos/efectos de los fármacos , Tiazoles/farmacología
15.
Int J Biol Sci ; 3(5): 335-41, 2007 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-17657281

RESUMEN

Mitochondria are the major reactive oxygen species (ROS)--generating sites in mammalian cells. Blockade of complexes in the electron transport chain (ETC) increases the leakage of single electrons to O(2) and therefore increases ROS levels. Complexes I and III have been reported to be the major ROS-generating sites in mitochondria. In this study, using mouse hippocampal HT22 cells as in vitro model, we monitored the change of intracellular ROS level in response to the blockade of ETC at different complex, and measured changes of gene expression of antioxidant enzymes and phase II enzymes, also evaluated potential protective effect of selenium (Se) supplementation to the cells under this oxidative stress. In summary, our results showed that complex I was the major ROS-generating site in HT22 cells. Complex I blockade upregulated the mRNA levels of glutamylcysteine synthetase heavy and light chains, glutathione-S-transferases omega1 and alpha 2, hemoxygenase 1, thioredoxin reductase 1, and selenoprotein H. Unexpectedly, the expression of the enzymes that directly scavenge ROS decreased, including superoxide dismutases 1 and 2, glutathione peroxidase 1, and catalase. Se supplementation increased glutathione levels and glutathione peroxidase activity, indicating a potential protective role in oxidative stress caused by ETC blockade.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Selenio/farmacología , Superóxidos/metabolismo , Animales , Antimicina A/farmacología , Antioxidantes/metabolismo , Línea Celular , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo II de Transporte de Electrones/antagonistas & inhibidores , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Expresión Génica/efectos de los fármacos , Malonatos/farmacología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Polienos/farmacología , Rotenona/farmacología
16.
J Pharm Sci ; 95(12): 2657-72, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16892205

RESUMEN

GW844520 is a potent and selective inhibitor of the cytochrome bc1 complex of mitochondrial electron transport in P. falciparum, the parasite primarily responsible for the mortality associated with malaria worldwide. GW844520 is fully active against the parasite including resistance isolates, showing no cross resistance with agents in use. To evaluate full potential of this development candidate, we conducted drug metabolism and pharmacokinetic studies of this novel anti-malarial. GW844520 had low blood clearance of about 0.5-4% of hepatic blood flow and a steady-state volume of distribution of 2-4 times total body water in mouse, rat, dog, and monkey. Oral bioavailability was high (51-100%). Consistent with the in vivo data, GW844520 had low intrinsic clearance in liver microsomes and hepatocytes of animal and human origin, high passive cellular permeability and was not a P-glycoprotein substrate. GW844520 did not associate appreciably with blood cells but was highly bound to plasma proteins (>99%) in all species. GW844520 was a substrate and inhibitor of human CYP2D6 but not of CYP1A2, 2C9, 2C19, and 3A4. This conjunctive analysis supports continued evaluation of this compound in definitive pre-IND studies and exemplifies our strategy supporting the discovery of novel agents to treat diseases of the developing world.


Asunto(s)
Antimaláricos/farmacocinética , Piridonas/farmacocinética , Animales , Antimaláricos/sangre , Transporte Biológico , Biotransformación , Línea Celular , Permeabilidad de la Membrana Celular , Inhibidores Enzimáticos del Citocromo P-450 , Perros , Evaluación Preclínica de Medicamentos , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Femenino , Hepatocitos/metabolismo , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos , Microsomas Hepáticos/metabolismo , Unión Proteica , Piridonas/sangre , Ratas , Ratas Sprague-Dawley
17.
J Med Chem ; 49(15): 4762-6, 2006 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-16854082

RESUMEN

A series of azole-fused salicylamides were prepared as analogues of antimycin and assayed for activity at complex III of the mitochondrial respiratory chain. The activity of these compounds approached that of antimycin in inhibitory potency and some showed growth reduction of Septoria nodorum in vitro. Compound 8a was shown to bind at the Qi site of complex III by red-shift titration of the bc1 complex.


Asunto(s)
Antimicina A/análogos & derivados , Antimicina A/síntesis química , Azoles/síntesis química , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Salicilamidas/síntesis química , Antimicina A/farmacología , Ascomicetos/efectos de los fármacos , Azoles/química , Azoles/farmacología , Fungicidas Industriales/síntesis química , Fungicidas Industriales/farmacología , Salicilamidas/farmacología , Relación Estructura-Actividad
18.
Exp Neurol ; 194(2): 484-94, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16022873

RESUMEN

Hypoxia-induced inhibition of Qi site of mitochondrial complex III under hypoxia has received attention, but its downstream pathways remain unclear. In this paper, we used Qi site inhibitor antimycin A to mimic the inhibition of the Qi site of mitochondrial complex III and studied the effects of the inhibition of this site on persistent sodium currents, transient sodium currents, and neuronal excitability in rat hippocampal CA1 cells with whole cell patch-clamp methods. The results showed that antimycin A decreased the amplitude of both persistent and transient sodium currents; antioxidant 2-mercaptopropionylglycine or 1,10 phenanthroline abolished the effect of antimycin A; the complex III Qo site inhibitor stigmatellin, the protein kinase C inhibitor chelerythrine, but not the protein kinase A inhibitor H89, canceled the effect of antimycin A; antimycin A decreased the amplitude of both persistent and transient sodium currents only at more depolarized membrane potentials and the decrease percentage of both persistent and transient sodium currents after antimycin A at potentials above -50 mV increased with the change in potentials toward more depolarized direction; exogenous application of H2O2 inhibited the amplitude of both persistent and transient sodium currents; the amount of current required to trigger spikes was increased and the number of spikes produced by varying levels of currents was decreased by antimycin A. These results suggest that the inhibition of Qi site of mitochondrial complex III decreases both persistent and transient sodium currents via reactive oxygen species and protein kinase C in rat hippocampal CA1 cells.


Asunto(s)
Antimicina A/farmacología , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Neuronas/metabolismo , Proteína Quinasa C/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Canales de Sodio/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Antibacterianos/farmacología , Antioxidantes/farmacología , Sitios de Unión/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Peróxido de Hidrógeno/farmacología , Hipoxia Encefálica/metabolismo , Hipoxia Encefálica/fisiopatología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Técnicas de Placa-Clamp , Proteína Quinasa C/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Ratas , Ratas Sprague-Dawley , Sodio/metabolismo , Canales de Sodio/efectos de los fármacos
19.
Biochem J ; 380(Pt 1): 193-202, 2004 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-14972026

RESUMEN

The inner mitochondrial membrane is selectively permeable, which limits the transport of solutes and metabolites across the membrane. This constitutes a problem when intramitochondrial enzymes are studied. The channel-forming antibiotic AlaM (alamethicin) was used as a potentially less invasive method to permeabilize mitochondria and study the highly branched electron-transport chain in potato tuber (Solanum tuberosum) and pea leaf (Pisum sativum) mitochondria. We show that AlaM permeabilized the inner membrane of plant mitochondria to NAD(P)H, allowing the quantification of internal NAD(P)H dehydrogenases as well as matrix enzymes in situ. AlaM was found to inhibit the electron-transport chain at the external Ca2+-dependent rotenone-insensitive NADH dehydrogenase and around complexes III and IV. Nevertheless, under optimal conditions, especially complex I-mediated NADH oxidation in AlaM-treated mitochondria was much higher than what has been previously measured by other techniques. Our results also show a difference in substrate specificities for complex I in mitochondria as compared with inside-out submitochondrial particles. AlaM facilitated the passage of cofactors to and from the mitochondrial matrix and allowed the determination of NAD+ requirements of malate oxidation in situ. In summary, we conclude that AlaM provides the best method for quantifying NADH dehydrogenase activities and that AlaM will prove to be an important method to study enzymes under conditions that resemble their native environment not only in plant mitochondria but also in other membrane-enclosed compartments, such as intact cells, chloroplasts and peroxisomes.


Asunto(s)
Mitocondrias/enzimología , NADH Deshidrogenasa/metabolismo , NADPH Deshidrogenasa/metabolismo , NADP/metabolismo , NAD/análogos & derivados , NAD/metabolismo , Hojas de la Planta/metabolismo , Alameticina/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Ácidos Dicarboxílicos/metabolismo , Transporte de Electrón/efectos de los fármacos , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/metabolismo , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Malatos/metabolismo , Mitocondrias/efectos de los fármacos , Presión Osmótica , Oxidación-Reducción , Consumo de Oxígeno , Pisum sativum/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/ultraestructura , Rotenona/farmacología , Solanum tuberosum/metabolismo , Especificidad por Sustrato
20.
Biochem J ; 378(Pt 3): 959-66, 2004 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-14627438

RESUMEN

A short-term pre-exposure to dehydroascorbic acid (DHA) promotes U937 cell death upon exposure to otherwise non-toxic levels of peroxynitrite (ONOO-). Toxicity is mediated by a saturable mechanism and cell death takes place as a consequence of mitochondrial permeability transition. The following lines of evidence are consistent with the notion that the enhancing effects of DHA were related to mitochondrial events resulting in inhibition of complex III upon exposure to otherwise inactive concentrations of ONOO-. First, DHA, as well as bona fide complex III inhibitors, similarly enhanced toxicity and subsequent formation of H2O2 induced by ONOO- via a rotenone- or catalase-sensitive mechanism. Secondly, bona fide complex III inhibitors were ineffective in DHA-pre-loaded cells. In addition, respiration-deficient cells were resistant to toxicity elicited by ONOO- and their supplementation with increasing concentrations of DHA, although resulting in the accumulation of vitamin C levels identical with those observed in respiration-proficient cells, failed to affect ONOO- toxicity. Finally, oxygen-consumption experiments demonstrated that pre-exposure to DHA promotes the ONOO--dependent inhibition of complex III. In conclusion, the above results collectively demonstrate that increasing the intracellular accumulation of vitamin C promotes mitochondrial events leading to ONOO--dependent formation of H2O2 and resulting in a rapid necrotic response.


Asunto(s)
Ácido Deshidroascórbico/farmacología , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Peróxido de Hidrógeno/metabolismo , Mitocondrias/efectos de los fármacos , Ácido Peroxinitroso/toxicidad , Ácido Ascórbico/metabolismo , Muerte Celular , Sinergismo Farmacológico , Humanos , Canales Iónicos/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Consumo de Oxígeno , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA