Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232348

RESUMEN

The physiology of Prunus fruit ripening is a complex and not completely understood process. To improve this knowledge, postharvest behavior during the shelf-life period at the transcriptomic level has been studied using high-throughput sequencing analysis (RNA-Seq). Monitoring of fruits has been analyzed after different ethylene regulator treatments, including 1-MCP (ethylene-inhibitor) and Ethrel (ethylene-precursor) in two contrasting selected apricot (Prunus armeniaca L.) and Japanese plum (P. salicina L.) cultivars, 'Goldrich' and 'Santa Rosa'. KEEG and protein-protein interaction network analysis unveiled that the most significant metabolic pathways involved in the ripening process were photosynthesis and plant hormone signal transduction. In addition, previously discovered genes linked to fruit ripening, such as pectinesterase or auxin-responsive protein, have been confirmed as the main genes involved in this process. Genes encoding pectinesterase in the pentose and glucuronate interconversions pathway were the most overexpressed in both species, being upregulated by Ethrel. On the other hand, auxin-responsive protein IAA and aquaporin PIP were both upregulated by 1-MCP in 'Goldrich' and 'Santa Rosa', respectively. Results also showed the upregulation of chitinase and glutaredoxin 3 after Ethrel treatment in 'Goldrich' and 'Santa Rosa', respectively, while photosystem I subunit V psaG (photosynthesis) was upregulated after 1-MCP in both species. Furthermore, the overexpression of genes encoding GDP-L-galactose and ferredoxin in the ascorbate and aldarate metabolism and photosynthesis pathways caused by 1-MCP favored antioxidant activity and therefore slowed down the fruit senescence process.


Asunto(s)
Quitinasas , Prunus armeniaca , Prunus domestica , Antioxidantes/metabolismo , Quitinasas/metabolismo , Ciclopropanos , Etilenos , Ferredoxinas/metabolismo , Frutas/genética , Frutas/metabolismo , Galactosa/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucuronatos/metabolismo , Glutarredoxinas/genética , Ácidos Indolacéticos/metabolismo , Compuestos Organofosforados , Pentosas/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus armeniaca/genética , Prunus domestica/genética
2.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768948

RESUMEN

The objective of our study was to characterise the growth of tomato seedlings under various light spectra, but special attention has been paid to gaining a deeper insight into the details of photosynthetic light reactions. The following light combinations (generated by LEDs, constant light intensity at 300 µmol m-2 s-1) were used: blue/red light; blue/red light + far red; blue/red light + UV; white light that was supplemented with green, and white light that was supplemented with blue. Moreover, two combinations of white light for which the light intensity was changed by imitating the sunrise, sunset, and moon were also tested. The reference point was also light generated by high pressure sodium lamps (HPS). Plant growth/morphological parameters under various light conditions were only partly correlated with the photosynthetic efficiency of PSI and PSII. Illumination with blue/red as the main components had a negative effect on the functioning of PSII compared to the white light and HPS-generated light. On the other hand, the functioning of PSI was especially negatively affected under the blue/red light that was supplemented with FR. The FT-Raman studies showed that the general metabolic profile of the leaves (especially proteins and ß-carotene) was similar in the plants that were grown under the HPS and under the LED-generated white light for which the light intensity changed during a day. The effect of various light conditions on the leaf hormonal balance (auxins, brassinosteroids) is also discussed.


Asunto(s)
Fotosíntesis , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efectos de la radiación , Brasinoesteroides/metabolismo , Clorofila/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Solanum lycopersicum/crecimiento & desarrollo , Metaboloma , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de la radiación , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación , Espectrometría Raman
3.
J Plant Res ; 134(6): 1311-1321, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34351552

RESUMEN

Honeysuckle (Lonicera japonica Thunb.) is a traditional medicinal plant in China which is often threatened by high temperature at midday during summer. Heat-induced effects on the photosynthetic apparatus in honeysuckle are associated with a depression of the photosystem II (PSII) photochemical efficiency. However, very limited information is available on regulation of photosynthetic electron flow in PSI photoprotection in heat-stressed honeysuckle. Simultaneous analyses of chlorophyll fluorescence and the change in absorbance of P700 showed that energy transformation and electron transfer activity in PSII decreased under heat stress, but the fraction of photo-oxidizable PSI (Pm) remained stable. With treatments at 38 and 42 °C, the photochemical electron transport in PSII was suppressed, whereas the cyclic electron flow (CEF) around PSI was induced. In addition, the levels of high energy state quenching (qE) and P700 oxidation increased significantly with increasing temperature. However, a decline of qE in antimycin A (AA)- or 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated leaves after heat treatment was observed, while P700 oxidation decreased only in the presence of AA. The results indicate that heat-induced inhibition of PSII and induction of CEF cooperatively protect PSI from ROS damages through moderate down-regulation of photosynthetic electron flow from PSII to PSI.


Asunto(s)
Lonicera , Complejo de Proteína del Fotosistema I , Clorofila , Regulación hacia Abajo , Transporte de Electrón , Luz , Lonicera/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo
4.
Sci Rep ; 11(1): 13226, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168171

RESUMEN

Lignosulfonate (LS) is a by-product obtained during sulfite pulping process and is commonly used as a growth enhancer in plant growth. However, the underlying growth promoting mechanism of LS on shoot growth remains largely unknown. Hence, this study was undertaken to determine the potential application of eco-friendly ion-chelated LS complex [sodium LS (NaLS) and calcium LS (CaLS)] to enhance recalcitrant indica rice MR 219 shoot growth and to elucidate its underlying growth promoting mechanisms. In this study, the shoot apex of MR 219 rice was grown on Murashige and Skoog medium supplemented with different ion chelated LS complex (NaLS and CaLS) at 100, 200, 300 and 400 mg/L The NaLS was shown to be a better shoot growth enhancer as compared to CaLS, with optimum concentration of 300 mg/L. Subsequent comparative proteomic analysis revealed an increase of photosynthesis-related proteins [photosystem II (PSII) CP43 reaction center protein, photosystem I (PSI) iron-sulfur center, PSII CP47 reaction center protein, PSII protein D1], ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbohydrate metabolism-related proteins (glyceraldehyde-3-phosphate dehydrogenase 3, fructose-bisphosphate aldolase) and stress regulator proteins (peptide methionine sulfoxide reductase A4, delta-1-pyrroline-5-carboxylate synthase 1) abundance in NaLS-treated rice as compared to the control (MSO). Consistent with proteins detected, a significant increase in biochemical analyses involved in photosynthetic activities, carbohydrate metabolism and protein biosynthesis such as total chlorophyll, rubisco activity, total sugar and total protein contents were observed in NaLS-treated rice. This implies that NaLS plays a role in empowering photosynthesis activities that led to plant growth enhancement. In addition, the increased in abundance of stress regulator proteins were consistent with low levels of peroxidase activity, malondialdehyde content and phenylalanine ammonia lyase activity observed in NaLS-treated rice. These results suggest that NaLS plays a role in modulating cellular homeostasis to provide a conducive cellular environment for plant growth. Taken together, NaLS improved shoot growth of recalcitrant MR 219 rice by upregulation of photosynthetic activities and reduction of ROS accumulation leading to better plant growth.


Asunto(s)
Lignina/análogos & derivados , Oryza/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sodio/farmacología , Antioxidantes/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Clorofila/metabolismo , Lignina/farmacología , Oryza/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Proteómica/métodos , Ribulosa-Bifosfato Carboxilasa/metabolismo , Azufre/metabolismo
5.
Aquat Toxicol ; 236: 105839, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34015754

RESUMEN

Selenium, an essential trace element for animals, poses a threat to all forms of life above a threshold concentration. The ubiquitously present cyanobacteria, a major photosynthetic biotic component of aquatic and other ecosystems, are excellent systems to study the effects of environmental toxicants. The molecular changes that led to beneficial or detrimental effects in response to different doses of selenium oxyanion Se(IV) were analyzed in the filamentous cyanobacterium Anabaena PCC 7120. This organism showed no inhibition in growth up to 15 mg/L sodium selenite, but above this dose i.e. 20-100 mg/L of Se(IV), both growth and photosynthesis were substantially inhibited. Along with the increased accumulation of non-protein thiols, a consistent reduction in levels of ROS was observed at 10 mg/mL dose of Se(IV). High dose of Se(IV) (above 20 mg/L) enhanced endogenous reactive oxygen species (ROS)/lipid peroxidation, and decreased photosynthetic capability. Treatment with 100 mg/L Se(IV) downregulated transcription of several photosynthesis pathways-related genes such as those encoding photosystem I and II proteins, phycobilisome rod-core linker protein, phycocyanobilin, phycoerythrocyanin-associated proteins etc. Interestingly, at a dose range of 10-15 mg/L Se(IV), Anabaena showed an increase in PSII photosynthetic yield and electron transport rate (at PSII), suggesting improved photosynthesis. Se was incorporated into the Anabaena cells, and Se-enriched thylakoid membranes showed higher redox conductivity than the thylakoid membranes from untreated cells. Overall, the data supports that modulation of photosynthetic machinery is one of the crucial mechanisms responsible for the dose-dependent contrasting effect of Se(IV) observed in Anabaena.


Asunto(s)
Venenos de Cnidarios/toxicidad , Anabaena/metabolismo , Cianobacterias/metabolismo , Ecosistema , Transporte de Electrón , Oxidación-Reducción , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema I/metabolismo , Ficobilinas , Ficocianina , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidad
6.
Photosynth Res ; 149(1-2): 213-231, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33464442

RESUMEN

Room temperature fluorescence in vivo and its light-induced changes are dominated by chlorophyll a fluorescence excited in photosystem II, F(II), peaking around 685 nm. Photosystem I fluorescence, F(I), peaking around 730 nm, so far has been assumed to be constant in vivo. Here, we present evidence for significant contributions of F(I) to variable fluorescence in the green unicellular alga Chlorella vulgaris, the cyanobacterium Synechococcus leopoliensis and a light-green ivy leaf. A Multi-Color-PAM fluorometer was applied for measurements of the polyphasic fluorescence rise (O-I1-I2-P) induced by strong 440 nm light in a dilute suspension of Chlorella, with detection alternating between emission above 700 nm (F > 700) and below 710 nm (F < 710). By averaging 10 curves each of the F > 700 and F < 710 recordings even small differences could be reliably evaluated. After equalizing the amplitudes of the O-I1 phase, which constitutes a specific F(II) response, the O-I1-I2 parts of the two recordings were close to identical, whereas the I2-P phase was larger in F > 700 than in F < 710 by a factor of 1.42. In analogous measurements with Synechococcus carried out in the dark state 2 using strong 625 nm actinic light, after O-I1 equalization the I2-P phase in F > 700 exceeded that in F < 710 even by a factor of 1.99. In measurements with Chlorella, the I2-P phase and with it the apparent variable fluorescence of PS I, Fv(I), were suppressed by moderate actinic background light and by the plastoquinone antagonist DBMIB. Analogous measurements with leaves are rendered problematic by unavoidable light intensity gradients and the resulting heterogenic origins of F > 700 and F < 710. However, a light-green young ivy leaf gave qualitatively similar results as those obtained with the suspensions, thus strongly suggesting the existence of Fv(I) also in leaves.


Asunto(s)
Chlorella vulgaris/metabolismo , Clorofila A/metabolismo , Fluorescencia , Hedera/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Synechococcus/metabolismo , Adaptación Ocular/fisiología , Temperatura
7.
Biochim Biophys Acta Bioenerg ; 1862(1): 148331, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127356

RESUMEN

The eukaryotic alga Chlamydomonas (C.) reinhardtii is used as a model organism to study photosynthetic efficiency. We studied the organization and protein profile of thylakoid membranes under severe iron (Fe2+) deficiency condition and iron supplement for their restoration. Chlorophyll (Chl) a fluorescence fast OJIP transients were decreased in the severe Fe2+ deficient cells resulting in the reduction of the photochemical efficiency. The circular dichroism (CD) results from Fe2+ deficient thylakoid membranes show a significant change in pigment-pigment and pigment-protein excitonic interactions. The organization of super-complexes was also affected significantly. Furthermore, super-complexes of photosystem (PS) II and PSI, along with its dimers, were severely reduced. The complexes separated using sucrose gradient centrifugation shows that loss of super-complexes and excitonic pigment-pigment interactions were restored in the severely Fe2+ deficient cells upon Fe supplementation for three generations. Additionally, the immunoblots demonstrated that both PSII, PSI core, and their light-harvesting complex antenna proteins were differentially decreased. However, reduced core proteins were aggregated, which in turn proteins were unfold and destabilized the supercomplexes and its function. Interestingly, the aggregated proteins were insoluble after n-Dodecyl ß-D-maltoside solubilization. Further, they were identified in the pellet form. When Fe2+ was added to the severely deficient cells, the photosynthetic activity, pigment-proteins complexes, and proteins were restored to the level of control after 3rd generation.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Clorofila A/metabolismo , Hierro/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo
8.
Sci Rep ; 10(1): 1959, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029804

RESUMEN

The final stage of leaf ontogenesis is represented by senescence, a highly regulated process driven by a sequential cellular breakdown involving, as the first step, chloroplast dismantling with consequent reduction of photosynthetic efficiency. Different processes, such as pigment accumulation, could protect the vulnerable photosynthetic apparatus of senescent leaves. Although several studies have produced transcriptomic data on foliar senescence, just few works have attempted to explain differences in red and green leaves throughout ontogenesis. In this work, a transcriptomic approach was used on green and red leaves of Prunus cerasifera to unveil molecular differences from leaf maturity to senescence. Our analysis revealed a higher gene regulation in red leaves compared to green ones, during leaf transition. Most of the observed DEGs were shared and involved in transcription factor activities, senescing processes and cell wall remodelling. Significant differences were detected in cellular functions: genes related to photosystem I and II were highly down-regulated in the green genotype, whereas transcripts involved in flavonoid biosynthesis, such as UDP glucose-flavonoid-3-O-glucosyltransferase (UFGT) were exclusively up-regulated in red leaves. In addition, cellular functions involved in stress response (glutathione-S-transferase, Pathogen-Related) and sugar metabolism, such as three threalose-6-phosphate synthases, were activated in senescent red leaves. In conclusion, data suggests that P. cerasifera red genotypes can regulate a set of genes and molecular mechanisms that cope with senescence, promoting more advantages during leaf ontogenesis than compared to the green ones.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Prunus domestica/fisiología , Senescencia Celular/genética , Color , Regulación hacia Abajo , Flavonoides/biosíntesis , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Regulación hacia Arriba
9.
Plant J ; 96(4): 786-800, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30118564

RESUMEN

Plant thylakoid membranes contain hundreds of proteins that closely interact to cope with ever-changing environmental conditions. We investigated how Pisum sativum L. (pea) grown at different irradiances optimizes light-use efficiency through the differential accumulation of thylakoid proteins. Thylakoid membranes from plants grown under low (LL), moderate (ML) and high (HL) light intensity were characterized by combining chlorophyll fluorescence measurements with quantitative label-free proteomic analysis. Protein sequences retrieved from available transcriptomic data considerably improved thylakoid proteome profiling, increasing the quantifiable proteins from 63 to 194. The experimental approach used also demonstrates that this integrative omics strategy is powerful for unravelling protein isoforms and functions that are still unknown in non-model organisms. We found that the different growth irradiances affect the electron transport kinetics but not the relative abundance of photosystems (PS) I and II. Two acclimation strategies were evident. The behaviour of plants acclimated to LL was compared at higher irradiances: (i) in ML, plants turn on photoprotective responses mostly modulating the PSII light-harvesting capacity, either accumulating Lhcb4.3 or favouring the xanthophyll cycle; (ii) in HL, plants reduce the pool of light-harvesting complex II and enhance the PSII repair cycle. When growing at ML and HL, plants accumulate ATP synthase, boosting both cyclic and linear electron transport by finely tuning the ΔpH across the membrane and optimizing protein trafficking by adjusting the thylakoid architecture. Our results provide a quantitative snapshot of how plants coordinate light harvesting, electron transport and protein synthesis by adjusting the thylakoid membrane proteome in a light-dependent manner.


Asunto(s)
Perfilación de la Expresión Génica , Proteoma/metabolismo , Proteómica , Tilacoides/metabolismo , Transcriptoma , Aclimatación , Carotenoides/metabolismo , Clorofila/metabolismo , Combinación de Medicamentos , Transporte de Electrón , Regulación de la Expresión Génica de las Plantas , Pisum sativum , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Extractos Vegetales/metabolismo , Proteínas de Plantas/metabolismo , Biosíntesis de Proteínas , Estrés Fisiológico/genética
10.
Plant Physiol ; 177(1): 271-284, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29540590

RESUMEN

Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley (Hordeum vulgare). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue.


Asunto(s)
Fósforo/deficiencia , Fotosíntesis , Complejos de ATP Sintetasa/metabolismo , Adenosina Trifosfato/metabolismo , Clorofila A/metabolismo , Transporte de Electrón/efectos de la radiación , Fluorescencia , Hordeum/crecimiento & desarrollo , Hordeum/efectos de la radiación , Cinética , NADP/metabolismo , Oxidación-Reducción , Fósforo/metabolismo , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Plastoquinona/metabolismo
11.
Plant Physiol Biochem ; 108: 499-506, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27592174

RESUMEN

To examine the coordination between photosystem II (PSII) and photosystem I (PSI) in response to varying environmental conditions, both diurnal fluctuations and seasonal variability of photosynthetic electron transport activity in ivy (Hedera nepalensis, Araliaceae) were investigated: by measuring prompt fluorescence, delayed fluorescence (DF) and modulated reflection of 820 nm light (MR). During diurnal fluctuations, the PSII electron donor side was damaged, as evidenced by decreases of the fast amplitude of DF decay kinetics at I1, although there was no significant change in relative variable fluorescence at K-step to amplitude of FJ - Fo. Decreases in the maximum photochemical efficiency (i.e., PSII photoinactivation) were accompanied by an increased maximum decrease in the slope of MR/MRo (i.e., PSI photoactivation). Subsequently, PSII recovery and PSI relaxation occurred in the afternoon. Throughout the season, alternations between PSII and PSI were also suggested by the down-regulation of PSII and the up-regulation of PSI from summer to winter. Significant negative linear correlations between the activity of PSII and PSI across both diurnal fluctuations and seasonal variability were verified by correlation analyses. In addition, PSI was active throughout the year, suggesting PSI is independent from high temperatures. High PSI activity may maintain the functional integrity of the photosynthetic apparatus in overwintering ivy. The alternation between PSII and PSI activity may regulate the distribution of excitation energy between the two photosystems and balance the redox state of the electron transport change, thereby enabling ivy to respond to varying environmental conditions.


Asunto(s)
Clorofila/metabolismo , Hedera/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila A , Ritmo Circadiano , Transporte de Electrón , Fluorescencia , Hedera/química , Hedera/fisiología , Fotosíntesis , Proteínas de Plantas/metabolismo , Estaciones del Año , Temperatura
12.
Plant Physiol Biochem ; 104: 234-41, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27038602

RESUMEN

The influence of two factors - high temperature and high light intensity, acting separately or simultaneously on the pigment composition, fluorescent characteristics, membrane integrity and synthesis of protective substances was investigated in tomato plants (Solanum lycopersicum cv. M 82). Moderate elevated temperatures (38/29 °C) were applied under optimum or high light intensity for 2 and 6 days and after that the plants are allowed to recover for 5 days at optimum conditions. Parameters of chlorophyll fluorescence were used to evaluate the alterations of photosystem I and photosystem II activity and malondialdehyde content was determined as a measure of stress-induced peroxidation of membrane lipids. The response of treated plants to high light and elevated temperature was estimated by analyzing the accumulation of anthocyanins. Both stress factors exhibit different impact on studied parameters - high light intensity influences considerably quantum yield of photosystem II and photochemical quenching that is compensated to some extent when applied at elevated temperature. High temperature reduces strongly non-photochemical quenching. Data obtained show that after two days under particular conditions, the plants tend to acclimate, but this is achieved after longer treatment - 6 days. During the recovery period the activity of photosystem I and the quantum yield of photosystem II recover almost completely, while the values of non-photochemical quenching although slightly higher, did not reach the levels at the beginning of treatment.


Asunto(s)
Aclimatación/efectos de la radiación , Luz , Solanum lycopersicum/fisiología , Solanum lycopersicum/efectos de la radiación , Temperatura , Antocianinas/metabolismo , Clorofila/metabolismo , Fluorescencia , Peroxidación de Lípido/efectos de la radiación , Solanum lycopersicum/crecimiento & desarrollo , Malondialdehído/metabolismo , Oxidación-Reducción/efectos de la radiación , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación
13.
Water Sci Technol ; 71(6): 856-61, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25812094

RESUMEN

Our previous work revealed that Acacia mearnsii extract can inhibit the growth of Microcystis aeruginosa, the common species forming toxic cyanobacterial blooms in eutrophic freshwater. In the present study, we demonstrated that this plant extract can significantly increase cell membrane permeability and Ca²âº/Mg²âº-ATPase activity on the membrane. Long-term exposure to concentrations of 20 ppm A. mearnsii extract led to algal cell membrane leakage or even lysis. Comparison of expression of three photosynthesis-related genes (rbcL, psaB and psbD) in M. aeruginosa with and without plant extract treatment revealed that their expression was remarkably reduced in the presence of the extract. Down-regulation of photosynthesis-related genes could indicate the inhibition of the photosynthetic process. Thus, our results suggested that both photosynthetic systems and membranes of M. aeruginosa are potentially damaged by A. mearnsii extract.


Asunto(s)
Acacia/química , Proteínas de Cloroplastos/genética , Regulación de la Expresión Génica , Microcystis/efectos de los fármacos , Microcystis/genética , Extractos Vegetales/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ATPasa de Ca(2+) y Mg(2+)/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Clorofila/metabolismo , Clorofila A , Proteínas de Cloroplastos/metabolismo , Microcystis/enzimología , Microcystis/crecimiento & desarrollo , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo
14.
PLoS One ; 9(2): e89067, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586508

RESUMEN

Submergence is a common type of environmental stress for plants. It hampers survival and decreases crop yield, mainly by inhibiting plant photosynthesis. The inhibition of photosynthesis and photochemical efficiency by submergence is primarily due to leaf senescence and excess excitation energy, caused by signals from hypoxic roots and inhibition of gas exchange, respectively. However, the influence of mere leaf-submergence on the photosynthetic apparatus is currently unknown. Therefore, we studied the photosynthetic apparatus in detached leaves from four plant species under dark-submergence treatment (DST), without influence from roots and light. Results showed that the donor and acceptor sides, the reaction center of photosystem II (PSII) and photosystem I (PSI) in leaves were significantly damaged after 36 h of DST. This is a photoinhibition-like phenomenon similar to the photoinhibition induced by high light, as further indicated by the degradation of PsaA and D1, the core proteins of PSI and PSII. In contrast to previous research, the chlorophyll content remained unchanged and the H2O2 concentration did not increase in the leaves, implying that the damage to the photosynthetic apparatus was not caused by senescence or over-accumulation of reactive oxygen species (ROS). DST-induced damage to the photosynthetic apparatus was aggravated by increasing treatment temperature. This type of damage also occurred in the anaerobic environment (N2) without water, and could be eliminated or restored by supplying air to the water during or after DST. Our results demonstrate that DST-induced damage was caused by the hypoxic environment. The mechanism by which DST induces the photoinhibition-like damage is discussed below.


Asunto(s)
Oscuridad/efectos adversos , Luz , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Transporte de Electrón , Euonymus/fisiología , Euonymus/efectos de la radiación , Hemerocallis/fisiología , Hemerocallis/efectos de la radiación , Peróxido de Hidrógeno/metabolismo , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Salix/fisiología , Salix/efectos de la radiación , Zea mays/fisiología , Zea mays/efectos de la radiación
15.
J Phys Chem B ; 117(33): 9785-92, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23888886

RESUMEN

The photosynthetic photosystem I reaction center complex (PSI-RC), which has a molecular diameter of 21 nm with 100 pigments, was incorporated into silica nanopores with a 100-nm diameter that penetrates an alumina plate of 60-µm thickness to make up an inorganic-biological hybrid photocell. PSI-RCs, purified from a thermophilic cyanobacterium, were stable inside the nanopores and rapidly photoreduced a mediator dye methyl viologen. The reduced dye was more stable inside nanopores suggesting the decrease of dissolved oxygen. The analysis by a cryogenic electron spin paramagnetic resonance indicated the oriented arrangement of RCs inside the 100-nm nanopores, with their surface parallel to the silica wall and perpendicular to the plane of the alumina plate. PSI RC complex in the semicrystalline orientation inside silica nanopores can be a new type of light energy conversion unit to supply strong reducing power selectively to other molecules inside or outside nanopores.


Asunto(s)
Óxido de Aluminio/química , Nanoporos , Complejo de Proteína del Fotosistema I/química , Dióxido de Silicio/química , Cianobacterias/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Oxidación-Reducción , Paraquat/química , Complejo de Proteína del Fotosistema I/metabolismo
16.
Planta ; 236(2): 677-90, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22526496

RESUMEN

BPG2 (Brz-insensitive pale green 2) is a dark-repressible and light-inducible gene that is required for the greening process in Arabidopsis. Light pulse experiments suggested that light-regulated gene expression of BPG2 is mediated by phytochrome. The T-DNA insertion mutant bpg2-2 exhibited a reduced level of chlorophyll and carotenoid pigmentation in the plastids. Measurements of time resolved chlorophyll fluorescence and of fluorescence emission at 77 K indicated defective photosystem II and altered photosystem I functions in bpg2 mutants. Kinetic analysis of chlorophyll fluorescence induction suggested that the reduction of the primary acceptor (QA) is impaired in bpg2. The observed alterations resulted in reduced photosynthetic efficiency as measured by the electron transfer rate. BPG2 protein is localized in the plastid stroma fraction. Co-immunoprecipitation of a formaldehyde cross-linked RNA-protein complex indicated that BPG2 protein binds with specificity to chloroplast 16S and 23S ribosomal RNAs. The direct physical interaction with the plastid rRNAs supports an emerging model whereby BPG2 provides light-regulated ribosomal RNA processing functions, which are rate limiting for development of the plastid and its photosynthetic apparatus.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloroplastos/genética , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Proteínas de Unión al GTP/metabolismo , Inmunoprecipitación , Luz , Mutagénesis Insercional , Cebollas/genética , Cebollas/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Estomas de Plantas/metabolismo , ARN del Cloroplasto/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
17.
Bioresour Technol ; 109: 266-70, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21683581

RESUMEN

The effect of monochromatic light on growth, photosynthesis, and hydrocarbon production was tested in Botryococcus braunii Bot-144 (race B), which produces triterpenoid hydrocarbons. The growth was higher in order of red, blue, and green light. The color of red light-grown cells became more orange-yellow and their shape dominantly changed to grape-like with long branches. Photosynthetic carbon fixation activity was higher in order of blue, red, and green light-grown cells, but photosystem activities showed no difference. In the pulse-chase experiments with (14)CO(2), no major difference was observed in the production of lipids, hydrocarbons, polysaccharides, or proteins among the three kinds of cells, although hydrocarbon production was slightly lower in green light-grown cells. These results indicate that blue and red light were more effective for growth, photosynthetic CO(2) fixation, and hydrocarbon production than green light, and that red light is the most efficient light source when calculated based on photoenergy supplied.


Asunto(s)
Chlorophyta/crecimiento & desarrollo , Chlorophyta/efectos de la radiación , Hidrocarburos/metabolismo , Luz , Fotosíntesis/efectos de la radiación , Aceites de Plantas/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Radioisótopos de Carbono , Recuento de Células , Chlorophyta/citología , Lípidos/análisis , Peso Molecular , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Pigmentos Biológicos/metabolismo , Factores de Tiempo
18.
J Plant Physiol ; 169(3): 275-84, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22153751

RESUMEN

Biochemical analyses of antioxidant content were compared with measurements of fluorescence and electron paramagnetic resonance (EPR) to examine the alteration of radicals in wheat seedlings exposed to 2 days of selenium stress. Two genotypes of Polish and one of Finnish wheat, differing in their tolerance to long-term stress treatment, were cultured under hydroponic conditions to achieve the phase of 3-leave seedlings. Afterwards, selenium (sodium selenate, 100 µM concentration) was added to the media. After Se-treatment, all varieties showed an increase in carbohydrates (soluble and starch), ascorbate and glutathione content in comparison to non-stressed plants. These changes were more visible in Finnish wheat. On the basis of lipid peroxidation measurements, Finnish wheat was recognized as the genotype more sensitive to short-term Se-stress than the Polish varieties. The antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase and glutathione reductase) increased in Polish genotypes, whereas they decreased in Finnish wheat plants cultured on Se media. The action of reactive oxygen species in short-term action of Se stress was confirmed by the reduction of PSII and PSI system activities (measured by fluorescence parameters and EPR, respectively). EPR studies showed changes in redox status (especially connected with Mn(II)/Mn(III), and semiquinone/quinone ratios) in wheat cell after Se treatment. The involvement of the carbohydrate molecules as electron traps in production of long-lived radicals is postulated.


Asunto(s)
Selenio/farmacología , Triticum/efectos de los fármacos , Triticum/enzimología , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Finlandia , Variación Genética , Genotipo , Glutatión Reductasa/metabolismo , Peroxidación de Lípido , Peroxidasa/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Polonia , Especies Reactivas de Oxígeno/metabolismo , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/metabolismo , Ácido Selénico , Selenio/metabolismo , Compuestos de Selenio/metabolismo , Compuestos de Selenio/farmacología , Estrés Fisiológico , Superóxido Dismutasa/metabolismo , Triticum/genética , Triticum/metabolismo
19.
Physiol Plant ; 144(3): 277-88, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22121914

RESUMEN

The hypothesis that changes in the IP amplitude of the fluorescence transient OJIP reflect changes in leaf photosystem I (PSI) content was tested using mineral-deficient sugar beet plants. Young sugar beet plants (Beta vulgaris) were grown hydroponically on nutrient solutions containing either 1 mM or no Mg(2+) and 2.1 µM to 1.88 mM SO(4)(2-) for 4 weeks. During this period two leaf pairs were followed: the already developed second leaf pair and the third leaf pair that was budding at the start of the treatment. The IP amplitude [ΔF(IP) (fluorescence amplitude of the I-to-P-rise) and its relative contribution to the fluorescence rise: ΔV(IP) (amplitude of the relative variable fluorescence of the I-to-P-rise = relative contribution of the I-to-P-rise to the OJIP-rise)] and the amplitude of the transmission change at 820 nm (difference between all plastocyanin and the primary electron donor of photosystems I oxidized and reduced, respectively) relative to the total transmission signal (ΔI(max) /I(tot)) were determined as a function of the treatment time. Correlating the transmission and the two fluorescence parameters yielded approximately linear relationships in both cases. For the least severely affected leaves the parameter ΔV(IP) correlated considerably better with ΔI(max) /I(tot) than ΔF(IP) indicating that it is the ratio PSII:PSI that counts. To show that the relationship also holds for other plants and treatments, data from salt- and drought-stressed plants of barley, chickpea and pea are shown. The relationship between ΔV(IP) and PSI content was confirmed by western blot analysis using an antibody against psaD. The good correlations between ΔI(max) /I(tot) and ΔF(IP) and ΔV(IP) , respectively, suggest that changes in the IP amplitude can be used as semi-quantitative indicators for (relative) changes in the PSI content of the leaf.


Asunto(s)
Beta vulgaris/fisiología , Sequías , Fluorescencia , Complejo de Proteína del Fotosistema I/metabolismo , Hojas de la Planta/metabolismo , Estrés Fisiológico , Beta vulgaris/efectos de los fármacos , Beta vulgaris/metabolismo , Western Blotting , Clorofila/metabolismo , Cicer/efectos de los fármacos , Cicer/metabolismo , Cicer/fisiología , Magnesio/farmacología , Oxidación-Reducción , Pisum sativum/efectos de los fármacos , Pisum sativum/metabolismo , Pisum sativum/fisiología , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Plastocianina/metabolismo , Cloruro de Sodio/farmacología , Soluciones/metabolismo , Sulfatos/farmacología
20.
Nature ; 464(7292): 1210-3, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20364124

RESUMEN

Photosynthetic light reactions establish electron flow in the chloroplast's thylakoid membranes, leading to the production of the ATP and NADPH that participate in carbon fixation. Two modes of electron flow exist-linear electron flow (LEF) from water to NADP(+) via photosystem (PS) II and PSI in series and cyclic electron flow (CEF) around PSI (ref. 2). Although CEF is essential for satisfying the varying demand for ATP, the exact molecule(s) and operational site are as yet unclear. In the green alga Chlamydomonas reinhardtii, the electron flow shifts from LEF to CEF on preferential excitation of PSII (ref. 3), which is brought about by an energy balancing mechanism between PSII and PSI (state transitions). Here, we isolated a protein supercomplex composed of PSI with its own light-harvesting complex (LHCI), the PSII light-harvesting complex (LHCII), the cytochrome b(6)f complex (Cyt bf), ferredoxin (Fd)-NADPH oxidoreductase (FNR), and the integral membrane protein PGRL1 (ref. 5) from C. reinhardtii cells under PSII-favouring conditions. Spectroscopic analyses indicated that on illumination, reducing equivalents from downstream of PSI were transferred to Cyt bf, whereas oxidised PSI was re-reduced by reducing equivalents from Cyt bf, indicating that this supercomplex is engaged in CEF (Supplementary Fig. 1). Thus, formation and dissociation of the PSI-LHCI-LHCII-FNR-Cyt bf-PGRL1 supercomplex not only controlled the energy balance of the two photosystems, but also switched the mode of photosynthetic electron flow.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Electrones , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Fotosíntesis/fisiología , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Chlamydomonas reinhardtii/enzimología , Complejo de Citocromo b6f/metabolismo , Transporte de Electrón , Ferredoxina-NADP Reductasa/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Complejos Multiproteicos/química , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA