Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 5555, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448604

RESUMEN

Methionine (Met) rich diet inducing oxidative stress is reported to alter many organs. Proteasome as a regulator of oxidative stress can be targeted. This study was performed to investigate if excessive methionine supplementation causes hepatotoxicity related to proteasome dysfunction under endogenous oxidative stress in rats. Male Wistar albino rats (n = 16) were divided into controls and treated groups. The treated rats (n = 08) received orally L-methionine (1 g/kg/day) for 21 days. Total homocysteine (tHcy), total oxidant status (TOS), total antioxidant status (TAS), hepatic enzymes levels: aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), with total bilirubin (TBil), albumin (Alb), and C-reactive protein (CRP) were determined in plasma by biochemical assays. Liver supernatants were used for malondialdehyde (MDA), protein carbonyls (PC), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), 20S proteasome activities and their subunits expression, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) evaluation by appropriate methods and light microscopy for liver histological examination. Methionine treatment increased homocysteine, TOS, oxidative stress index (OSI), MDA and PC but decreased TAS, GSH, CAT, SOD, GPx with the 20S proteasome activities and their ß subunits expression. Liver proteins: AST, ALT, LDH, ALP, TBil and CRP were increased but Alb was decreased. Liver histology was also altered. An increase in liver TNF-α and IL-6 levels were observed. These findings indicated that methionine supplementation associated oxidative stress and proteasome dysfunction, caused hepatotoxicity and inflammation in rat. Further investigations should be to better understand the relation between methionine, oxidative stress, proteasome, and liver injuries.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Metionina , Masculino , Animales , Ratas , Ratas Wistar , Complejo de la Endopetidasa Proteasomal , Interleucina-6 , Factor de Necrosis Tumoral alfa , Racemetionina , Dieta , Estrés Oxidativo , Antioxidantes , Proteína C-Reactiva , Albúminas , Homocisteína , Superóxido Dismutasa
2.
Mol Divers ; 28(1): 309-333, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36790583

RESUMEN

Targeted protein degradation (TPD) technology has gradually become widespread in the past 20 years, which greatly boosts the development of disease treatment. Contrary to small inhibitors that act on protein kinases, transcription factors, ion channels, and other targets they can bind to, targeted protein degraders could target "undruggable targets" and overcome drug resistance through ubiquitin-proteasome pathway (UPP) and lysosome pathway. Nowadays, some bivalent degraders such as proteolysis-targeting chimeras (PROTACs) have aroused great interest in drug discovery, and some of them have successfully advanced into clinical trials. In this review, to better understand the mechanism of degraders, we elucidate the targeted protein degraders according to their action process, relying on the ubiquitin-proteasome system or lysosome pathway. Then, we briefly summarize the study of PROTACs employing different E3 ligases. Subsequently, the effect of protein of interest (POI) ligands, linker, and E3 ligands on PROTAC degradation activity is also discussed in detail. Other novel technologies based on UPP and lysosome pathway have been discussed in this paper such as in-cell click-formed proteolysis-targeting chimeras (CLIPTACs), molecular glues, Antibody-PROTACs (Ab-PROTACs), autophagy-targeting chimeras, and lysosome-targeting chimeras. Based on the introduction of these degradation technologies, we can clearly understand the action process and degradation mechanism of these approaches. From this perspective, it will be convenient to obtain the development status of these drugs, choose appropriate degradation methods to achieve better disease treatment and provide basis for future research and simultaneously distinguish the direction of future research efforts.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Factores de Transcripción , Suplementos Dietéticos , Descubrimiento de Drogas , Ubiquitinas , Proteolisis
3.
Phytomedicine ; 123: 155169, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992493

RESUMEN

BACKGROUND: Huachansu (HCS), a known Chinese patent drug extracted from the Chinese toad skin, is frequently used for the treatment of various advanced cancers, especially gastric cancer, due to the good therapeutic effect. However, it is rather difficult to clarify the active substances and molecular mechanisms involved owing to the lack of appropriate research strategies. We recently proposed the concept and research ideas of compound-composed Chinese medicine formula. PURPOSE: To discover compound-composed Chinese medicine from Huachansu and to explore its mechanism of action in inducing apoptosis of gastric cancer cells. METHOD: Network pharmacology combined with serum pharmacochemistry was utilized to screen the predominant active constituents from HCS against gastric cancer. Then, the compound-composed Chinese medicine of HCS (CCMH) was prepared according to their relative contents in serum. The pharmacological effects and potential mechanisms for CCMH were investigated by assays for cell viability, cell cycle, apoptosis, mitochondrial membrane potential (MMP), proteomics, reactive oxygen species (ROS), N-Acetylcysteine (NAC) antagonism, proteasome activity, and western blot. RESULTS: CCMH was comprised of arenobufagin (11.14%), bufalin (18.67%), bufotalin (7.33%), cinobufagin (16.67%), cinobufotalin (16.74%), gamabufotalin (8.45%), resibufogenin (12.03%), and telocinobufagin (8.97%). CCMH evidently induced proliferation inhibition, cell cycle arrest, apoptosis, and MMP collapse in gastric cancer cells, possessing the better activities than HCS. Proteomic analysis showed that CCMH influenced ROS pathway, ubiquitin proteasome system, and PI3K/Akt and MAPK signaling pathways. CCMH markedly enhanced intracellular ROS levels in gastric cancer cells, which was reversed by NAC. Accordingly, NAC antagonized the apoptosis-inducing effect of CCMH. Significantly decreased proteasome 20S activity by CCMH was observed in gastric cancer cells. CCMH also regulated the expression of key proteins in PI3K/Akt and MAPK signaling pathways. CONCLUSION: CCMH possesses more significant apoptotic induction effects on gastric cancer cells than HCS, which is achieved primarily through suppression of proteasome activities and increase of ROS levels, followed by regulating PI3K/Akt and MAPK signaling pathways. Network pharmacology combined with serum pharmacochemistry is an effective strategy for discovering compound-composed Chinese medicine from traditional Chinese medicine, which can help clarify the pharmacological substances and mechanisms of action for traditional Chinese medicine.


Asunto(s)
Venenos de Anfibios , Neoplasias Gástricas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Medicina Tradicional China , Fosfatidilinositol 3-Quinasas/metabolismo , Proteómica , Línea Celular Tumoral , Apoptosis
4.
Nutrients ; 15(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38004105

RESUMEN

AIM: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. METHODS: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. RESULTS: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. CONCLUSION: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.


Asunto(s)
Glutamina , Condicionamiento Físico Animal , Ratas , Animales , Glutamina/farmacología , Glutamina/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas Wistar , Músculo Esquelético/metabolismo , Hipertrofia , Suplementos Dietéticos , Glutamatos/farmacología , Condicionamiento Físico Animal/fisiología
5.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1884-1891, 2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-38009004

RESUMEN

Multiple myeloma (MM) is characterized by excessive aggregation of B-cell-derived malignant plasma cells in the hematopoietic system of bone marrow. Previously, we synthesized an innovative molecule named dihydrocelastrol (DHCE) from celastrol, a triterpene purified from medicinal plant Tripterygium wilfordii. Herein, we explore the therapeutic properties and latent signal transduction mechanism of DHCE action in bortezomib (BTZ)-resistant (BTZ-R) MM cells. In this study, we first report that DHCE shows antitumor activities in vitro and in vivo and exerts stronger inhibitory effects than celastrol on BTZ-R cells. We find that DHCE inhibits BTZ-R cell viability by promoting apoptosis via extrinsic and intrinsic pathways and suppresses BTZ-R MM cell proliferation by inducing G0/G1 phase cell cycle arrest. In addition, inactivation of JAK2/STAT3 and PI3K/Akt pathways are involved in the DHCE-mediated antitumor effect. Simultaneously, DHCE acts synergistically with BTZ on BTZ-R cells. PSMB5, a molecular target of BTZ, is overexpressed in BTZ-R MM cells compared with BTZ-S MM cells and is demonstrated to be a target of STAT3. Moreover, DHCE downregulates PSMB5 overexpression in BTZ-R MM cells, which illustrates that DHCE overcomes BTZ resistance through increasing the sensitivity of BTZ in resistant MM via inhibiting STAT3-dependent PSMB5 regulation. Overall, our findings imply that DHCE may become a potential therapeutic option that warrants clinical evaluation for BTZ-R MM.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Bortezomib/farmacología , Bortezomib/metabolismo , Bortezomib/uso terapéutico , Mieloma Múltiple/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Complejo de la Endopetidasa Proteasomal/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
6.
Biochem Biophys Res Commun ; 677: 141-148, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586212

RESUMEN

The increased stability of mutant p53 (Mutp53) plays a crucial role in its gain of function, making proteins involved in its stabilization promising targets for drug intervention. Although curcumin is known to exhibit anti-cancer effects, its role as a deubiquitinase (DUB) inhibitor in Mutp53 destabilization remains poorly explored. Our study demonstrates that curcumin treatment induced ubiquitination and destabilization of Mutp53 but not Wild-type p53 (WTp53) in cancer cells. Furthermore, proteasome and lysosome inhibitors failed to reverse the effect of curcumin, indicating Mutp53 destabilization is possibly via an alternate mechanism. Intriguingly, curcumin treatment also resulted in the nuclear aggregation of the Mutp53 protein, which was rescued by combined Dithiothreitol (DTT) treatment. Similar to curcumin, a broad-spectrum deubiquitinase inhibitor induced Mutp53 aggregation implying curcumin possibly acts by inhibiting deubiquitinases. Additionally, curcumin treatment inhibited colony-forming abilities, induced cytoplasmic vacuolation, and cell death selectively in Mutp53-expressing cells. Collectively, our study highlights the potential of curcumin as a promising therapeutic agent for targeting Mutp53-expressing cancer cells.


Asunto(s)
Curcumina , Neoplasias , Curcumina/farmacología , Línea Celular Tumoral , Proteína p53 Supresora de Tumor/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética
7.
Nutr Res ; 116: 80-88, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37421933

RESUMEN

Zinc (Zn) deficiency has many adverse effects, including growth retardation, loss of appetite, vascular diseases, cognitive and memory impairment, and neurodegenerative diseases. In the current study, we investigated the hypothesis that dietary Zn inadequacy affects neurotrophic factors and proteostasis in the brain. Three-week-old Wistar/Kyoto male rats were fed either a Zn-deficient diet (D; < 1 mg Zn/kg diet; n = 18) or pair-fed with the control diet (C; 48 mg Zn/kg diet; n = 9) for 4 weeks. Subsequently, the rats in the D group were subdivided into two groups (n = 9), in which one group continued to receive a Zn-deficient diet, whereas the other received a Zn-supplemented diet (R; 48 mg Zn/kg diet) for 3 more weeks, after which the rats were sacrificed to collect their brain tissue. Markers of endoplasmic reticulum stress, ubiquitin-proteasome system, autophagy, and apoptosis, along with neurotrophic factors, were investigated by immunoblotting. Proteasomal activity was analyzed by the spectrofluorometric method. The results showed an altered ubiquitin-proteasome system and autophagy components and increased gliosis, endoplasmic reticulum stress, and apoptosis markers in Zn-deficient rats compared with the control group. Zinc repletion for 3 weeks could partially restore these alterations, indicating a necessity for an extended duration of Zn supplementation. In conclusion, a decline in Zn concentrations below a critical threshold may trigger multiple pathways, leading to brain-cell apoptosis.


Asunto(s)
Factores de Crecimiento Nervioso , Complejo de la Endopetidasa Proteasomal , Proteostasis , Zinc , Animales , Masculino , Ratas , Dieta , Factores de Crecimiento Nervioso/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas Wistar , Ubiquitinas/metabolismo , Zinc/deficiencia
8.
Phytomedicine ; 114: 154765, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004403

RESUMEN

BACKGROUD: Flavonoids have a variety of biological activities, such as anti-inflammation, anti-tumor, anti-thrombosis and so on. Morusinol, as a novel isoprene flavonoid extracted from Morus alba root barks, has the effects of anti-arterial thrombosis and anti-inflammatory in previous studies. However, the anti-cancer mechanism of morusinol remains unclear. PURPOSE: In present study, we mainly studied the anti-tumor effect of morusinol and its mode of action in melanoma. METHODS: The anti-cancer effect of morusinol on melanoma were evaluated by using the MTT, EdU, plate clone formation and soft agar assay. Flow cytometry was used for detecting cell cycle and apoptosis. The É£-H2AX immunofluorescence and the alkaline comet assay were used to detect DNA damage and the Western blotting analysis was used to investigate the expressions of DNA-damage related proteins. Ubiquitination and turnover of CHK1 were also detected by using the immunoprecipitation assay. The cell line-derived xenograft (CDX) mouse models were used in vivo to evaluate the effect of morusinol on tumorigenicity. RESULTS: We demonstrated that morusinol not only had the ability to inhibit cell proliferation, but also induced cell cycle arrest at G0/G1 phase, caspase-dependent apoptosis and DNA damage in human melanoma cells. In addition, morusinol effectively inhibited the growth of melanoma xenografts in vivo. More strikingly, CHK1, which played an important role in maintaining the integrity of cell cycle, genomic stability and cell viability, was down-regulated in a dose- and time-dependent manner after morusinol treatment. Further research showed that CHK1 was degraded by the ubiquitin-proteasome pathway. Whereafter, morusinol-induced cell cycle arrest, apoptosis and DNA damage were partially salvaged by overexpressing CHK1 in melanoma cell lines. Herein, further experiments demonstrated that morusinol increased the sensitivity of dacarbazine (DTIC) to chemotherapy for melanoma in vitro and in vivo. CONCLUSION: Morusinol induces CHK1 degradation through the ubiquitin-proteasome pathway, thereby inducing cell cycle arrest, apoptosis and DNA damage response in melanoma. Our study firstly provided a theoretical basis for morusinol to be a candidate drug for clinical treatment of cancer, such as melanoma, alone or combinated with dacarbazine.


Asunto(s)
Melanoma , Complejo de la Endopetidasa Proteasomal , Animales , Humanos , Ratones , Apoptosis , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Dacarbazina/farmacología , Daño del ADN , Flavonoides/farmacología , Melanoma/metabolismo , Ubiquitinas/farmacología
9.
Phytomedicine ; 114: 154747, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36931095

RESUMEN

BACKGROUND: The conserved sirtuin protein sirtuin 3 (SIRT3) is a vital protective protein for cardiac hypertrophy. Inhibition of SIRT3 accelerated the development of heart hypertrophy. On the other hand, myocardial hypertrophy was prevented by overexpressing SIRT3. SIRT3 has been proposed as a potential therapeutic target for managing or averting heart hypertrophy. Baicalin, a flavonoid extracted from the Scutellaria baicalensis plant, has anti-cardiovascular properties, including protection against cardiac hypertrophy. However, the molecular mechanism of the anti-hypertrophic effect of baicalin is not well known. PURPOSE: In this study, we aim to investigate the effect of baicalin on cardiac hypertrophy and explored its underlying molecular mechanisms. STUDY-DESIGN/METHODS: Abdominal aortic constriction (AAC)-induced mouse cardiac hypertrophy and angiotensin II (Ang II)-induced cardiomyocyte hypertrophy models were established. After baicalin treatment, cardiac hypertrophy was monitored by detecting the expression of hypertrophic genes and cell surface area. Echocardiogram was performed to check the heart function in vivo. Moreover, the protein expression of the SIRT3-dependent pathway was detected by Western blotting. RESULTS: In this work, we demonstrated that baicalin might suppress the cell surface area and the expression of the Ang II -induced myosin heavy chain ß (ß-MHC), brain natriuretic polypeptide (BNP), and atrial natriuretic factor (ANF). Additionally, it reduced the AAC rats' hypertrophic impact. We also found that baicalin prevents cardiac hypertrophy by regulating SIRT3/LKB1/AMPK signaling pathway. Moreover, we showed that baicalin upregulated the SIRT3 protein expression by inhibiting proteasome and by the activation of 20 S proteasome subunit beta type-5 (PSMB5). CONCLUSION: These results offer the first proof that baicalin inhibits cardiac hypertrophy due to its effect on the SIRT3-dependent signaling pathway, indicating its potential for treating cardiac hypertrophy and heart failure. The present study provides a preliminary experimental basis for the clinical application of baicalin and baicalin-like compounds.


Asunto(s)
Sirtuina 3 , Ratas , Ratones , Animales , Sirtuina 3/metabolismo , Miocitos Cardíacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Cardiomegalia/metabolismo , Flavonoides/farmacología , Transducción de Señal , Angiotensina II/farmacología
10.
New Phytol ; 238(2): 781-797, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36653957

RESUMEN

Ubiquitin-like domain-containing proteins (UDPs) are involved in the ubiquitin-proteasome system because of their ability to interact with the 26S proteasome. Here, we identified potato StUDP as a target of the Phytophthora infestans RXLR effector Pi06432 (PITG_06432), which supresses the salicylic acid (SA)-related immune pathway. By overexpressing and silencing of StUDP in potato, we show that StUDP negatively regulates plant immunity against P. infestans. StUDP interacts with, and destabilizes, the 26S proteasome subunit that is referred to as REGULATORY PARTICLE TRIPLE-A ATP-ASE (RPT) subunit StRPT3b. This destabilization represses the proteasome activity. Proteomic analysis and Western blotting show that StUDP decreases the stability of the master transcription factor SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) in SA biosynthesis. StUDP negatively regulates the SA signalling pathway by repressing the proteasome activity and destabilizing StSARD1, leading to a decreased expression of the SARD1-targeted gene ISOCHORISMATE SYNTHASE 1 and thereby a decrease in SA content. Pi06432 stabilizes StUDP, and it depends on StUDP to destabilize StRPT3b and thereby supress the proteasome activity. Our study reveals that the P. infestans effector Pi06432 targets StUDP to hamper the homeostasis of the proteasome by the degradation of the proteasome subunit StRPT3b and thereby suppresses SA-related immunity.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Phytophthora infestans/metabolismo , Ubiquitinas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica , Inmunidad de la Planta , Enfermedades de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
J Ethnopharmacol ; 301: 115815, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36220508

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Piper longum L., an herbal medicine used in India and other Asian countries, is prescribed routinely for a range of diseases, including tumor. Piperlongumine, a natural product isolated from Piper longum L., has received widespread attention due to its various pharmacological activities, such as anti-inflammatory, antimicrobial, and antitumor effects. AIM OF THE STUDY: Chronic myelogenous leukemia (CML) is a hematopoietic disease caused by Bcr-Abl fusion gene, with an incidence of 15% in adult leukemias. Targeting Bcr-Abl by imatinib provides a successful treatment approach for CML. However, imatinib resistance is an inevitable issue for CML treatment. In particular, T315I mutant is the most stubborn of the Bcr-Abl point mutants associated with imatinib resistance. Therefore, it is urgent to find an alternative approach to conquer imatinib resistance. This study investigated the role of a natural product piperlongumine in overcoming imatinib resistance in CML. MATERIALS AND METHODS: Cell viability and apoptosis were evaluated by MTS assay and Annexin V/propidium iodide counterstaining assay, respectively. Levels of intracellular signaling proteins were assessed by Western blots. Mitochondrial membrane potential was reflected by the fluorescence intensity of rhodamine-123. The function of proteasome was detected using 20S proteasomal activity assay, proteasomal deubiquitinase activity assay, and deubiquitinase active-site-directed labeling. The antitumor effects of piperlongumine were assessed with mice xenografts. RESULTS: We demonstrate that (i) Piperlongumine inhibits proteasome function by targeting 20S proteasomal peptidases and 19S proteasomal deubiquitinases (USP14 and UCHL5) in Bcr-Abl-WT and Bcr-Abl-T315I CML cells; (ii) Piperlongumine inhibits the cell viability of CML cell lines and primary CML cells; (iii) Proteasome inhibition by piperlongumine leads to cell apoptosis and downregulation of Bcr-Abl; (iv) Piperlongumine suppresses the tumor growth of CML xenografts. CONCLUSIONS: These results support that blockade of proteasome activity by piperlongumine provides a new therapeutic strategy for treating imatinib-resistant CML.


Asunto(s)
Antineoplásicos , Productos Biológicos , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Ratones , Animales , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Complejo de la Endopetidasa Proteasomal/metabolismo , Resistencia a Antineoplásicos , Proliferación Celular , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Proteínas de Fusión bcr-abl/genética , Apoptosis , Enzimas Desubicuitinizantes/uso terapéutico , Productos Biológicos/uso terapéutico , Línea Celular Tumoral , Antineoplásicos/farmacología , Ubiquitina Tiolesterasa/uso terapéutico
12.
Nutr Neurosci ; 26(4): 290-302, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35282800

RESUMEN

OBJECTIVES: Previous work has shown that exposure to a high fat diet dysregulates the protein degradation process in the hypothalamus of male rodents. However, whether this occurs in a sex-independent manner is unknown. The objective of this study was to determine the effects of a short-term obesogenic diet on the ubiquitin-proteasome mediated protein degradation process in the hypothalamus of female rats. METHODS: We fed young adult female rats a high fat diet or standard rat chow for 7 weeks. At the end of the 7th week, animals were euthanized and hypothalamus nuclear and cytoplasmic fractions were collected. Proteasome activity and degradation-specific (K48) ubiquitin signaling were assessed. Additionally, we transfected female rats with CRISPR-dCas9-VP64 plasmids in the hypothalamus prior to exposure to the high fat diet in order to increase proteasome activity and determine the role of reduced proteasome function on weight gain from the obesogenic diet. RESULTS: We found that across the diet period, females gained weight significantly faster on the high fat diet than controls and showed dynamic downregulation of proteasome activity, decreases in proteasome subunit expression and an accumulation of degradation-specific K48 polyubiquitinated proteins in the hypothalamus. Notably, while our CRISPR-dCas9 manipulation was able to selectively increase some forms of proteasome activity, it was unable to prevent diet-induced proteasome downregulation or abnormal weight gain. CONCLUSIONS: Collectively, these results reveal that acute exposure to an obesogenic diet causes reductions in the protein degradation process in the hypothalamus of females.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Aumento de Peso , Ratas , Animales , Masculino , Femenino , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Hipotálamo/metabolismo , Dieta Alta en Grasa/efectos adversos , Ubiquitinas/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6721-6729, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38212032

RESUMEN

This study aims to identify the novel biomarkers of cold-dampness syndrome(RA-Cold) of rheumatoid arthritis(RA) by gene set enrichment analysis(GSEA), weighted gene correlation network analysis(WGCNA), and clinical validation. Firstly, transcriptome sequencing was carried out for the whole blood samples from RA-Cold patients, RA patients with other traditional Chinese medicine(TCM) syndromes, and healthy volunteers. The differentially expressed gene(DEG) sets of RA-Cold were screened by comparison with the RA patients with other TCM syndromes and healthy volunteers. Then, GSEA and WGCNA were carried out to screen the key DEGs as candidate biomarkers for RA-Cold. Experimentally, the expression levels of the candidate biomarkers were determined by RT-qPCR for an independent clinical cohort(not less than 10 cases/group), and the clinical efficacy of the candidates was assessed using the receiver operating characteristic(ROC) curve. The results showed that 3 601 DEGs associated with RA-Cold were obtained, including 106 up-regulated genes and 3 495 down-regulated genes. The DEGs of RA-Cold were mainly enriched in the pathways associated with inflammation-immunity regulation, hormone regulation, substance and energy metabolism, cell function regulation, and synovial pannus formation. GSEA and WGCNA showed that recombinant proteasome 26S subunit, ATPase 2(PSMC2), which ranked in the top 50% in terms of coefficient of variation, representativeness of pathway, and biological modules, was a candidate biomarker of RA-Cold. Furthermore, the validation results based on the clinical independent sample set showed that the F1 value, specificity, accuracy, and precision of PSMC2 for RA-Cold were 70.3%, 61.9%, 64.5%, and 81.3%, respectively, and the area under the curve(AUC) value was 0.96. In summary, this study employed the "GSEA-WGCNA-validation" integrated strategy to identify novel biomarkers of RA-Cold, which helped to improve the TCM clinical diagnosis and treatment of core syndromes in RA and provided an experimental basis for TCM syndrome differentiation.


Asunto(s)
Artritis Reumatoide , Humanos , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/genética , Artritis Reumatoide/tratamiento farmacológico , Biomarcadores/metabolismo , Medicina Tradicional China , Perfilación de la Expresión Génica/métodos , Biología Computacional , Redes Reguladoras de Genes , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/uso terapéutico , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/uso terapéutico
14.
Nutrients ; 14(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36235593

RESUMEN

Oxidative stress induces DNA damage which can be repaired by DNA repair proteins, such as Ku70/80. Excess reactive oxygen species (ROS) stimulate the activation of caspase-3, which degrades Ku 70/80. Cells with decreased Ku protein levels undergo apoptosis. Astaxanthin exerts antioxidant activity by inducing the expression of catalase, an antioxidant enzyme, in gastric epithelial cells. Therefore, astaxanthin may inhibit oxidative stress-induced DNA damage by preventing Ku protein degradation and thereby suppressing apoptosis. Ku proteins can be degraded via ubiquitination and neddylation which adds ubiquitin-like protein to substrate proteins. We aimed to determine whether oxidative stress decreases Ku70/80 expression through the ubiquitin-proteasome pathway to induce apoptosis and whether astaxanthin inhibits oxidative stress-induced changes in gastric epithelial AGS cells. We induced oxidative stress caused by the treatment of ß-D-glucose (G) and glucose oxidase (GO) in the cells. As a result, the G/GO treatment increased ROS levels, decreased nuclear Ku protein levels and Ku-DNA-binding activity, and induced the ubiquitination of Ku80. G/GO increased the DNA damage marker levels (γ-H2AX; DNA fragmentation) and apoptosis marker annexin V-positive cells and cell death. Astaxanthin inhibited G/GO-induced alterations, including Ku degradation in AGS cells. MLN4924, a neddylation inhibitor, and MG132, a proteasome inhibitor, suppressed G/GO-mediated DNA fragmentation and decreased cell viability. These results indicated that G/GO-induced oxidative stress causes Ku protein loss through the ubiquitin-proteasome pathway, resulting in DNA fragmentation and apoptotic cell death. Astaxanthin inhibited oxidative stress-mediated apoptosis via the reduction of ROS levels and inhibition of Ku protein degradation. In conclusion, dietary astaxanthin supplementation or astaxanthin-rich food consumption may be effective for preventing or delaying oxidative stress-mediated cell damage by suppressing Ku protein loss and apoptosis in gastric epithelial cells.


Asunto(s)
Antioxidantes , Complejo de la Endopetidasa Proteasomal , Anexina A5/metabolismo , Anexina A5/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Caspasa 3/metabolismo , Catalasa/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Células Epiteliales/metabolismo , Glucosa/metabolismo , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/farmacología , Autoantígeno Ku/metabolismo , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/farmacología , Xantófilas
15.
Braz J Biol ; 84: e263092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36228227

RESUMEN

Gardenia jasminoides Ellis is a Chinese herbal medicine with medicinal and economic value, but its mechanism of response to waterlogging stress remains unclear. In this study, the "double pots method" was used to simulate the waterlogging stress of Gardenia jasminoides Ellis to explore its physiological and transcriptomic response mechanism. We found no significant damage to Gardenia jasminoides Ellis membrane lipid during stress. POD played a vital antioxidant role, KEGG enrichment showed that secondary metabolites such as flavonoids might also play an antioxidant role, and PRO played a significant osmotic adjustment. Endogenous hormones regulate the Gardenia jasminoides Ellis's growth and development and play a role in signal transduction. Among them, light waterlogging stress is delayed. At the same time, there were 19631, 23693, and 15045 differentially expressed genes on the 5th, 10d, and 15d of Gardenia jasminoides Ellis under waterlogging stress. These genes were closely associated with the proteasome, endopeptidase, ribosome, MAPK signal transduction, and endogenous hormone signal transduction, plant-pathogen interaction and phenylpropanoid biosynthesis and other physiological and metabolic pathways, which regulate the turnover and transportation of protein, the reinforcement and adhesion of cell walls, the induction of stomatal closure, allergic reactions, defense reactions, leaf movements and others. It also can absorb ultraviolet rays to reduce the generation of oxygen free radicals, change the way of energy utilization and adjust the osmotic pressure of plant cells.


Asunto(s)
Medicamentos Herbarios Chinos , Gardenia , Antioxidantes , Endopeptidasas , Flavonoides , Frutas , Hormonas , Lípidos de la Membrana , Extractos Vegetales , Hojas de la Planta , Complejo de la Endopetidasa Proteasomal , Transcriptoma
16.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293130

RESUMEN

Cystic fibrosis is a hereditary disease mainly caused by the deletion of the Phe 508 (F508del) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. Cystic fibrosis remains a potentially fatal disease, but it has become treatable as a chronic condition due to some CFTR-rescuing drugs that, when used in combination, increase in their therapeutic effect due to a synergic action. Also, dietary supplementation of natural compounds in combination with approved drugs could represent a promising strategy to further alleviate cystic fibrosis symptoms. On these bases, we screened by in silico drug repositioning 846 small synthetic or natural compounds from the AIFA database to evaluate their capacity to interact with the highly druggable lumacaftor binding site of F508del-CFTR. Among the identified hits, nicotinamide (NAM) was predicted to accommodate into the lumacaftor binding region of F508del-CFTR without competing against the drug but rather stabilizing its binding. The effective capacity of NAM to bind F508del-CFTR in a lumacaftor-uncompetitive manner was then validated experimentally by surface plasmon resonance analysis. Finally, the capacity of NAM to synergize with lumacaftor increasing its CFTR-rescuing activity was demonstrated in cell-based assays. This study suggests the possible identification of natural small molecules devoid of side effects and endowed with the capacity to synergize with drugs currently employed for the treatment of cystic fibrosis, which hopefully will increase the therapeutic efficacy with lower doses.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Reposicionamiento de Medicamentos , Complejo de la Endopetidasa Proteasomal/metabolismo , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Niacinamida/uso terapéutico , Ubiquitinas/metabolismo , Mutación
17.
Amino Acids ; 54(11): 1491-1504, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36083345

RESUMEN

Dietary supplementation with branched-chain amino acids (BCAAs) to lactating sows has been reported to enhance their milk production, but the underlying mechanisms remain largely unknown. This study was conducted with porcine mammary epithelial cells (PMECs) to test the hypothesis that individual BCAAs or their mixture stimulates protein synthesis and inhibit proteolysis in PMECs. Cells were cultured at 37 °C in customized Dulbecco's modified Eagle medium containing 5 mmol/L D-glucose, 1 mmol/L L-phenylalanine, L-[ring-2,4-3H]phenylalanine, 0.1 (control), 0.25, 0.5, 1, or 2 mmol/L L-leucine, L-isoleucine or L-valine or an equimolar mixture of the three BCAAs. The culture medium also contained physiological concentrations of other amino acids found in the plasma of lactating sows. Proliferation, protein synthesis, proteolysis, ß-casein production, the mechanistic target of rapamycin (mTOR) signaling, and the ubiquitin-proteasome pathway were determined for PMECs. Cell proliferation and abundances of phosphorylated mTOR, eukaryotic translation initiation factor 4E-binding protein 1, and ribosomal protein S6 kinase ß-1 proteins increased (P < 0.05), but abundances of ubiquitinated protein and 20S proteasome decreased (P < 0.05) when extracellular concentrations of L-leucine, L-isoleucine, L-valine, or an equimolar mixture of BCAAs were increased from 0.1 to 2 mmol/L. Compared with the control, 0.25, 0.5, 1 or 2 mmol/L BCAAs enhanced (P < 0.01) protein (including ß-casein) synthesis, while decreasing (P < 0.05) proteolysis in PMECs in a dose-dependent manner. Collectively, our results indicate that physiological concentrations of BCAAs regulate protein turnover in mammary epithelial cells to favor net protein synthesis through stimulating the mTOR signaling pathway and inhibiting the ubiquitin-proteasome pathway.


Asunto(s)
Aminoácidos de Cadena Ramificada , Glándulas Mamarias Animales , Porcinos , Femenino , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Proteolisis , Leucina/farmacología , Leucina/metabolismo , Caseínas , Isoleucina/metabolismo , Lactancia , Complejo de la Endopetidasa Proteasomal/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Células Epiteliales/metabolismo , Valina/metabolismo , Ubiquitina/metabolismo
18.
Contrast Media Mol Imaging ; 2022: 6056829, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36134116

RESUMEN

In order to investigate the effects of different doses of Dahuang Zhechong pills on the ubiquitin proteasome pathway/nuclear factor-κB (UPP-NF-κB) in rats with atherosclerosis (AS), 58-week-old male Wistar rats were selected and randomly divided into the normal group, model group, control group, low-dose group, and high-dose group. The model group and the drug group are given intraperitoneal injections of vitamins, and the model group and the drug group are given a high-fat diet. Rats in the low-dose group and high-dose group are given low-dose and high-dose Dahuang Zhechong pill lavage solution, respectively. Besides, the control group is given simvastatin solution by gavage, and intervention is performed once a day for 12 weeks. Ubiquitin (Ub) protein expression, ubiquitin activase (UBE1), nuclear factor-κB, nuclear inhibitory factor-κB (IκB) gene expression, total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and serum tumor necrosis factor-α (TNF-α) are compared. The experimental result shows that Dahuang Zhechong pills can reduce inflammation and prevent and treat AS by blocking the activation of the UPP/NF-κB signaling pathway and can be used as a proteasome inhibitor in the clinical treatment of AS.


Asunto(s)
Aterosclerosis , FN-kappa B , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , LDL-Colesterol/uso terapéutico , Medicamentos Herbarios Chinos , Masculino , FN-kappa B/metabolismo , FN-kappa B/uso terapéutico , Complejo de la Endopetidasa Proteasomal/uso terapéutico , Inhibidores de Proteasoma/uso terapéutico , Ratas , Ratas Wistar , Simvastatina/uso terapéutico , Activador de Tejido Plasminógeno/uso terapéutico , Triglicéridos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/uso terapéutico , Ubiquitinas/uso terapéutico , Vitaminas/uso terapéutico
19.
Funct Integr Genomics ; 22(5): 1031-1041, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35794284

RESUMEN

Recent studies have suggested the potency of berberine (BBR) for multiple cancer treatments, including multiple myeloma (MM). However, the direct target and underlying mechanism of BBR remain largely understood in MM. Here, we demonstrated that BBR inhibited cell proliferation and acted synergistically with bortezomib in MM.1S cells. BBR treatment induced MM cell cycle arrest by downregulating several cell cycle-related proteins. Murine double minute 2 (MDM2) as a BBR-binding protein was identified by surface plasmon resonance image (SPRi) analysis and molecular docking. Overexpression of MDM2 is associated with MM progression and a poor prognosis. Knockdown MDM2 by siRNA transfection can repress MM malignant progression and attenuate the BBR sensitivity to MM.1S cells. BBR treatment induced the degradation of MDM2 through the ubiquitin-proteasome system and reactivated P53/P21 in MM cells. Overall, our data has illustrated that MDM2, as a binding protein of BBR for the first time, may serve as a potential therapeutic option for MM.


Asunto(s)
Berberina , Mieloma Múltiple , Animales , Apoptosis , Berberina/farmacología , Berberina/uso terapéutico , Bortezomib/metabolismo , Carcinogénesis , Línea Celular Tumoral , Humanos , Ratones , Simulación del Acoplamiento Molecular , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Interferente Pequeño , Proteína p53 Supresora de Tumor/genética , Ubiquitina
20.
J Med Food ; 25(6): 565-575, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35708632

RESUMEN

Muscular atrophy is a muscle disease in which muscle mass and strength decrease due to aging, injury, metabolic disorders, or chronic conditions. Proteins in muscle tissue are degraded by the ubiquitin-proteasome pathway, and atrophy accelerates this pathway. Akkermansia muciniphila and Faecalibacterium prausnitzii strains are effective agents against metabolic and inflammatory diseases in next-generation probiotic research. In this study, we evaluated the efficacy of A. muciniphila strain EB-AMDK19 and F. prausnitzii strain EB-FPDK11 in a mouse model of muscular atrophy, since atrophy inhibits energy metabolism and immune activation. After oral administration of each strain for 4 weeks, the hind legs of the mice were fixed with a plaster cast to immobilize them for a week. As a result, the administration of EB-AMDK19 and EB-FPDK11 strains improved grip strength but did not increase muscle mass. At the molecular level, A. muciniphila and F. prausnitzii treatments decreased the expression levels of ubiquitin-proteasome genes, atrogin-1, MuRF, and cathepsin L. They increased the expression level of the mitochondrial biogenesis regulatory gene, PGC-1α. The effect of the strains was confirmed by a decrease in myostatin. Furthermore, A. muciniphila and F. prausnitzii modulated the immune function by enhancing ZO-1 and inhibiting IL-6. In particular, EB-AMDK19 promoted the expression of IL-10, an anti-inflammatory cytokine. These results suggest that A. muciniphila and F. prausnitzii may have beneficial effects on muscular atrophy, verified by newly isolated EB-AMDK19 and EB-FPDK11 as potential next-generation probiotics.


Asunto(s)
Faecalibacterium prausnitzii , Complejo de la Endopetidasa Proteasomal , Akkermansia , Animales , Faecalibacterium prausnitzii/metabolismo , Ratones , Fuerza Muscular , Atrofia Muscular/etiología , Ubiquitinas/metabolismo , Verrucomicrobia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA