RESUMEN
This study investigated the effect of manufacturing process variables of mini-tablets, in particular, the effect of process variables concerning fluidized bed granulation on tablet weight variation. Test granules were produced with different granulation conditions according to a definitive screening design (DSD). The five evaluated factors assigned to DSD were: the grinding speed of the sample mill at the grinding process of the active pharmaceutical ingredient (X1), microcrystalline cellulose content in granules (X2), inlet air temperature (X3), binder concentration (X4) and the spray speed of the binder solution (X5) at the granulation process. First, the relationships between the evaluated factors and the granule properties were investigated. As a result of the DSD analysis, the mode of action of granulation parameters on the granule properties was fully characterized. Subsequently, the variation in tablet weight was examined. In addition to mini-tablets (3 mm diameter), this experiment assessed regular tablets (8 mm diameter). From the results for regular tablets, the variation in tablet weight was affected by the flowability of granules. By contrast, regarding the mini-tablets, no significant effect on the variation of tablet weight was found from the evaluated factors. From this result, this study further focused on other important factors besides the granulation process, and then the effect of the die-hole position of the multiple-tip tooling on tablet weight variation was proven to be significant. Our findings provide a better understanding of manufacturing mini-tablets.
Asunto(s)
Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Peso Molecular , Tamaño de la Partícula , Comprimidos/síntesis química , Comprimidos/químicaRESUMEN
Cancer residues around the surgical site remain a significant cause of treatment failure with cancer recurrence. To prevent cancer recurrence and simultaneously repair surgery-caused defects, it is urgent to develop implantable biomaterials with anticancer ability and good biological activity. In this work, a functionalized implant is successfully fabricated by doping the effective anticancer element selenium (Se) into the potassium-sodium niobate piezoceramic, which realizes the wireless combination of electrotherapy and chemotherapy. Herein, we demonstrate that the Se-doped piezoelectric implant can cause mitochondrial damage by increasing intracellular reactive oxygen species levels and then trigger the caspase-3 pathway to significantly promote apoptosis of osteosarcoma cells in vitro. Meanwhile, its good biocompatibility has been verified. These results are of great importance for future deployment of wireless electro- and chemostimulation to modulate biological process around the defective tissue.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Materiales Biocompatibles/farmacología , Técnicas Electroquímicas , Selenio/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratas , Selenio/química , Comprimidos/síntesis química , Comprimidos/química , Comprimidos/farmacologíaRESUMEN
In the present study, a microwave treatment process has been applied to prepare orally disintegrating tablets (ODTs) containing powdered tea leaves with enriched levels of the anti-inflammatory compounds such as chafuroside A (CFA) and chafuroside B (CFB). The use of distilled water as the adsorbed and granulation solvents in this preparation process afforded tablets with a long disintegration time (more than 120 s). The CFA and CFB contents of these tablets did not also change after 4 min of microwave irradiation due to the tablet temperature, which only increased to 100°C. In contrast, the tablet temperature increased up to 140°C after 3 min of microwave irradiation when a 1.68 M Na2HPO4 solution instead of distilled water. Notably, the disintegration time of these tablets was considerably improved (less than 20 s) compared with the microwave-untreated tablets, and there were 7- and 11-fold increases in their CFA and CFB contents. In addition, the operational conditions for the preparation of the tablets were optimized by face-centered composite design based on the following criteria: tablet hardness greater than 13 N, disintegration time less than 30 s and friability less than 0.5%. The requirements translated into X1 (the amount of granulation solvent), X2 (tableting pressure) and X3 (content of the powdered tea leaves) values of 45%, 0.43 kN and 32%, respectively, and the ODTs containing powdered tea leaves prepared under these optimized conditions were found to show excellent tablet properties and contain enriched levels of CFA and CFB.
Asunto(s)
Microondas , Hojas de la Planta/química , Comprimidos/química , Comprimidos/efectos de la radiación , Té/química , Administración Oral , Flavonas/análisis , Compuestos Heterocíclicos de 4 o más Anillos/análisis , Polvos , Comprimidos/administración & dosificación , Comprimidos/síntesis químicaRESUMEN
We previously reported that oral ingestion of polaprezinc, a zinc-L-carnosine, suspended in sodium alginate solution prevents oral mucositis in patients receiving radiotherapy or high-dose chemotherapy. In the present study, we developed a novel preparation of polaprezinc and evaluated clinical effect of the lozenge preparation in patients receiving high-dose chemotherapy for hematopoietic stem cell transplantation. The preparation contained 18.75 mg polaprezinc in a tablet and showed an excellent uniformity and stability up to 24 weeks after storage under room temperature. The incidence rate of grade ≥ 2 oral mucositis was 74 % in patients without premedication, whereas the rate was remarkably reduced in patients receiving the suspension (23 %) or lozenge (13 %) of polaprezinc (P < 0.01). The use of non-opioid analgesic drugs such as anti-inflammatory agents and local anesthetics for oral pain was also greatly reduced by polaprezinc suspension or its lozenge (16 % for suspension and 13 % for lozenge compared with 89 % with no premedication, P < 0.01). These findings suggest that polaprezinc lozenge is simple to apply and highly effective for prevention of oral mucositis associated with high-dose chemotherapy for hematopoietic stem cell transplantation.
Asunto(s)
Antiulcerosos/administración & dosificación , Antineoplásicos/efectos adversos , Carnosina/análogos & derivados , Compuestos Organometálicos/administración & dosificación , Estomatitis/prevención & control , Acondicionamiento Pretrasplante/efectos adversos , Adulto , Anciano , Carnosina/administración & dosificación , Femenino , Neoplasias Hematológicas/terapia , Trasplante de Células Madre Hematopoyéticas , Humanos , Masculino , Persona de Mediana Edad , Estomatitis/inducido químicamente , Comprimidos/síntesis química , Adulto Joven , Compuestos de Zinc/administración & dosificaciónRESUMEN
BACKGROUND: The oral route is considered to be the most convenient and commonly-employed route for drug delivery. When two incompatible drugs need to be administered at the same time and in a single formulation, bilayer tablets are the most appropriate dosage form to administer such incompatible drugs in a single dose. OBJECTIVES: The aim of the present investigation was to develop bilayered tablets of two incompatible drugs; telmisartan and simvastatin. MATERIAL AND METHODS: The bilayer tablets were prepared containing telmisartan in a conventional release layer using croscarmellose sodium as a super disintegrant and simvastatin in a slow-release layer using HPMC K15M, Carbopol 934P and PVP K 30 as matrix forming polymers. The tablets were evaluated for various physical properties, drug-excipient interactions using FTIR spectroscopy and in vitro drug release using 0.1M HCl (pH 1.2) for the first hour and phosphate buffer (pH 6.8) for the remaining period of time. The release kinetics of simvastatin from the slow release layer were evaluated using the zero order, first order, Higuchi equation and Peppas equation. RESULTS: All the physical parameters (such as hardness, thickness, disintegration, friability and layer separation tests) were found to be satisfactory. The FTIR studies indicated the absence of interactions between the components within the individual layers, suggesting drug-excipient compatibility in all the formulations. No drug release from the slow-release layer was observed during the first hour of the dissolution study in 0.1M HCl. The release-controlling polymers had a significant effect on the release of simvastatin from the slow-release layer. Thus, the formulated bilayer tablets avoided incompatibility issues and proved the conventional release of telmisartan (85% in 45 min) and slow release of simvastatin (80% in 8 h). CONCLUSIONS: Stable and compatible bilayer tablets containing telmisartan and simvastatin were developed with better patient compliance as an alternative to existing conventional dosage forms.
Asunto(s)
Bencimidazoles/administración & dosificación , Benzoatos/administración & dosificación , Combinación de Medicamentos , Simvastatina/administración & dosificación , Comprimidos/síntesis química , Bencimidazoles/farmacocinética , Benzoatos/farmacocinética , Carboximetilcelulosa de Sodio , Incompatibilidad de Medicamentos , Liberación de Fármacos , Derivados de la Hipromelosa , Cinética , Simvastatina/farmacocinética , TelmisartánRESUMEN
The purpose of this research was to obtain directly compressible agglomerates of naproxen containing disintegrant by spherical crystallization technique. Acetone-water containing hydroxypropyl celloluse (HPC) and disintegrant was used as the crystallization system. In this study croscarmellose sodium (Ac-Di-Sol) was employed as disintegrant. The agglomerates were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (XRPD), and scanning electron microscopy and were evaluated for flow, packing and tableting properties and drug release. The growth of particle size and the spherical form of the agglomerates resulted in formation of products with good flow and packing properties. The improved compaction properties of the agglomerated crystals were due to their fragmentation occurred during compression. DSC and XRPD studies showed that naproxen particles, crystallized in the presence of HPC and Ac-Di-Sol did not undergo structural modifications. The dissolution rate of naproxen from tablets made of naproxen-(Ac-Di-Sol) agglomerates was enhanced significantly because of including the disintegrant in to the particles. This was attributed to an increase in the surface area of the practically water insoluble drug is exposed to the dissolution medium. In conclusion the spherical crystallization technique developed in this study is suitable for obtaining agglomerates of drug with disintegrant.
Asunto(s)
Celulosa/química , Cristalización/métodos , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Excipientes/química , Naproxeno/química , Comprimidos/síntesis química , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Evaluación Preclínica de Medicamentos , Microesferas , Naproxeno/administración & dosificación , Tamaño de la PartículaRESUMEN
The assessment of the in vitro disintegration profile of rapidly disintegrating tablets (RDT) is very important in the evaluation and the development of new formulations of this type. So far neither the US Pharmacopoeia nor the European Pharmacopoeia has defined a specific disintegration test for RDT; currently, it is only possible to refer to the tests on dispersible or effervescent tablets for the evaluation of RDT's disintegration capacity. In the present study, we have evaluated the disintegration profile of RDT manufactured by main commercialised technologies, using the texture analyser (TA). In order to simulate as much as possible the oral disintegration of these dosage forms, a new operating structure was developed. This structure mimics the situation in the patient's mouth and provides a gradual elimination of the detached particles during the disintegration process. The obtained time-distance profiles or disintegration profiles enabled the calculation of certain quantitative values as the disintegration onset (t1) and the total disintegration time (t2). These values were used in the characterisation of the effect of test variables as the disintegration medium and temperature on the disintegration time of RDT. Moreover, the oral disintegration time of the same products was evaluated by 14 healthy volunteers. Results obtained when artificial saliva at 37 degrees C was employed as disintegration medium were used to correlate the in vitro (t2) and oral disintegration times. Excellent correlation was found and in addition, we were able to achieve a qualitative measure of the mouthfeel by comparing the thickness of the tablets and the penetration distance obtained from the disintegration profile. This method also permitted the discrimination between different RDT, where differences in the disintegration mechanism were reflected on the disintegration profile achieved for each tablet.
Asunto(s)
Administración Oral , Solubilidad , Comprimidos/síntesis química , Evaluación Preclínica de Medicamentos/métodos , Calor , Humanos , Farmacopeas como Asunto/normas , Saliva , Comprimidos/análisis , Tecnología Farmacéutica/métodos , Tecnología Farmacéutica/normas , Factores de Tiempo , AguaRESUMEN
Combination preparation plays an important role in clinical treatment because of its better and wider curative synergism and weaker side effects. However, the existence of incompatibility between active ingredients or between active ingredients and excipients presents a serious obstacle in the preparation of such combination solid dosage forms. In this study, aspirin and ranitidine hydrochloride, between which there existed a chemical interaction, were selected as model drugs. Aspirin powders without any additives were granulated with hydroxypropyl methyl cellulose (HPMC) water solution as a binder using a Wurster coating apparatus and the operation conditions were optimized by Artificial Neural Network (ANN) analysis. Under these conditions, the aspirin granules prepared showed good flowability and compressibility. On the other hand, ranitidine hydrochloride was coated with Aquacoat (ethyl cellulose aqueous dispersion) after preliminary granulation with the Wurster coating apparatus. The aspirin granules and coated ranitidine hydrochloride particles were compressed into tablets with suitable excipients. The combination tablets showed good dissolution, content uniformity and improved stability of active ingredients.