Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Talanta ; 133: 52-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25435226

RESUMEN

This work presents development of a method for the dual determination of Fe(III) and creatinine using cross injection analysis (CIA). Two CIA platforms connected in series accommodated sample and reagents plugs aspirated via y-direction channels while water was pumped through the x-direction channel toward a flow-through cell of a diode array UV-vis. detector. Iron was detected from the colorimetric reaction between Fe(II) and 2-(5-bromo-2-pyridylazo)-5-(N-propyl-N-(3-sulfopropyl)amino) aniline (5-Br-PSAA), with prior reduction of Fe(III) to Fe(II) by ascorbic acid. The Jaffe's reaction was employed for the detection of creatinine. Under the optimal conditions, good linearity ranges were achieved for iron in the range 0.5 to 7 mg L(-1) and creatinine in the range 50 to 800 mg L(-1). The CIA system was applied to spot urine samples from thalassemic patients undergoing iron chelation therapy, and was successfully validated with ICP-OES and batchwise Jaffe's method. Normalization of urinary iron excretion with creatinine is useful for correcting the iron concentration between urine samples due to variation of the collected urine volume.


Asunto(s)
Creatinina/orina , Compuestos Férricos/orina , Hierro/orina , Talasemia/orina , Urinálisis/instrumentación , Compuestos Azo/química , Colorimetría/instrumentación , Deferiprona , Diseño de Equipo , Análisis de Inyección de Flujo/instrumentación , Humanos , Quelantes del Hierro/química , Límite de Detección , Piridonas/química
2.
Analyst ; 139(16): 3940-8, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-24883429

RESUMEN

Successful in vivo chelation treatment of iron(iii) overload pathologies requires that a significant fraction of the administered drug actually chelates the toxic metal. Increased mobilization of the iron(iii) in experiments on animals or humans, most often evaluated from urinary output, is usually used as an assessment tool for chelation therapy. Alternatively, the efficiency of a drug is estimated by calculating the complexing ability of a chelating agent towards Fe(iii). The latter is calculated by the pFe value, defined as the negative logarithm of the concentration of the free metal ion in a solution containing 10 µM total ligand and 1 µM total metal at a physiological pH of 7.4. In theory, pFe has to be calculated taking into account all the complexation equilibria involving the metal and the possible ligands. Nevertheless, complexation reactions in complex systems such as serum and urine may hardly be accurately modelled by computer software. The experimental determination of the bioavailable fraction of iron(iii) in biological fluids would therefore be of the utmost relevance in the clinical practice. The efficiency of the therapy could be more easily estimated as well as the course of overload pathologies. In this context, the aim of the present work was the development of a sensor to assess the free iron directly in biological fluids (urine) of patients under treatment with chelating agents. In the proposed device (DFO-MS), the strong iron chelator deferoxamine (DFO) is immobilized on the MCM-41 mesoporous silica. The characterization of the iron(iii) sorption on DFO-MS was undertaken, firstly in 0.1 M KNO3, then directly in urine samples, in order to identify the sorption mechanism. The stoichiometry of the reaction in the solid phase was found to be: with an exchange constant (average value) of log ßex = 40(1). The application of DFO-MS to assess pFe in SPU (Simulating Pathology Urine) samples was also considered. The results obtained were very promising for a future validation and subsequent application of the sensor in samples of patients undergoing chelation therapy.


Asunto(s)
Deferoxamina/química , Compuestos Férricos/orina , Quelantes del Hierro/química , Hierro/orina , Dióxido de Silicio/química , Adsorción , Compuestos Férricos/aislamiento & purificación , Humanos , Hierro/aislamiento & purificación , Urinálisis/métodos
3.
Br J Nutr ; 45(2): 215-27, 1981 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-6260128

RESUMEN

1. The modification of iron absorption from Fe(III)EDTA by agents known to promote or inhibit absorption was examined in 101 volunteer multiparous Indian women. Fe absorption from Fe(III)EDTA was compared with absorption of intrinsic food Fe in a further twenty-eight subjects. Finally the urinary excretion of radio-Fe after oral administration of 59Fe(III)EDTA was studied in twenty-four subjects and evidence of intraluminal exchange of Fe was examined. 2. Fe absorption from maize porridge fortified with Fe(III)EDTA was more than twice that from porridge fortified with FeSO4 . 7H2O. 3. Although bran decreased Fe absorption from FeSO4 . 7H2O approximately 11-fold, it had no significant effect on Fe absorption from Fe(III)EDTA. Nevertheless tea, which is a more potent inhibitor of Fe absorption, decreased absorption from Fe(III)EDTA 7-fold. 4. Fe absorption from Fe(III)EDTA given in water was only increased 40% by addition of 3 mol ascorbic acid/mol Fe but by 7-fold when the relative proportions were increased to 6:1. This enhancing effect was blunted when the Fe(III)EDTA was given with maize porridge. In these circumstances, an ascorbate:iron value of 3:1 (which doubles absorption from FeSO4 . 7H2O) produced no significant increase in Fe absorption, while a value of 6:1 produced only a 2 . 5-fold increase. 5. Fe absorption from Fe(III)EDTA was not altered by addition of maize porridge unless ascorbic acid was present. 6. Less than 1% of 59Fe administered as 59Fe(III)EDTA was excreted in the urine and there was no inverse relationship between Fe absorption and the amounts excreted (r 0 . 58, P less than 0 . 05). 7. Isotope exchange between 59Fe(III)EDTA and 59FeSO4 . 7H2O was demonstrated by finding a similar relative value for the two isotopes in urine and erythrocytes when the two labelled compounds were given together orally. This finding was confirmed by in vitro studies, which showed enhanced 59Fe solubilization from 59FeSO4 . 7H2O in maize porridge when unlabelled Fe(III)EDTA was added. 8. Although Fe absorption from Fe(III)EDTA was marginally higher it appeared to form a common pool with intrinsic food iron in most studies. It is postulated that the mechanism whereby Fe(III)EDTA forms a common pool with intrinsic food Fe differs from that occurring with simple Fe salts. When Fe is present in the chelated form it remains in solution and is relatively well absorbed because it is protected from inhibitory ligands. Simple Fe salts, however, are not similarly protected and are absorbed as poorly as the intrinsic food Fe. 9. It is concluded that Fe(III)EDTA may be a useful compound for food fortification of cereals because the Fe is well absorbed and utilized for haemoglobin synthesis. The substances in cereals which inhibit absorption of simple Fe salts do not appear to inhibit absorption of Fe from Fe(III)EDTA.


Asunto(s)
Ácido Edético/metabolismo , Compuestos Férricos/metabolismo , Absorción Intestinal , Hierro/metabolismo , Adulto , Anciano , Ácido Ascórbico/metabolismo , Fibras de la Dieta , Femenino , Compuestos Férricos/orina , Alimentos Fortificados , Humanos , Radioisótopos de Hierro , Persona de Mediana Edad , , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA