Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Photosynth Res ; 160(2-3): 77-86, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38619701

RESUMEN

In this work, we applied Stark fluorescence spectroscopy to an iron-stressed cyanobacterial membrane to reveal key insights about the electronic structures and excited state dynamics of the two important pigment-protein complexes, IsiA and PSII, both of which prevail simultaneously within the membrane during iron deficiency and whose fluorescence spectra are highly overlapped and hence often hardly resolved by conventional fluorescence spectroscopy. Thanks to the ability of Stark fluorescence spectroscopy, the fluorescence signatures of the two complexes could be plausibly recognized and disentangled. The systematic analysis of the SF spectra, carried out by employing standard Liptay formalism with a realistic spectral deconvolution protocol, revealed that the IsiA in an intact membrane retains almost identical excited state electronic structures and dynamics as compared to the isolated IsiA we reported in our earlier study. Moreover, the analysis uncovered that the excited state of the PSII subunit of the intact membrane possesses a significantly large CT character. The observed notably large magnitude of the excited state CT character may signify the supplementary role of PSII in regulative energy dissipation during iron deficiency.


Asunto(s)
Complejo de Proteína del Fotosistema II , Espectrometría de Fluorescencia , Espectrometría de Fluorescencia/métodos , Complejo de Proteína del Fotosistema II/metabolismo , Cianobacterias/metabolismo , Hierro/metabolismo , Deficiencias de Hierro , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/química
2.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475037

RESUMEN

To reveal the impact of cadmium stress on the physiological mechanism of lettuce, simultaneous determination and correlation analyses of chlorophyll content and photosynthetic function were conducted using lettuce seedlings as the research subject. The changes in relative chlorophyll content, rapid chlorophyll fluorescence induction kinetics curve, and related chlorophyll fluorescence parameters of lettuce seedling leaves under cadmium stress were detected and analyzed. Furthermore, a model for estimating relative chlorophyll content was established. The results showed that cadmium stress at 1 mg/kg and 5 mg/kg had a promoting effect on the relative chlorophyll content, while cadmium stress at 10 mg/kg and 20 mg/kg had an inhibitory effect on the relative chlorophyll content. Moreover, with the extension of time, the inhibitory effect became more pronounced. Cadmium stress affects both the donor and acceptor sides of photosystem II in lettuce seedling leaves, damaging the electron transfer chain and reducing energy transfer in the photosynthetic system. It also inhibits water photolysis and decreases electron transfer efficiency, leading to a decline in photosynthesis. However, lettuce seedling leaves can mitigate photosystem II damage caused by cadmium stress through increased thermal dissipation. The model established based on the energy captured by a reaction center for electron transfer can effectively estimate the relative chlorophyll content of leaves. This study demonstrates that chlorophyll fluorescence techniques have great potential in elucidating the physiological mechanism of cadmium stress in lettuce, as well as in achieving synchronized determination and correlation analyses of chlorophyll content and photosynthetic function.


Asunto(s)
Cadmio , Lactuca , Complejo de Proteína del Fotosistema II/metabolismo , Fluorescencia , Fotosíntesis , Clorofila , Plantones , Hojas de la Planta/metabolismo
3.
Environ Geochem Health ; 45(11): 7637-7649, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37402936

RESUMEN

Indian camphorweed (Pluchea indica (L.) Less.) is used as herbal tea due to the presence of volatile aromatic oils and several phytochemical compounds. The aim of this study was to assess the impact of copper (Cu) contamination on the physiology and morphology of P. indica, and the health risks associated with its consumption as tea. The cuttings of P. indica were subjected to 0 mM (control), 5 mM (low Cu), and 20 mM (excess Cu) of CuSO4 treatments for 1, 2, and 4 weeks. Thereafter, Cu contamination as well as physiological and morphological parameters were assessed. Cu accumulation was higher in the root tissues of plants (25.8 folds higher as compared to the leaves) grown under 20 mM CuSO4 for 4 weeks. This increased Cu accumulation resulted in the inhibition of root length, root fresh weight, and root dry weight. Cu concentration was found maximum (1.36 µg g-1 DW) in the leaf tissues under 20 mM Cu exposure for 4 weeks, with the highest target hazard quotient (THQ = 1.85), whereas Cu was not detected in control. Under exposure to 20 mM Cu treatment for 4 weeks, leaf greenness, maximum quantum yield of photosystem II, and photon yield of photosystem II diminished by 21.4%, 16.1%, and 22.4%, respectively, as compared to the control. Leaf temperature was increased by 2.5 °C, and the crop stress index (CSI) exceeded 0.6 when exposed to 20 mM Cu treatment for 2 and 4 weeks; however, the control had a CSI below 0.5. This led to a reduced transpiration rate and stomatal conductance. In addition, the net photosynthetic rate was also found sensitive to Cu treatment, which resulted in decreased shoot and root growth. Based on the key results, it can be suggested that P. indica herbal tea derived from the foliage of plants grown under a 5 mM Cu level (0.75 µg g-1 DW) with a target hazard quotient below one aligns with the recommended dietary intake of Cu in leafy vegetables. The study recommends choosing cuttings from plants with a small canopy as plant material in the greenhouse microclimates to validate the growth performance in the Cu-contaminated soil and simulate the natural shrub architecture and life cycle.


Asunto(s)
Cobre , Tés de Hierbas , Cobre/toxicidad , Cobre/química , Complejo de Proteína del Fotosistema II/metabolismo , Fotosíntesis , Antioxidantes/metabolismo , Hojas de la Planta/metabolismo
4.
Ann Bot ; 132(1): 163-177, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37382489

RESUMEN

BACKGROUND AND AIMS: The photoprotective role of foliar anthocyanins has long been ambiguous: exacerbating, being indifferent to or ameliorating the photoinhibition of photosynthesis. The photoinhibitory light spectrum and failure to separate photo-resistance from repair, as well as the different methods used to quantify the photo-susceptibility of the photosystems, could lead to such a discrepancy. METHODS: We selected two congeneric deciduous shrubs, Prunus cerasifera with anthocyanic leaves and Prunus triloba with green leaves, grown under identical growth conditions in an open field. The photo-susceptibilities of photosystem II (PSII) and photosystem I (PSI) to red light and blue light, in the presence of lincomycin (to block the repair), of exposed leaves were quantified by a non-intrusive P700+ signal from PSI. Leaf absorption, pigments, gas exchange and Chl a fluorescence were also measured. KEY RESULTS: The content of anthocyanins in red leaves (P. cerasifera) was >13 times greater than that in green leaves (P. triloba). With no difference in maximum quantum efficiency of PSII photochemistry (Fv/Fm) and apparent CO2 quantum yield (AQY) in red light, anthocyanic leaves (P. cerasifera) showed some shade-acclimated suites, including lower Chl a/b ratio, lower photosynthesis rate, lower stomatal conductance and lower PSII/PSI ratio (on an arbitrary scale), compared with green leaves (P. triloba). In the absence of repair of PSII, anthocyanic leaves (P. cerasifera) showed a rate coefficient of PSII photoinactivation (ki) that was 1.8 times higher than that of green leaves (P. triloba) under red light, but significantly lower (-18 %) under blue light. PSI of both types of leaves was not photoinactivated under blue or red light. CONCLUSIONS: In the absence of repair, anthocyanic leaves exhibited an exacerbation of PSII photoinactivation under red light and a mitigation under blue light, which can partially reconcile the existing controversy in terms of the photoprotection by anthocyanins. Overall, the results demonstrate that appropriate methodology applied to test the photoprotection hypothesis of anthocyanins is critical.


Asunto(s)
Prunus domestica , Prunus domestica/metabolismo , Antocianinas/metabolismo , Clorofila , Fotosíntesis/fisiología , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/fisiología
5.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373460

RESUMEN

The light-sensitive albino tea plant can produce pale-yellow shoots with high levels of amino acids which are suitable to process high-quality tea. In order to understand the mechanism of the albino phenotype formation, the changes in the physio-chemical characteristics, chloroplast ultrastructure, chlorophyll-binding proteins, and the relevant gene expression were comprehensively investigated in the leaves of the light-sensitive albino cultivar 'Huangjinya' ('HJY') during short-term shading treatment. In the content of photosynthetic pigments, the ultrastructure of the chloroplast, and parameters of the photosynthesis in the leaves of 'HJY' could be gradually normalized along with the extension of the shading time, resulting in the leaf color transformed from pale yellow to green. BN-PAGE and SDS-PAGE revealed that function restoration of the photosynthetic apparatus was attributed to the proper formation of the pigment-protein complexes on the thylakoid membrane that benefited from the increased levels of the LHCII subunits in the shaded leaves of 'HJY', indicating the low level of LHCII subunits, especially the lack of the Lhcb1 might be responsible for the albino phenotype of the 'HJY' under natural light condition. The deficiency of the Lhcb1 was mainly subject to the strongly suppressed expression of the Lhcb1.x which might be modulated by the chloroplast retrograde signaling pathway GUN1 (GENOMES UNCOUPLED 1)-PTM (PHD type transcription factor with transmembrane domains)-ABI4 (ABSCISIC ACID INSENSITIVE 4).


Asunto(s)
Camellia sinensis , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Camellia sinensis/genética , Fotosíntesis , Tilacoides/metabolismo , Hojas de la Planta/metabolismo , Clorofila/metabolismo
6.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047263

RESUMEN

Photosystem II repair in chloroplasts is a critical process involved in maintaining a plant's photosynthetic activity under cold stress. FtsH (filamentation temperature-sensitive H) is an essential metalloprotease that is required for chloroplast photosystem II repair. However, the role of FtsH in tea plants and its regulatory mechanism under cold stress remains elusive. In this study, we cloned a FtsH homolog gene in tea plants, named CsFtsH5, and found that CsFtsH5 was located in the chloroplast and cytomembrane. RT-qPCR showed that the expression of CsFtsH5 was increased with leaf maturity and was significantly induced by light and cold stress. Transient knockdown CsFtsH5 expression in tea leaves using antisense oligonucleotides resulted in hypersensitivity to cold stress, along with higher relative electrolyte leakage and lower Fv/Fm values. To investigate the molecular mechanism underlying CsFtsH5 involvement in the cold stress, we focused on the calcineurin B-like-interacting protein kinase 11 (CsCIPK11), which had a tissue expression pattern similar to that of CsFtsH5 and was also upregulated by light and cold stress. Yeast two-hybrid and dual luciferase (Luc) complementation assays revealed that CsFtsH5 interacted with CsCIPK11. Furthermore, the Dual-Luc assay showed that CsCIPK11-CsFtsH5 interaction might enhance CsFtsH5 stability. Altogether, our study demonstrates that CsFtsH5 is associated with CsCIPK11 and plays a positive role in maintaining the photosynthetic activity of tea plants in response to low temperatures.


Asunto(s)
Camellia sinensis , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Calcineurina/metabolismo , Frío , Camellia sinensis/genética , , Metaloproteasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047107

RESUMEN

Melatonin is among one of the promising agents able to protect agricultural plants from the adverse action of different stressors, including salinity. We aimed to investigate the effects of melatonin priming (0.1, 1.0 and 10 µM) on salt-stressed potato plants (125 mM NaCl), by studying the growth parameters, photochemical activity of photosystem II, water status, ion content and antioxidant system activity. Melatonin as a pleiotropic signaling molecule was found to decrease the negative effect of salt stress on stolon formation, tissue water content and ion status without a significant effect on the expression of Na+/H+-antiporter genes localized on the vacuolar (NHX1 to NHX3) and plasma membrane (SOS1). Melatonin effectively decreases the accumulation of lipid peroxidation products in potato leaves in the whole range of concentrations studied. A melatonin-induced dose-dependent increase in Fv/Fm together with a decrease in uncontrolled non-photochemical dissipation Y(NO) also indicates decreased oxidative damage. The observed protective ability of melatonin was unlikely due to its influence on antioxidant enzymes, since neither SOD nor peroxidase were activated by melatonin. Melatonin exerted positive effects on the accumulation of water-soluble low-molecular-weight antioxidants, proline and flavonoids, which could aid in decreasing oxidative stress. The most consistent positive effect was observed on the accumulation of carotenoids, which are well-known lipophilic antioxidants playing an important role in the protection of photosynthesis from oxidative damage. Finally, it is possible that melatonin accumulated during pretreatment could exert direct antioxidative effects due to the ROS scavenging activity of melatonin molecules.


Asunto(s)
Melatonina , Solanum tuberosum , Antioxidantes/farmacología , Antioxidantes/metabolismo , Melatonina/farmacología , Complejo de Proteína del Fotosistema II/metabolismo , Solanum tuberosum/metabolismo , Fotosíntesis , Homeostasis , Estrés Salino , Agua/metabolismo
8.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232535

RESUMEN

Exposure of Salvia sclarea plants to excess Zn for 8 days resulted in increased Ca, Fe, Mn, and Zn concentrations, but decreased Mg, in the aboveground tissues. The significant increase in the aboveground tissues of Mn, which is vital in the oxygen-evolving complex (OEC) of photosystem II (PSII), contributed to the higher efficiency of the OEC, and together with the increased Fe, which has a fundamental role as a component of the enzymes involved in the electron transport process, resulted in an increased electron transport rate (ETR). The decreased Mg content in the aboveground tissues contributed to decreased chlorophyll content that reduced excess absorption of sunlight and operated to improve PSII photochemistry (ΦPSII), decreasing excess energy at PSII and lowering the degree of photoinhibition, as judged from the increased maximum efficiency of PSII photochemistry (Fv/Fm). The molecular mechanism by which Zn-treated leaves displayed an improved PSII photochemistry was the increased fraction of open PSII reaction centers (qp) and, mainly, the increased efficiency of the reaction centers (Fv'/Fm') that enhanced ETR. Elemental bioimaging of Zn and Ca by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed their co-localization in the mid-leaf veins. The high Zn concentration was located in the mid-leaf-vein area, while mesophyll cells accumulated small amounts of Zn, thus resembling a spatiotemporal heterogenous response and suggesting an adaptive strategy. These findings contribute to our understanding of how exposure to excess Zn triggered a hormetic response of PSII photochemistry. Exposure of aromatic and medicinal plants to excess Zn in hydroponics can be regarded as an economical approach to ameliorate the deficiency of Fe and Zn, which are essential micronutrients for human health.


Asunto(s)
Complejo de Proteína del Fotosistema II , Salvia , Clorofila , Humanos , Micronutrientes , Oxígeno , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Salvia/metabolismo , Zinc
9.
J Plant Physiol ; 278: 153814, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36179398

RESUMEN

Tea-oil tree (Camellia oleifera Abel) is an important woody oil crop with high economic value. However, it has low photosynthetic production considering the low light intensity of its growth environment. To understand the acclimation mechanism of tea-oil trees to low light conditions, three light intensity treatments were conducted: high light (450-500 µmol. m-2. s-1), medium light (180-200 µmol. m-2. s-1), and low light (45-50 µmol. m-2. s-1). The carbon (C) and nitrogen (N) metabolism network were constructed by investigating the leaf anatomy, photosynthetic characteristics, N partitioning, transcriptome and metabolome. Results demonstrated that a larger proportion light energy was used for photochemical reactions in an environment with lower light intensity, which resulted in an increase in photosystem II photochemical efficiency and instantaneous light use efficiency (LUE) at the leaf level. As the light intensity increased, decreased electron transfer and carboxylation efficiencies, photorespiration and dark respiration rates, LUE at plant level, and N use efficiency (PNUE) were observed. Leaves trended to harvest more light using higher expression levels of light-harvesting protein genes, higher chlorophyll content, more granum and more tightly stacked granum lamella under lower light intensity. At transcriptional and metabolic levels, the TCA cycle, and the synthesis of starch and saccharides were weakened as light intensity decreased, while the Calvin cycle did not show the regularity between different treatments. Less N was distributed in Rubisco, respiration, and cell wall proteins as light decreased. Storage N was prominently accumulated in forms of amino acids (especially L-arginine) and amino acid derivatives as under medium and low light environments, to make up for C deficiency. Therefore, tea-oil trees actively improve light-harvesting capacity and enlarges the storage N pool to adapt to a low light environment, at the cost of a decrease of photosynthetic C assimilation and PNUE.


Asunto(s)
Camellia , Ribulosa-Bifosfato Carboxilasa , Aclimatación , Aminoácidos/metabolismo , Arginina/metabolismo , Camellia/metabolismo , Carbono/metabolismo , Clorofila/metabolismo , Nitrógeno/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Almidón/metabolismo ,
10.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35955658

RESUMEN

The light-sensitive (LS) albino tea plant grows albinic shoots lacking chlorophylls (Chls) under high-light (HL) conditions, and the albinic shoots re-green under low light (LL) conditions. The albinic shoots contain a high level of amino acids and are preferential materials for processing quality green tea. The young plants of the albino tea cultivars are difficult to be cultivated owing to lacking Chls. The mechanisms of the tea leaf bleaching and re-greening are unknown. We detected the activity and composition of photosystem II (PSII) subunits in LS albino tea cultivar "Huangjinya" (HJY), with a normal green-leaf cultivar "Jinxuan" (JX) as control so as to find the relationship of PSII impairment to the albino phenotype in tea. The PSII of HJY is more vulnerable to HL-stress than JX. HL-induced degradation of PSII subunits CP43, CP47, PsbP, PsbR. and light-harvest chlorophyll-protein complexes led to the exposure and degradation of D1 and D2, in which partial fragments of the degraded subunits were crosslinked to form larger aggregates. Two copies of subunits PsbO, psbN, and Lhcb1 were expressed in response to HL stress. The cDNA sequencing of CP43 shows that there is no difference in sequences of PsbC cDNA and putative amino acids of CP43 between HJY and JX. The de novo synthesis and/or repair of PSII subunits is considered to be involved in the impairment of PSII complexes, and the latter played a predominant role in the albino phenotype in the LS albino tea plant.


Asunto(s)
Camellia sinensis , Complejo de Proteína del Fotosistema II , Aminoácidos/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Clorofila/metabolismo , ADN Complementario/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
11.
Plant Physiol ; 190(2): 1117-1133, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35876823

RESUMEN

In C4 plants, the pyruvate (Pyr), phosphate dikinase regulatory protein (PDRP) regulates the activity of the C4 pathway enzyme Pyr, phosphate dikinase (PPDK) in a light-/dark-dependent manner. The importance of this regulatory action to C4 pathway function and overall C4 photosynthesis is unknown. To resolve this question, we assessed in vivo PPDK phospho-regulation and whole leaf photophysiology in a CRISPR-Cas9 PDRP knockout (KO) mutant of the NADP-ME C4 grass green millet (Setaria viridis). PDRP enzyme activity was undetectable in leaf extracts from PDRP KO lines. Likewise, PPDK phosphorylated at the PDRP-regulatory Thr residue was immunologically undetectable in leaf extracts. PPDK enzyme activity in rapid leaf extracts was constitutively high in the PDRP KO lines, irrespective of light or dark pretreatment of leaves. Gas exchange analysis of net CO2 assimilation revealed PDRP KO leaves had markedly slower light induction kinetics when leaves transition from dark to high-light or low-light to high-light. In the initial 30 min of the light induction phase, KO leaves had an ∼15% lower net CO2 assimilation rate versus the wild-type (WT). Despite the impaired slower induction kinetics, we found growth and vigor of the KO lines to be visibly indistinguishable from the WT when grown in normal air and under standard growth chamber conditions. However, the PDRP KO plants grown under a fluctuating light regime exhibited a gradual multi-day decline in Fv/Fm, indicative of progressive photosystem II damage due to the absence of PDRP. Collectively, our results demonstrate that one of PDRP's functions in C4 photosynthesis is to ensure optimal photosynthetic light induction kinetics during dynamic changes in incident light.


Asunto(s)
Piruvato Ortofosfato Diquinasa , Setaria (Planta) , Dióxido de Carbono/metabolismo , NADP/metabolismo , Fosfatos/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Extractos Vegetales/metabolismo , Plantas/metabolismo , Piruvato Ortofosfato Diquinasa/química , Ácido Pirúvico/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Factores de Transcripción/metabolismo , Zea mays/metabolismo
12.
J Integr Plant Biol ; 64(9): 1821-1832, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35763422

RESUMEN

Under natural conditions, photosynthesis has to be adjusted to fluctuating light intensities. Leaves exposed to high light dissipate excess light energy in form of heat at photosystem II (PSII) by a process called non-photochemical quenching (NPQ). Upon fast transition from light to shade, plants lose light energy by a relatively slow relaxation from photoprotection. Combined overexpression of violaxanthin de-epoxidase (VDE), PSII subunit S (PsbS) and zeaxanthin epoxidase (ZEP) in tobacco accelerates relaxation from photoprotection, and increases photosynthetic productivity. In Arabidopsis, expression of the same three genes (VPZ) resulted in a more rapid photoprotection but growth of the transgenic plants was impaired. Here we report on VPZ expressing potato plants grown under various light regimes. Similar to tobacco and Arabidopsis, induction and relaxation of NPQ was accelerated under all growth conditions tested, but did not cause an overall increased photosynthetic rate or growth of transgenic plants. Tuber yield of VPZ expressing plants was unaltered as compared to control plants under constant light conditions and even decreased under fluctuating light conditions. Under control conditions, levels of the phytohormone abscisic acid (ABA) were found to be elevated, indicating an increased violaxanthin availability in VPZ plants. However, the increased basal ABA levels did not improve drought tolerance of VPZ transgenic potato plants under greenhouse conditions. The failure to benefit from improved photoprotection is most likely caused by a reduced radiation use efficiency under high light conditions resulting from a too strong NPQ induction. Mitigating this negative effect in the future might help to improve photosynthetic performance in VPZ expressing potato plants.


Asunto(s)
Arabidopsis , Solanum tuberosum , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Luz , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Nicotiana/metabolismo
13.
Plant Physiol Biochem ; 169: 40-48, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34749270

RESUMEN

Silicon (Si) is known to alleviate the adverse impact of different abiotic and biotic stresses by different mechanisms including morphological, physiological, and genetic changes. Photosynthesis, one of the most important physiological processes in the plant is sensitive to different stress factors. Several studies have shown that Si ameliorates the stress effects on photosynthesis by protecting photosynthetic machinery and its function. In stressed plants, several photosynthesis-related processes including PSII maximum photochemical quantum yield (Fv/Fm), the yield of photosystem II (φPSII), electron transport rates (ETR), and photochemical quenching (qP) were observed to be regulated when supplemented with Si, which indicates that Si effectively protects the photosynthetic machinery. In addition, studies also suggested that Si is capable enough to maintain the uneven swelling, disintegrated, and missing thylakoid membranes caused during stress. Furthermore, several photosynthesis-related genes were also regulated by Si supplementation. Taking into account the key impact of Si on the evolutionarily conserved process of photosynthesis in plants, this review article is focused on the aspects of silicon and photosynthesis interrelationships during stress and signaling pathways. The assemblages of this discussion shall fulfill the lack of constructive literature related to the influence of Si on one of the most dynamic and important processes of plant life i.e. photosynthesis.


Asunto(s)
Hojas de la Planta , Silicio , Clorofila , Transporte de Electrón , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Silicio/farmacología
14.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768948

RESUMEN

The objective of our study was to characterise the growth of tomato seedlings under various light spectra, but special attention has been paid to gaining a deeper insight into the details of photosynthetic light reactions. The following light combinations (generated by LEDs, constant light intensity at 300 µmol m-2 s-1) were used: blue/red light; blue/red light + far red; blue/red light + UV; white light that was supplemented with green, and white light that was supplemented with blue. Moreover, two combinations of white light for which the light intensity was changed by imitating the sunrise, sunset, and moon were also tested. The reference point was also light generated by high pressure sodium lamps (HPS). Plant growth/morphological parameters under various light conditions were only partly correlated with the photosynthetic efficiency of PSI and PSII. Illumination with blue/red as the main components had a negative effect on the functioning of PSII compared to the white light and HPS-generated light. On the other hand, the functioning of PSI was especially negatively affected under the blue/red light that was supplemented with FR. The FT-Raman studies showed that the general metabolic profile of the leaves (especially proteins and ß-carotene) was similar in the plants that were grown under the HPS and under the LED-generated white light for which the light intensity changed during a day. The effect of various light conditions on the leaf hormonal balance (auxins, brassinosteroids) is also discussed.


Asunto(s)
Fotosíntesis , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efectos de la radiación , Brasinoesteroides/metabolismo , Clorofila/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Solanum lycopersicum/crecimiento & desarrollo , Metaboloma , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de la radiación , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación , Espectrometría Raman
15.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638772

RESUMEN

Free fatty acids (FFAs) are generated by the reaction of lipases with membrane lipids. Generated polyunsaturated fatty acids (PUFAs) containing more than two double bonds have toxic effects in photosynthetic organisms. In the present study, we examined the effect of exogenous FFAs in the growth medium on the activity of photosystem II (PSII) under strong light in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). PUFAs but not monounsaturated fatty acids accelerated the rate of photodamage to PSII by inactivating electron transfer at the oxygen-evolving complex. Moreover, supplemented PUFAs were specifically incorporated into the sn-2 position of phosphatidylglycerol (PG), which usually contains C16 fatty acids at the sn-2 position in Synechocystis cells. The disruption of the gene for an acyl-ACP synthetase reduced the effect of PUFAs on the photoinhibition of PSII. Thus, the specific incorporation of PUFAs into PG molecules requires acyl-ACP synthetase and leads to an unstable PSII, thereby accelerating photodamage to PSII. Our results are a breakthrough into elucidating the molecular mechanism of the toxicity of PUFAs to photosynthetic organisms.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Fosfatidilgliceroles/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Synechocystis/metabolismo
16.
J Plant Res ; 134(6): 1311-1321, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34351552

RESUMEN

Honeysuckle (Lonicera japonica Thunb.) is a traditional medicinal plant in China which is often threatened by high temperature at midday during summer. Heat-induced effects on the photosynthetic apparatus in honeysuckle are associated with a depression of the photosystem II (PSII) photochemical efficiency. However, very limited information is available on regulation of photosynthetic electron flow in PSI photoprotection in heat-stressed honeysuckle. Simultaneous analyses of chlorophyll fluorescence and the change in absorbance of P700 showed that energy transformation and electron transfer activity in PSII decreased under heat stress, but the fraction of photo-oxidizable PSI (Pm) remained stable. With treatments at 38 and 42 °C, the photochemical electron transport in PSII was suppressed, whereas the cyclic electron flow (CEF) around PSI was induced. In addition, the levels of high energy state quenching (qE) and P700 oxidation increased significantly with increasing temperature. However, a decline of qE in antimycin A (AA)- or 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated leaves after heat treatment was observed, while P700 oxidation decreased only in the presence of AA. The results indicate that heat-induced inhibition of PSII and induction of CEF cooperatively protect PSI from ROS damages through moderate down-regulation of photosynthetic electron flow from PSII to PSI.


Asunto(s)
Lonicera , Complejo de Proteína del Fotosistema I , Clorofila , Regulación hacia Abajo , Transporte de Electrón , Luz , Lonicera/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo
17.
Plant Physiol Biochem ; 167: 309-320, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34392044

RESUMEN

Photosynthesis is a fundamental biosynthetic process in plants that can enhance carbon absorption and increase crop productivity. Heat stress severely inhibits photosynthetic efficiency. Melatonin is a bio-stimulator capable of regulating diverse abiotic stress tolerances. However, the underlying mechanisms of melatonin-mediated photosynthesis in plants exposed to heat stress largely remain elucidated. Our results revealed that melatonin treatment (100 µM) in tomato seedlings increased the endogenous melatonin levels and photosynthetic pigment content along with upregulated of their biosynthesis gene expression under high-temperature stress (42 °C for 24 h), whereas heat stress significantly decreased the values of gas exchange parameters. Under heat stress, melatonin boosted CO2 assimilation, i.e., Vc,max (maximum rate of ribulose-1,5-bisphosphate carboxylase, Rubisco), and Jmax (electron transport of Rubisco generation) and also enhanced the Rubisco and FBPase activities, which resulted in upregulated photosynthetic related gene expression. In addition, heat stress greatly reduced the photochemical chemistry of photosystem II (PSII) and photosystem I (PSI), particularly the maximum quantum efficiency of PSII (Fv/Fm) and PSI (Pm). Conversely, melatonin supplementation increased the chlorophyll a fluorescence parameters led to amplifying the electron transport efficiency. Moreover, heat stress decreased the actual PSII efficiency (ΦPSII), electron transport rate (ETR) and photochemical quenching coefficient (qP), while increasing nonphotochemical quenching (NPQ); however, melatonin reversed these values, which helps to fostering the dissipation of excess excitation energy. Taken together, our results provide a concrete insight into the efficacy of melatonin-mediated photosynthesis performance in a high-temperature regime.


Asunto(s)
Melatonina , Solanum lycopersicum , Clorofila , Clorofila A , Solanum lycopersicum/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Plantones/metabolismo , Temperatura
18.
PLoS One ; 16(7): e0254076, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34242262

RESUMEN

Symbiotic associations with endophytic fungi are ecologically important for medicinal and aromatic plants. Endophytic fungi highly affect the quantity and quality of herbal products. In this study, a pot experiment was carried out in the greenhouse to investigate the interactive effects of Piriformospora indica and arbuscular mycorrhizal (AMF) inoculation on the chlorophyll fluorescence, essential oil composition, and antioxidant enzymes of peppermint under saline condition. The results showed that Fo, YNPQ, YNO, and NPQ values were obviously increased under salinity conditions, while essential oil content, chlorophyll a and b, gs, Fm, Fv, ETR, ФPSII and Fv/Fm ratio decreased by increasing salinity. In addition, salt induced the excess Na+ uptake, whereas the opposite trend was observed for P and K+. The synergistic association of P. indica and AMF caused a considerable increase in the antioxidant ability, essential oil content, Fv/Fm ratio, ФPSII, and amount of P and K+ uptake in salt-stressed plants. The main peppermint oil constituents, menthol, menthone, and 1,8-cineole increased considerably in inoculated plants. Besides, the applied endophytic fungi positively enhanced the ability of peppermint to alleviate the negative effect of the salinity stress.


Asunto(s)
Riego Agrícola , Basidiomycota/fisiología , Clorofila/análisis , Mentha piperita/microbiología , Micorrizas/fisiología , Aceites Volátiles/análisis , Salinidad , Agua de Mar/química , Análisis de Varianza , Mar Caspio , Recuento de Colonia Microbiana , Sequías , Electrólitos/metabolismo , Fluorescencia , Mentha piperita/metabolismo , Metaboloma , Fósforo/análisis , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Potasio/análisis , Análisis de Componente Principal , Teoría Cuántica , Estrés Salino , Sodio/análisis , Terpenos/análisis
19.
Sci Rep ; 11(1): 13226, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168171

RESUMEN

Lignosulfonate (LS) is a by-product obtained during sulfite pulping process and is commonly used as a growth enhancer in plant growth. However, the underlying growth promoting mechanism of LS on shoot growth remains largely unknown. Hence, this study was undertaken to determine the potential application of eco-friendly ion-chelated LS complex [sodium LS (NaLS) and calcium LS (CaLS)] to enhance recalcitrant indica rice MR 219 shoot growth and to elucidate its underlying growth promoting mechanisms. In this study, the shoot apex of MR 219 rice was grown on Murashige and Skoog medium supplemented with different ion chelated LS complex (NaLS and CaLS) at 100, 200, 300 and 400 mg/L The NaLS was shown to be a better shoot growth enhancer as compared to CaLS, with optimum concentration of 300 mg/L. Subsequent comparative proteomic analysis revealed an increase of photosynthesis-related proteins [photosystem II (PSII) CP43 reaction center protein, photosystem I (PSI) iron-sulfur center, PSII CP47 reaction center protein, PSII protein D1], ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbohydrate metabolism-related proteins (glyceraldehyde-3-phosphate dehydrogenase 3, fructose-bisphosphate aldolase) and stress regulator proteins (peptide methionine sulfoxide reductase A4, delta-1-pyrroline-5-carboxylate synthase 1) abundance in NaLS-treated rice as compared to the control (MSO). Consistent with proteins detected, a significant increase in biochemical analyses involved in photosynthetic activities, carbohydrate metabolism and protein biosynthesis such as total chlorophyll, rubisco activity, total sugar and total protein contents were observed in NaLS-treated rice. This implies that NaLS plays a role in empowering photosynthesis activities that led to plant growth enhancement. In addition, the increased in abundance of stress regulator proteins were consistent with low levels of peroxidase activity, malondialdehyde content and phenylalanine ammonia lyase activity observed in NaLS-treated rice. These results suggest that NaLS plays a role in modulating cellular homeostasis to provide a conducive cellular environment for plant growth. Taken together, NaLS improved shoot growth of recalcitrant MR 219 rice by upregulation of photosynthetic activities and reduction of ROS accumulation leading to better plant growth.


Asunto(s)
Lignina/análogos & derivados , Oryza/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sodio/farmacología , Antioxidantes/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Clorofila/metabolismo , Lignina/farmacología , Oryza/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Proteómica/métodos , Ribulosa-Bifosfato Carboxilasa/metabolismo , Azufre/metabolismo
20.
Molecules ; 26(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069787

RESUMEN

We evaluated photosystem II (PSII) functionality in potato plants (Solanum tuberosum L.) before and after a 15 min feeding by the leaf miner Tuta absoluta using chlorophyll a fluorescence imaging analysis combined with reactive oxygen species (ROS) detection. Fifteen minutes after feeding, we observed at the feeding zone and at the whole leaf a decrease in the effective quantum yield of photosystem II (PSII) photochemistry (ΦPSII). While at the feeding zone the quantum yield of regulated non-photochemical energy loss in PSII (ΦNPQ) did not change, at the whole leaf level there was a significant increase. As a result, at the feeding zone a significant increase in the quantum yield of non-regulated energy loss in PSII (ΦNO) occurred, but there was no change at the whole leaf level compared to that before feeding, indicating no change in singlet oxygen (1O2) formation. The decreased ΦPSII after feeding was due to a decreased fraction of open reaction centers (qp), since the efficiency of open PSII reaction centers to utilize the light energy (Fv'/Fm') did not differ before and after feeding. The decreased fraction of open reaction centers resulted in increased excess excitation energy (EXC) at the feeding zone and at the whole leaf level, while hydrogen peroxide (H2O2) production was detected only at the feeding zone. Although the whole leaf PSII efficiency decreased compared to that before feeding, the maximum efficiency of PSII photochemistry (Fv/Fm), and the efficiency of the water-splitting complex on the donor side of PSII (Fv/Fo), did not differ to that before feeding, thus they cannot be considered as sensitive parameters to monitor biotic stress effects. Chlorophyll fluorescence imaging analysis proved to be a good indicator to monitor even short-term impacts of insect herbivory on photosynthetic function, and among the studied parameters, the reduction status of the plastoquinone pool (qp) was the most sensitive and suitable indicator to probe photosynthetic function under biotic stress.


Asunto(s)
Enterobius/fisiología , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/parasitología , Hojas de la Planta/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Solanum tuberosum/parasitología , Solanum tuberosum/efectos de la radiación , Animales , Transporte de Electrón , Conducta Alimentaria , Peróxido de Hidrógeno/metabolismo , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA