Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.568
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38632976

RESUMEN

This experiment aimed to investigate the effects of dietary iron supplementation from different sources on the reproductive performance of sows and the growth performance of piglets. A total of 87 sows with similar farrowing time were blocked by body weight at day 85 of gestation, and assigned to one of three dietary treatments (n = 29 per treatment): basal diet, basal diet supplemented with 0.2% ferrous sulfate (FeSO4), and basal diet supplemented with 0.2% iron sucrose, respectively, with 30% iron in both FeSO4 and iron sucrose. Compared with the control (CON) group, iron sucrose supplementation reduced the rate of stillbirth and invalid of neonatal piglets (P < 0.05), and the number of mummified fetuses was 0. Moreover, it also improved the coat color of newborn piglets (P < 0.05). At the same time, the iron sucrose could also achieve 100% estrus rate of sows. Compared with the CON group, FeSO4 and iron sucrose supplementation increased the serum iron content of weaned piglets (P < 0.05). In addition, iron sucrose increased serum transferrin level of weaned piglets (P < 0.05) and the survival rate of piglets (P < 0.05). In general, both iron sucrose and FeSO4 could affect the blood iron status of weaned piglets, while iron sucrose also had a positive effect on the healthy development of newborn and weaned piglets, and was more effective than FeSO4 in improving the performance of sows and piglets.


Sows need more iron to meet the requirements for their and offspring's growth during pregnancy and lactation. Exogenous iron supplementation may improve the reproductive performance of sows and the growth performance of piglets, but different sources of iron have different effects. This study facilitates the understanding of the effects of iron sucrose and ferrous sulfate on the reproductive performance of sows and the growth performance of piglets.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Suplementos Dietéticos , Reproducción , Animales , Femenino , Alimentación Animal/análisis , Dieta/veterinaria , Porcinos/crecimiento & desarrollo , Porcinos/fisiología , Reproducción/efectos de los fármacos , Embarazo , Animales Recién Nacidos , Hierro/administración & dosificación , Hierro/farmacología , Compuestos Ferrosos/farmacología , Compuestos Ferrosos/administración & dosificación , Sacarato de Óxido Férrico/farmacología , Sacarato de Óxido Férrico/administración & dosificación , Hierro de la Dieta/administración & dosificación , Hierro de la Dieta/farmacología
2.
J Am Chem Soc ; 146(15): 10381-10392, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573229

RESUMEN

DNA cross-links severely challenge replication and transcription in cells, promoting senescence and cell death. In this paper, we report a novel type of DNA interstrand cross-link (ICL) produced as a side product during the attempted repair of 1,N6-ethenoadenine (εA) by human α-ketoglutarate/Fe(II)-dependent enzyme ALKBH2. This stable/nonreversible ICL was characterized by denaturing polyacrylamide gel electrophoresis analysis and quantified by high-resolution LC-MS in well-matched and mismatched DNA duplexes, yielding 5.7% as the highest level for cross-link formation. The binary lesion is proposed to be generated through covalent bond formation between the epoxide intermediate of εA repair and the exocyclic N6-amino group of adenine or the N4-amino group of cytosine residues in the complementary strand under physiological conditions. The cross-links occur in diverse sequence contexts, and molecular dynamics simulations rationalize the context specificity of cross-link formation. In addition, the cross-link generated from attempted εA repair was detected in cells by highly sensitive LC-MS techniques, giving biological relevance to the cross-link adducts. Overall, a combination of biochemical, computational, and mass spectrometric methods was used to discover and characterize this new type of stable cross-link both in vitro and in human cells, thereby uniquely demonstrating the existence of a potentially harmful ICL during DNA repair by human ALKBH2.


Asunto(s)
Adenina/análogos & derivados , Dioxigenasas , Ácidos Cetoglutáricos , Humanos , Dioxigenasas/metabolismo , ADN/química , Reparación del ADN , Compuestos Ferrosos , Aductos de ADN , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo
3.
Trials ; 25(1): 270, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641845

RESUMEN

BACKGROUND: The World Health Organization recommends universal iron supplementation for children aged 6-23 months in countries where anaemia is seen in over 40% of the population. Conventional ferrous salts have low efficacy due to low oral absorption in children with inflammation. Haem iron is more bioavailable, and its absorption may not be decreased by inflammation. This study aims to compare daily supplementation with haem iron versus ferrous sulphate on haemoglobin concentration and serum ferritin concentration after 12 weeks of supplementation. METHODS: This will be a two-arm, randomised controlled trial. Gambian children aged 6-12 months with anaemia will be recruited within a predefined geographical area and recruited by trained field workers. Eligible participants will be individually randomised using a 1:1 ratio within permuted blocks to daily supplementation for 12 weeks with either 10.0 mg of elemental iron as haem or ferrous sulphate. Safety outcomes such as diarrhoea and infection-related adverse events will be assessed daily by the clinical team (see Bah et al. Additional file 4_Adverse event eCRF). Linear regression will be used to analyse continuous outcomes, with log transformation to normalise residuals as needed. Binary outcomes will be analysed by binomial regression or logistic regression, Primary analysis will be by modified intention-to-treat (i.e., those randomised and who ingested at least one supplement dose of iron), with multiple imputations to replace missing data. Effect estimates will be adjusted for baseline covariates (C-reactive protein, alpha-1-acid glycoprotein, haemoglobin, ferritin, soluble transferrin receptor). DISCUSSION: This study will determine if therapeutic supplementation with haem iron is more efficacious than with conventional ferrous sulphate in enhancing haemoglobin and ferritin concentrations in anaemic children aged 6-12 months. TRIAL REGISTRATION: Pan African Clinical Trial Registry PACTR202210523178727.


Asunto(s)
Anemia Ferropénica , Anemia , Niño , Humanos , Hierro , Anemia Ferropénica/diagnóstico , Anemia Ferropénica/tratamiento farmacológico , Sales (Química)/metabolismo , Sales (Química)/uso terapéutico , Gambia , Compuestos Ferrosos/efectos adversos , Ferritinas , Anemia/tratamiento farmacológico , Hemoglobinas/metabolismo , Suplementos Dietéticos , Inflamación/tratamiento farmacológico , Hemo/metabolismo , Hemo/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Am J Hematol ; 99(6): 1077-1083, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38476079

RESUMEN

Restless legs syndrome (RLS) is a neurological disorder that can have a profound effect on sleep and quality of life. Idiopathic RLS is associated with brain iron insufficiency despite normal peripheral iron stores. There is, however, a five- to six-fold increase in prevalence of RLS in patients with iron deficiency anemia (IDA). Several open-label trials have demonstrated symptomatic improvement in RLS following treatment of IDA using oral or intravenous iron supplementation. To date, there have been no randomized double-blind controlled trials of intravenous iron compared with oral iron for the treatment of RLS patients with IDA. In the current study, oral ferrous sulfate and ferumoxytol were compared for efficacy and speed of response for treatment of RLS occurring in patients with IDA. The planned recruitment for this study was 70 patients with RLS and IDA, to be randomly assigned 1:1 to oral or intravenous iron, using double-blind, double-dummy procedures. At Week 6, the primary outcomes of Clinical Global Impression-Improvement score and change from baseline in the International Restless Legs Syndrome Study Group rating scale score were assessed. Due to challenges, performing the clinical trial during the COVID-19 pandemic, final-week data were found missing for 30 patients. As a result, in order to maintain the prespecified statistical analysis, an additional 30 patients were recruited. Both IV and oral iron were associated with a marked improvement in RLS symptoms, with no statistically significant difference between treatment groups. No serious adverse events were observed in either treatment group.


Asunto(s)
Administración Intravenosa , Anemia Ferropénica , Compuestos Ferrosos , Síndrome de las Piernas Inquietas , Humanos , Síndrome de las Piernas Inquietas/tratamiento farmacológico , Anemia Ferropénica/tratamiento farmacológico , Administración Oral , Método Doble Ciego , Masculino , Femenino , Proyectos Piloto , Persona de Mediana Edad , Compuestos Ferrosos/administración & dosificación , Compuestos Ferrosos/uso terapéutico , Compuestos Ferrosos/efectos adversos , Adulto , Anciano , Resultado del Tratamiento , Óxido Ferrosoférrico/administración & dosificación , Óxido Ferrosoférrico/uso terapéutico , Óxido Ferrosoférrico/efectos adversos , Hierro/administración & dosificación , Hierro/uso terapéutico
5.
J Hazard Mater ; 469: 134074, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518702

RESUMEN

In this study, ferrous ion (Fe(II)) had the potential to promote ecological functions in constructed wetlands (CWs) under perfluorooctanoic acid (PFOA) stress. Concretely, Fe(II) at 30 mg/L and 20-30 mg/L even led to 11.37% increase of urease and 93.15-243.61% increase of nitrite oxidoreductase respectively compared to the control. Fe(II) promotion was also observed on Nitrosomonas, Nitrospira, Azospira, and Zoogloea by 1.00-6.50 folds, which might result from higher expression of nitrogen fixation and nitrite redox genes. These findings could be explanation for increase of ammonium removal by 7.47-8.75% with Fe(II) addition, and reduction of nitrate accumulation with 30 mg/L Fe(II). Meanwhile, both Fe(II) stimulation on PAOs like Dechloromonas, Rhodococcus, Mesorhizobium, and Methylobacterium by 1.58-2.00 folds, and improvement on chemical phosphorus removal contributed to higher total phosphorus removal efficiency under high-level PFOA exposure. Moreover, Fe(II) raised chlorophyll content and reduced the oxidative damage brought by PFOA, especially at lower dosage. Nevertheless, combination of Fe(II) and high-level PFOA caused inhibition on microbial alpha diversity, which could result in decline of PFOA removal (by 4.29-12.83%). Besides, decrease of genes related to nitrate reduction demonstrated that enhancement on denitrification was due to nitrite reduction to N2 pathways rather than the first step of denitrifying process.


Asunto(s)
Caprilatos , Desnitrificación , Fluorocarburos , Hierro , Hierro/metabolismo , Nitratos/metabolismo , Nitritos , Eliminación de Residuos Líquidos , Humedales , Fósforo , Compuestos Ferrosos , Nitrógeno
6.
Water Res ; 253: 121312, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367383

RESUMEN

Two iron-electrolysis assisted anammox/denitrification (EAD) systems, including the suspended sludge reactor (ESR) and biofilm reactor (EMR) were constructed for mainstream wastewater treatment, achieving 84.51±4.38 % and 87.23±3.31 % of TN removal efficiencies, respectively. Sludge extracellular polymeric substances (EPS) analysis, cell apoptosis detection and microbial analysis demonstrated that the strengthened cell lysate/apoptosis and EPS production acted as supplemental carbon sources to provide new ecological niches for heterotrophic bacteria. Therefore, NO3--N accumulated intrinsically during anammox reaction was reduced. The rising cell lysis and apoptosis in the ESR induced the decline of anammox and enzyme activities. In contrast, this inhibition was scavenged in EMR because of the more favorable environment and the significant increase in EPS. Moreover, ESR and EMR achieved efficient phosphorus removal (96.98±5.24 % and 96.98±4.35 %) due to the continued release of Fe2+ by the in-situ corrosion of iron anodes. The X-ray diffraction (XRD) indicated that vivianite was the dominant P recovery product in EAD systems. The anaerobic microenvironment and the abundant EPS in the biofilm system showed essential benefits in the mineralization of vivianite.


Asunto(s)
Compuestos Ferrosos , Nitratos , Fosfatos , Aguas del Alcantarillado , Aguas Residuales , Desnitrificación , Fósforo , Hierro , Oxidación Anaeróbica del Amoníaco , Electrólisis , Reactores Biológicos/microbiología , Nitrógeno , Oxidación-Reducción
7.
J Pharm Sci ; 113(6): 1426-1454, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38423387

RESUMEN

Various iron-containing medicaments, vitamins and dietary supplements are used or developed for treatment and prevention of the iron deficiency anemia which is very dangerous for human and may cause various disorders. From the other hand, blood losses, iron poor diet, microelements (co-factors) deficiency, metabolic failures, absorption problems, etc. can change the iron status and affect the health. These pharmaceuticals contain iron compounds in the ferrous and ferric states. It is known that ferrous salts are more suitable for the intestinal intake than ferric ones. On the other hand, pharmaceutically important ferritin analogues contain ferric hydrous oxides and appear to be effective for both injections and peroral administration. 57Fe Mössbauer spectroscopy is a unique physical technique which allows one to study various iron-containing materials including pharmaceuticals. Therefore, this technique was applied to study iron-containing pharmaceuticals for the analysis of the iron state, identification of ferric and ferrous compounds, revealing some structural peculiarities and for detection of aging processes in relation to the iron compounds. This review considers the main results of a long experience in the study of iron-containing pharmaceuticals by Mössbauer spectroscopy with critical analysis that may be useful for pharmacists, biochemists, biophysicists, and physicians.


Asunto(s)
Anemia Ferropénica , Espectroscopía de Mossbauer , Espectroscopía de Mossbauer/métodos , Humanos , Anemia Ferropénica/tratamiento farmacológico , Anemia Ferropénica/prevención & control , Hierro/química , Compuestos Férricos/química , Compuestos Ferrosos/química , Preparaciones Farmacéuticas/química , Animales
8.
Ann Hum Biol ; 51(1): 1-7, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38251840

RESUMEN

Background: Iron deficiency is one of the leading causes of anaemia, with those most affected being children and women of childbearing age, in Brazil there is a scarcity of studies involving the local prevalence of anaemia. Aim: To evaluate anaemia and associated factors in schoolchildren in Santa Cruz do Sul through the analysis of biochemical and haematological markers and parasitological examination of faeces. Subjects and methods: School children from 10 to 12 years of age were evaluated through complete blood count, serum ferritin, C-reactive protein and stool parasitological examination, as well as socio-demographic characteristics and prophylaxis with ferrous sulphate in childhood. Results: It was found that 13.0% of the population was anaemic, girls were very slightly overrepresented among the anaemic children. Only 5.3% had altered haematocrit levels; 26.6% had low Mean Corpuscular Volume levels; 18.4% had low ferritin levels; 2.4% had increased C-reactive protein levels, and 21.7% had altered eosinophils. As for the socioeconomic level, classes A2 and D presented lower haemoglobin levels, as well as class D presenting lower ferritin levels, although without statistical significance. Only 6.0% of the population presented iron-deficiency anaemia and 46.0% of the schoolchildren had used ferrous sulphate supplementation in childhood. Conclusion: The prevalence of anaemia in the studied municipality is low, probably due to the high municipal human development index. Epidemiological studies are essential to characterise the population in a systematic form, to prevent future problems.


Asunto(s)
Anemia , Proteína C-Reactiva , Compuestos Ferrosos , Niño , Humanos , Femenino , Brasil/epidemiología , Anemia/epidemiología , Anemia/etiología , Ferritinas
9.
ACS Appl Mater Interfaces ; 16(5): 5666-5676, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38278776

RESUMEN

We report the design, synthesis, and in vitro evaluation of stimuli-responsive nanoscale micelles that can be activated by light to induce a cytotoxic effect. Micelles were assembled from amphiphilic units made of a photoactivatable ferrocenyl linker, connected on one side to a lipophilic chain, and on the other side to a hydrophilic pegylated chain. In vitro experiments indicated that pristine micelles ("off" state) were nontoxic to MCF-7 cancer cells, even at high concentrations, but became potent upon photoactivation ("on" state). The illumination process led to the dissociation of the micelles and the concomitant release of iron species, triggering cytotoxicity.


Asunto(s)
Antineoplásicos , Compuestos Ferrosos , Micelas , Metalocenos/farmacología , Fototerapia
10.
J Sci Food Agric ; 104(5): 3090-3099, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38063464

RESUMEN

BACKGROUND: Iron deficiency anemia (IDA) is one of the commonest global nutritional deficiency diseases, and the low bioavailability of iron is a key contributing factor. The peptide-iron complex could be used as a novel iron supplement to improve iron bioavailability. RESULTS: In this study, antioxidant low molecular weight (<3 kDa) phosvitin peptide (named PP-4) was separated to prepare a phosvitin peptide-ferrous complex (named PP-4-Fe); then the structural conformation of PP-4-Fe was characterized and its bioavailability by in vitro digestion was evaluated. The results showed that PP-4 had good ferrous-binding activity with 96.14 ± 2.86 µg Fe2+ mg-1 , and had a strong antioxidant effect with 995.61 ± 79.75 µmol TE mg-1 in 2,2'-azinobis'3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 62.3 ± 3.95 µmol FeSO4 mg-1 in ferric ion reducing antioxidant power (FRAP). After ferrous binding, the FRAP activity of PP-4-Fe, enhanced by 1.8 times, formed a more ordered structure with an increase in α-helix and decrease in γ-random coil. The ferrous binding sites of PP-4 involved were the amino, carboxyl, imidazole, and phosphate groups. The PP-4-Fe complex displayed excellent gastrointestinal stability and antioxidant effects during digestion. The iron dialysis percentage of PP-4-Fe was 74.59% ± 0.68%, and increased to 81.10% ± 0.89% with the addition of 0.25 times vitamin C (VC). This indicated that PP-4-Fe displayed excellent bioavailability and VC in sufficient quantities had a synergistic effect on improving bioavailability. CONCLUSIONS: This study demonstrated that antioxidant phosvitin peptide was an efficient delivery system to protect ferrous ions and suggested that the phosvitin peptide-ferrous complex has strong potential as a ferrous supplement. © 2023 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Fosvitina , Antioxidantes/metabolismo , Fosvitina/metabolismo , Disponibilidad Biológica , Diálisis Renal , Hierro/metabolismo , Ácido Ascórbico , Péptidos/química , Compuestos Ferrosos
11.
Chemosphere ; 349: 140930, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101480

RESUMEN

A sufficient supply of dissolved silicon (DSi) relative to dissolved phosphorus (DP) may decrease the likelihood of harmful algal blooms in eutrophic waters. Oxidative precipitation of Fe(II) at oxic-anoxic interfaces may contribute to the immobilization of DSi, thereby exerting control over the DSi availability in the overlying water. Nevertheless, the efficacy of DSi immobilization in this context remains to be precisely determined. To investigate the behavior of DSi during Fe(II) oxidation, anoxic solutions containing mixtures of aqueous Fe(II), DSi, and dissolved phosphorus (DP) were exposed to dissolved oxygen (DO) in the batch system. The experimental data, combined with kinetic reaction modeling, indicate that DSi removal during Fe(II) oxidation occurs via two pathways. At the beginning of the experiments, the oxidation of Fe(II)-DSi complexes induces the fast removal of DSi. Upon complete oxidation of Fe(II), further DSi removal is due to adsorption to surface sites of the Fe(III) oxyhydroxides. The presence of DP effectively competes with DSi via both of these pathways during the initial and later stages of the experiments, with as a result more limited removal of DSi during Fe(II) oxidation. Overall, we conclude that at near neutral pH the oxidation of Fe(II) has considerable capacity to immobilize DSi, where the rapid homogeneous oxidation of Fe(II)-DSi results in greater DSi removal compared to surface adsorption. Elevated DP concentration, however, effectively outcompetes DSi in co-precipitation interactions, potentially contributing to enhanced DSi availability within aquatic systems.


Asunto(s)
Hierro , Silicio , Hierro/química , Fósforo/química , Oxidación-Reducción , Agua , Compuestos Ferrosos/química
12.
Sci Total Environ ; 912: 169520, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38141995

RESUMEN

Phosphorus recovery is a vital element for the circular economy. Wastewater, especially sewage sludge, shows great potential for recovering phosphate in the form of vivianite. This work focuses on studying the iron, phosphorus, and sulfur interactions at full-scale wastewater treatment plants (Viikinmäki, Finland and Seine Aval, France) with the goal of identifying unit processes with a potential for vivianite formation. Concentrations of iron(III) and iron(II), phosphorus, and sulfur were used to evaluate the reduction of iron and the formation potential of vivianite. Mössbauer spectroscopy and X-ray diffraction (XRD) analysis were used to confirm the presence of vivianite in various locations on sludge lines. The results show that the vivianite formation potential increases as the molar Fe:P ratio increases, the anaerobic sludge retention time increases, and the sulfate concentration decreases. The digester is a prominent location for vivianite recovery, but not the only one. This work gives valuable insights into the dynamic interrelations of iron, phosphorus, and sulfur in full-scale conditions. These results will support the understanding of vivianite formation and pave the way for an alternative solution for vivianite recovery for example in plants that do not have an anaerobic digester.


Asunto(s)
Compuestos Férricos , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Fosfatos/química , Compuestos Ferrosos/química , Hierro/química , Fósforo/química , Azufre
13.
Environ Sci Pollut Res Int ; 30(55): 117970-117980, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37875753

RESUMEN

Red mud is an environmental burden during the alumina production process. To mitigate the hazards associated with red mud storage, this study investigated the utilization of alkaline red mud as a treatment agent for acidic mine drainage (AMD) with high concentrations of Fe(II) and Mn(II). This study explored the influence of reaction times, addition amounts of red mud, and pH values on the removal efficiency of Fe (II) and Mn(II) from high-concentration AMD. Various parameters such as suspended solids levels, effluent pH, and zeta potentials were measured to meet discharge standards. The adsorption mechanism of red mud was examined using SEM, XRD, EDX, XPS, and 3D-EEM analysis. Optimal conditions were determined as a reaction time of 2 h, pH value of 5.01 and the addition of 100 g/L red mud, achieving effective removal of Fe(II) (reduced from 1000 to 0.224 mg/L) and Mn (II) (reduced from 20 to 1.03 mg/L). The treated AMD meets discharge standards with reduced suspended matter content of 37.4 mg/L. These findings provided valuable insights for the utilization of red mud waste in engineering applications.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Hierro/análisis , Manganeso/análisis , Ácidos , Óxido de Aluminio , Compuestos Ferrosos , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis
14.
J Environ Manage ; 348: 119239, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827079

RESUMEN

The petroleum wastewater (PWW) contains a diverse range of recalcitrant organic contaminants. Of particular concern is the removal of naphthenic acids (NAs) due to the high toxicity and persistence. Persulfate (PS) based oxidation processes have shown promising in treating refractory wastewater, while the high costs of prepared catalysts limited their widespread implementation. This study aims to develop a cost-effective natural pyrite activated PS system for PWW treatment. The removal of NAs by pyrite/PS system was initially investigated. More than 90% of cyclohexanoic acid (CHA), a model NA, was removed in pyrite/PS system (2.0 g/L pyrite, 4.0 mM PS) at initial pH of 3-11. Scavenging experiments revealed that Fe(II) on pyrite surface was the reactive site for PS activation to generate reactive species, including sulfate radical (SO4·-), Fe(IV) and hydroxyl radical (·OH) for CHA degradation. Reactions of Fe(III) with S helped restore Fe(II) and enhance PS activation, resulting in the sustained catalytic activity of pyrites over five cycles. Cl-, SO42- and NO3- below 10 mM had minimal impact on CHA degradation in pyrite/PS system. However, over 1 mM of HCO3- inhibited 80% of CHA removal due to the buffer effect to maintain the high solution pH. Removing HCO3- from real PWW restored the removal of CHA and of total organic carbon (TOC) to over 90% and 71.3% in pyrite/PS system, respectively. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results indicated that O2‒6 species including NAs were primarily eliminated through mineralization and oxygen addition. Besides, O3-5S, NO3-5S and N3O2‒4 species were the most susceptible to oxidation in PWW, resulting in the increase of the oxidation level (i.e., O/Cwa) from 0.41 to 0.56 after treatment. This study provides valuable insights into the treatment of NAs in real PWW, and potential application of natural minerals in the treatment of industrial wastewater.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Aguas Residuales , Petróleo/análisis , Compuestos Férricos/química , Contaminantes Químicos del Agua/química , Compuestos Ferrosos
15.
J Environ Manage ; 348: 119223, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827085

RESUMEN

The recovery of phosphorus (P) through vivianite crystallization offers a promising approach for resource utilization in wastewater treatment plants. However, this process encounters challenges in terms of small product size and low purity. The study aimed to assess the feasibility of using quartz sand as a seed material to enhance P recovery and vivianite crystal characteristics from anaerobic fermentation supernatant. Various factors, including seed dosage, seed size, Fe/P ratio, and pH, were systematically tested in batch experiments to assess their influence. Results demonstrated that the effect of seed enhancement on vivianite crystallization was more pronounced under higher seed dosages, smaller seed sizes, and lower pH or Fe/P ratio. The addition of seeds increased P recovery by 4.43% in the actual anaerobic fermentation supernatant and also augmented the average particle size of the recovered product from 19.57 to 39.28 µm. Moreover, introducing quartz sand as a seed material effectively reduced co-precipitation, leading to a notable 12.5% increase in the purity of the recovered vivianite compared to the non-seeded process. The formation of an ion adsorption layer on the surface of quartz sand facilitated crystal attachment and growth, significantly accelerating the vivianite crystallization rate and enhancing P recovery. The economic analysis focused on chemical costs further affirmed the economic viability of using quartz sand as a seed material for P recovery through vivianite crystallization, which provides valuable insights for future research and engineering applications.


Asunto(s)
Fósforo , Cuarzo , Fermentación , Arena , Anaerobiosis , Cristalización , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Fosfatos/química , Compuestos Ferrosos/química
16.
Arch Environ Contam Toxicol ; 85(4): 485-497, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37816969

RESUMEN

Chemical activation of waste materials, to form activated carbon, (AC) is complicated by the large amounts of chemical activating agents required and wastewater produced. To address these problems, we have developed an optimized process for producing AC, by phosphoric acid activation of construction waste. Waste wood from construction sites was ground and treated with an optimized phosphoric acid digestion and activation that resulted in high surface areas (> 2000 m2/g) and a greater recovery of phosphoric acid. Subsequently the phosphoric acid activated carbon (PAC), was functionalized with iron salts and evaluated for its efficacy on the adsorption of selenite and selenate. Total phosphoric acid recovery was 96.7% for waste wood activated with 25% phosphoric acid at a 1:1 ratio, which is a substantially higher phosphoric acid recovery, than previous literature findings. Post activation impregnation of iron salts resulted in iron(II) species adsorbed to the PAC surface. The iron(II) chloride impregnated AC removed up to 11.41 ± 0.502 mg selenium per g Iron-PAC. Competitive ions such as sulfate and nitrate had little effect on selenium adsorption, however, phosphate concentration did negatively impact the selenium uptake at high phosphate levels. At 250 ppm, approximately 75% of adsorption capacity of both the selenate and the selenite solutions was lost, although selenium was still preferentially adsorbed. Peak adsorption occurred between a pH of 4 and 11, with a complete loss of adsorption at a pH of 13.


Asunto(s)
Selenio , Contaminantes Químicos del Agua , Ácido Selenioso , Hierro , Carbón Orgánico , Ácido Selénico , Adsorción , Madera , Sales (Química) , Fosfatos , Compuestos Ferrosos
17.
J Agric Food Chem ; 71(44): 16618-16629, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37874351

RESUMEN

Iron is one of the trace mineral elements, and iron deficiency is a common phenomenon that negatively influences human health. Food-derived iron supplements were considered excellent candidates for improving this syndrome. In this work, oyster-protein hydrolysates (OPH) and ferrous chloride successfully formed the OPH-Fe complex (6 mg/mL, 40 °C, 30 min), where the main binding sites involved were the carboxyl and amino groups. The OPH-Fe complex showed no obvious changes in the secondary structure, while the iron changed the morphological appearance and also showed fluorescence quenching, an ultraviolet shift, and an increase in size distribution. The OPH-Fe complex showed better dynamic absorption of iron (64.11 µmol/L) than ferrous sulfate (46.90 µmol/L), and the medium dose had better protective effects against iron-deficiency anemia in vivo. Three representative peptides (DGKGKIPEE, FAGDDAPRA, and VLDSGDGVTH) that were absorbed intact were identified. This experiment provided a theoretical foundation for further study of the digestion and absorption of the OPH-Fe complex.


Asunto(s)
Anemia Ferropénica , Deficiencias de Hierro , Ostreidae , Ratones , Humanos , Animales , Hierro/metabolismo , Hidrolisados de Proteína/química , Compuestos Ferrosos , Anemia Ferropénica/tratamiento farmacológico , Anemia Ferropénica/prevención & control , Anemia Ferropénica/metabolismo , Ostreidae/metabolismo
18.
Chemosphere ; 341: 140134, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690548

RESUMEN

Liquid fossil fuels, collectively known as total petroleum hydrocarbons (TPHs), are highly toxic and frequently leak into subsurface environments due to anthropogenic activities. As an in-situ biological remedial option for TPH contamination, aerobic TPH biodegradation is limited due to oxygen's low solubility in water, and because it is consumed quickly by aerobic bacteria. Thus, we investigated the potential of anaerobic TPH degradation by indigenous fermenting bacteria and Fe(III)-reducing bacteria. Twenty 6-10 m soil cores were collected from a closed military base subject to ongoing TPH contamination since the 1980s. Physicochemical and microbial properties were determined at 0.5-m intervals in each core. To assess the relationship between TPH degradation and microbial Fe(III) reduction, soil samples were grouped into high-TPH (>500 mg kg-1) and high-Fe(II) (>450 mg kg-1), high-TPH and low-Fe(II), low-TPH and high-Fe(II), and low-TPH and low-Fe(II) groups. Alpha diversity was significantly lower in high-TPH groups than in low-TPH groups, suggesting that high TPH concentrations exerted a strong selective pressure on bacterial communities. In the high-TPH and low-Fe(II) group, fermenting bacteria, including Microgenomatia and Chlamydiae, were more abundant, suggesting that TPH biodegradation occurred via fermentation. In the high-TPH and high-Fe(II) group, Fe(III)-reducing bacteria, including Geobacter and Zoogloea, were more abundant, suggesting that microbial Fe(III) reduction enhances TPH biodegradation. In contrast, the fermenting and/or Fe(III)-reducing bacteria were not statistically abundant in the low-TPH groups.


Asunto(s)
Petróleo , Anaerobiosis , Compuestos Férricos , Biodegradación Ambiental , Hidrocarburos , Suelo , Compuestos Ferrosos
19.
Environ Sci Technol ; 57(35): 13258-13266, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37616046

RESUMEN

Electrochemically mediated Fe(II)/Fe(III) redox-coupled uranium extraction can efficiently reduce the cell voltage of electrochemical uranium extraction (EUE). How to regulate the surface structure to enhance the uranium acyl ion adsorption capacity and strengthen the Fe(II)/Fe(III) redox cycle process is crucial for EUE. In this work, we developed surface sulfated nanoreduced iron (S-NRI) for EUE and exhibited improved properties for EUE at an ultralow cell voltage (-0.1 V). Compared with a nanoreduced iron (NRI) adsorbent, S-NRI displayed faster electrochemical extraction kinetics properties and higher extraction efficiency and capacity for uranium. In a more complex seawater electrolyte containing uranyl ion concentration ranging from 1 to 20 ppm, the removal efficiency could reach almost ∼100% after EUE for 24 h. At a higher 50 ppm uranium acyl ion concentration in a seawater electrolyte, S-NRI exhibited higher extraction capacity (755.03 mg/g), which is better than 528.53 mg/g of NRI at a cell voltage of -0.1 V. Outstanding EUE property could be attributed to the fact that sulfate species (M-SO42-) on the S-NRI surface not only enhanced selective adsorption of uranyl ions but also strengthened the Fe(II)/Fe(III) redox cycle, which accelerated electron transfer between Fe(II) and U(VI), promoted the regeneration of Fe(II) active sites, and finally enhanced the EUE property.


Asunto(s)
Compuestos Férricos , Uranio , Adsorción , Hierro , Sulfatos , Óxidos de Azufre , Compuestos Ferrosos
20.
Nat Commun ; 14(1): 4637, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532698

RESUMEN

The Fe(II)-induced ferroptotic cell death pathway is an asset in cancer therapy, yet it calls into question the biocompatibility of magnetic nanoparticles. In the latter, Fe(II) is sequestered within the crystal structure and is released only upon nanoparticle degradation, a transition that is not well understood. Here, we dissect the chemical environment necessary for nanoparticle degradation and subsequent Fe(II) release. Importantly, temperature acts as an accelerator of the process and can be triggered remotely by laser-mediated photothermal conversion, as evidenced by the loss of the nanoparticles' magnetic fingerprint. Remarkably, the local hot-spot temperature generated at the nanoscale can be measured in operando, in the vicinity of each nanoparticle, by comparing the photothermal-induced nanoparticle degradation patterns with those of global heating. Further, remote photothermal irradiation accelerates degradation inside cancer cells in a tumor spheroid model, with efficiency correlating with the endocytosis progression state of the nanoparticles. High-throughput imaging quantification of Fe2+ release, ROS generation, lipid peroxidation and cell death at the spheroid level confirm the synergistic thermo-ferroptotic therapy due to the photothermal degradation at the nanoparticle level.


Asunto(s)
Ferroptosis , Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Nanopartículas/química , Calor , Compuestos Ferrosos , Neoplasias/patología , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA