Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
ACS Infect Dis ; 9(12): 2471-2481, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37950691

RESUMEN

Survival of foodborne Gram-negative bacteria during osmotic stress often leads to multidrug resistance development. However, despite the concern, how osmoadaptation alters drug penetration across the Gram-negative bacterial cell envelope has remained inconclusive for years. Here, we have investigated drug permeation and accumulation inside hypo-osmotically shocked Escherichia coli. Three different quaternary ammonium compounds (QACs) are used as cationic amine-containing drug representatives; they also serve as envelope permeability indicators in different assays. Propidium iodide fluorescence reveals cytoplasmic accumulation and overall envelope permeability, while crystal violet sorption and second harmonic generation (SHG) spectroscopy reveal periplasmic accumulation and outer membrane permeability. Malachite green sorption and SHG results reveal transport across both the outer and inner membranes and accumulation in the periplasm as well as cytoplasm. The findings are found to be complementary to one another, collectively revealing enhanced permeabilities of both membranes and the periplasmic space in response to hypo-osmotic stress in E. coli. Enhanced permeability leads to faster QACs transport and higher accumulation in subcellular compartments, whereas transport and accumulation both are negligible under isosmotic conditions. The QACs' transport rates are found to be highly influenced by the osmolytes used, where phosphate ion emerges as a key facilitator of transport across the periplasm into the cytoplasm. E. coli is found viable, with morphology unchanged under extreme hypo-osmotic stress; i.e., it adapts to the situation. The outcome shows that the hypo-osmotic shock to E. coli, specifically using phosphate as an osmolyte, can be beneficial for drug delivery.


Asunto(s)
Escherichia coli , Compuestos de Amonio Cuaternario , Escherichia coli/metabolismo , Presión Osmótica , Membrana Celular/metabolismo , Permeabilidad , Compuestos de Amonio Cuaternario/análisis , Compuestos de Amonio Cuaternario/metabolismo , Fosfatos/metabolismo
2.
Res Microbiol ; 174(1-2): 103992, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36122890

RESUMEN

New drugs are urgently required for the treatment of infections due to an increasing number of new strains of diseases-causing pathogens and antibiotic-resistant bacteria. A library of drugs approved by Food and Drug Administration was screened for efficacy against Vibrio vulnificus using antimicrobial assays. We found that otilonium bromide showed potent antimicrobial activity against V.vulnificus and had a synergistic effect in combination with antibiotics. Field emission transmission electron microscope images revealed that otilonium bromide caused cell division defects in V.vulnificus. Moreover, it significantly inhibited V.vulnificus swarming motility and adhesion to host cells at concentrations lower than the minimum inhibitory concentration. To investigate its inhibitory action mechanisms, we examined the effect of otilonium bromide on the expression levels of several proteins crucial for V.vulnificus growth, motility, and adhesion. It decreased the protein expression levels of cAMP receptor protein and flagellin B, but not HlyU or OmpU. In addition, otilonium bromide significantly decreased the expression levels of outer membrane protein TolCV1, thus inhibiting RtxA1 toxin secretion and substantially reducing V.vulnificus cytotoxicity to host cells. Collectively, these findings suggest that otilonium bromide may be considered as a promising candidate for treating V.vulnificus infections.


Asunto(s)
Vibriosis , Vibrio vulnificus , Humanos , Vibrio vulnificus/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Compuestos de Amonio Cuaternario/farmacología , Pruebas de Sensibilidad Microbiana , Vibriosis/microbiología
3.
Drug Metab Pers Ther ; 35(3)2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32712589

RESUMEN

Objectives α-Lipoic acid is used as an antioxidant in multivitamin formulations to restore the normal level of intracellular glutathione after depletion caused by environmental pollutants or during physiological aging of the body, as a chelating agent, as a dietary supplement, in anti-aging compositions. Lipoic acid (LA) acts as a buffer in cancer therapy and in therapy of diseases associated with oxidative stress. The effect of LA on the catalytic functions of cytochrome P450 3A4 as the main enzyme of the biotransformation of drugs was studied. It was shown that LA in the concentration range of 50-200 µM affects the stage of electron transfer (stage of cytochrome P450 3A4 heme reduction), decreasing the cathodic reduction current by an average of 20 ± 5%. The kinetic parameters (k cat) of the N-demethylation reaction of erythromycin, the antibiotic of the macrolide group, used as a marker substrate for the comparative analysis of the catalytic activity of cytochrome P450 3A4, both in the presence of α-lipoic acid and in the cytochrome P450 3A4-erythromycin complex, amounted to comparable values of 3.5 ± 0.9 and 3.4 ± 0.9 min-1, respectively. Based on these experimental data, we can conclude that there is no significant effect of α-lipoic acid on the catalysis of cytochrome P450 3A4. These results can be projected on the possibility of using α-lipoic acid in complex therapy without negative impact on the enzymatic cytochrome P450 system. Methods The analysis was performed in electrochemical non-invasive model systems for recording the catalytic activity of cytochrome P450 3A4, using screen-printed electrodes, modified with membranous didodecyldimethylammonium bromide. Results It was shown that LA did not affect the N-demethylation of macrolide antibiotic erythromycin. Catalytic constant (k cat) of N-demethylation of erythromycin corresponds to 3.4 ± 0.9 min-1 and in the presence of LA corresponds to 3.5 ± 0.9 min-1. Conclusions Based on the obtained experimental data, we can conclude that there is no significant effect of α-lipoic acid on individual stages and processes of catalysis of cytochrome P450 3A4. LA can be recommended for inclusion in complex therapy as an antioxidant, antitoxic and chelating compound without negative impact on the enzymatic cytochrome P450 3A4 activity of the human body.


Asunto(s)
Antioxidantes/química , Citocromo P-450 CYP3A/metabolismo , Ácido Tióctico/química , Antioxidantes/metabolismo , Biocatálisis , Electrodos , Humanos , Estructura Molecular , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/metabolismo , Ácido Tióctico/metabolismo
4.
Methods Mol Biol ; 1982: 429-446, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31172487

RESUMEN

Development of new, selective inhibitors of nicotinamide adenine dinucleotide phosphate oxidase (NOX) isoforms is important both for basic studies on the role of these enzymes in cellular redox signaling, cell physiology, and proliferation and for development of new drugs for diseases carrying a component of increased NOX activity, such as several types of cancer and cardiovascular and neurodegenerative diseases. High-throughput screening (HTS) of large libraries of compounds remains the major approach for development of new NOX inhibitors. Here, we describe the protocol for the HTS campaign for NOX inhibitors using rigorous assays for superoxide radical anion and hydrogen peroxide, based on oxidation of hydropropidine, coumarin boronic acid, and Amplex Red. We propose using these three probes to screen for and identify new inhibitors, by selecting positive hits that show inhibitory effects in all three assays. Protocols for the synthesis of hydropropidine and for confirmatory assays, including oxygen consumption measurements, electron paramagnetic resonance spin trapping of superoxide, and simultaneous monitoring of superoxide and hydrogen peroxide, are also provided.


Asunto(s)
Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , NADPH Oxidasas/química , Adenosina Trifosfato/metabolismo , Biomarcadores , Técnicas de Cultivo de Célula , Línea Celular , Cromatografía Líquida de Alta Presión , Interpretación Estadística de Datos , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , Humanos , Isoenzimas , Estructura Molecular , NADPH Oxidasas/antagonistas & inhibidores , Oxidación-Reducción , Fenantridinas/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Superóxidos/metabolismo
5.
J Biotechnol ; 272-273: 1-6, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29518462

RESUMEN

Adsorption of cationic surfactants (QACs) Br-tetradecyltrimethylammonium (TTAB), Cl-tetradecylbenzyldimethylammonium (C14BDMA) and Cl-hexadecylbenzyldimethylammonium (C16BDMA) to activated sludge from a wastewater treatment plant was tested. Adsorption equilibrium was reached after 2 h, and for initial 200 mg L-1 81%, 90% and 98% of TTAB, C14BDMA and C16BDMA were respectively adsorbed. After six successive desorption cycles, 21% of TTAB and 12.7% of C14BDMA were desorbed from the sludge. In agreement with the percentage of QACs pre-adsorbed, the more hydrophobic the compound, the lesser the extent of desorption. Wastewater samples with activated sludge were supplemented with TTAB 200 mg L-1 and Ca-alginate beads containing the QACs-degrading microorganisms Pseudomonas putida A (ATCC 12633) and Aeromonas hydrophila MFB03. After 24 h, 10 mg L-1 of TTAB were detected in the liquid phase and 6-8 mg L-1 adsorbed to the sludge. Since without Ca-alginate beads or with empty beads total TTAB amount (phase solid and liquid) did not change, the 90% reduction of the initial 200 mg L-1 after treatment with immobilized cells was attributed to the bacterial consortium's capacity to biodegrade QACs. The results show the advantages of using immobilized bacteria to achieve complete QACs elimination from wastewater systems, thus preventing them from reaching the environment.


Asunto(s)
Aeromonas hydrophila/metabolismo , Células Inmovilizadas/metabolismo , Pseudomonas putida/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Aguas del Alcantarillado/química , Tensoactivos/metabolismo , Adsorción , Alginatos/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Compuestos de Amonio Cuaternario/química , Tensoactivos/química
6.
Int J Parasitol Drugs Drug Resist ; 7(3): 314-320, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28886443

RESUMEN

The search for safe antimalarial compounds acting against asexual symptom-responsible stages and sexual transmission-responsible forms of Plasmodium species is one of the major challenges in malaria elimination programs. So far, among current drugs approved for human use, only primaquine has transmission-blocking activity. The discovery of small molecules targeting different Plasmodium falciparum life stages remains a priority in antimalarial drug research. In this context, several independent studies have recently reported antiplasmodial and transmission-blocking activities of commonly used stains, dyes and fluorescent probes against P. falciparum including chloroquine-resistant isolates. Herein we have studied the antimalarial activities of dyes with different scaffold and we report that the triarylmethane dye (TRAM) Brilliant green inhibits the growth of asexual stages (IC50 ≤ 2 µM) and has exflagellation-blocking activity (IC50 ≤ 800 nM) against P. falciparum reference strains (3D7, 7G8) and chloroquine-resistant clinical isolate (Q206). In a second step we have investigated the antiplasmodial activities of two polysulfonated triarylmethane food dyes. Green S (E142) is weakly active against P. falciparum asexual stage (IC50 ≃ 17 µM) whereas Patent Blue V (E131) is inactive in both antimalarial assays. By applying liquid chromatography techniques for the culture supernatant analysis after cell washings and lysis, we report the detection of Brilliant green in erythrocytes, the selective uptake of Green S (E142) by infected erythrocytes, whereas Patent Blue V (E131) could not be detected within non-infected and 3D7-infected erythrocytes. Overall, our results suggest that two polysulfonated food dyes might display different affinity with transporters or channels on infected RBC membrane.


Asunto(s)
Colorantes/metabolismo , Colorantes/farmacología , Eritrocitos/metabolismo , Estadios del Ciclo de Vida/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Cromatografía Liquida , Medios de Cultivo/análisis , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Colorantes Verde de Lisamina/metabolismo , Colorantes Verde de Lisamina/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Extractos Vegetales/química , Plasmodium falciparum/crecimiento & desarrollo , Compuestos de Amonio Cuaternario/metabolismo , Compuestos de Amonio Cuaternario/farmacología , Colorantes de Rosanilina/metabolismo , Colorantes de Rosanilina/farmacología
7.
Am J Hum Genet ; 99(3): 647-665, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27499521

RESUMEN

Homozygous loss of SMN1 causes spinal muscular atrophy (SMA), the most common and devastating childhood genetic motor-neuron disease. The copy gene SMN2 produces only ∼10% functional SMN protein, insufficient to counteract development of SMA. In contrast, the human genetic modifier plastin 3 (PLS3), an actin-binding and -bundling protein, fully protects against SMA in SMN1-deleted individuals carrying 3-4 SMN2 copies. Here, we demonstrate that the combinatorial effect of suboptimal SMN antisense oligonucleotide treatment and PLS3 overexpression-a situation resembling the human condition in asymptomatic SMN1-deleted individuals-rescues survival (from 14 to >250 days) and motoric abilities in a severe SMA mouse model. Because PLS3 knockout in yeast impairs endocytosis, we hypothesized that disturbed endocytosis might be a key cellular mechanism underlying impaired neurotransmission and neuromuscular junction maintenance in SMA. Indeed, SMN deficit dramatically reduced endocytosis, which was restored to normal levels by PLS3 overexpression. Upon low-frequency electro-stimulation, endocytotic FM1-43 (SynaptoGreen) uptake in the presynaptic terminal of neuromuscular junctions was restored to control levels in SMA-PLS3 mice. Moreover, proteomics and biochemical analysis revealed CORO1C, another F-actin binding protein, whose direct binding to PLS3 is dependent on calcium. Similar to PLS3 overexpression, CORO1C overexpression restored fluid-phase endocytosis in SMN-knockdown cells by elevating F-actin amounts and rescued the axonal truncation and branching phenotype in Smn-depleted zebrafish. Our findings emphasize the power of genetic modifiers to unravel the cellular pathomechanisms underlying SMA and the power of combinatorial therapy based on splice correction of SMN2 and endocytosis improvement to efficiently treat SMA.


Asunto(s)
Endocitosis/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Actinas/metabolismo , Animales , Axones/patología , Calcio/metabolismo , Proteínas Portadoras , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Oligonucleótidos Antisentido , Fenotipo , Terminales Presinápticos/metabolismo , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Transmisión Sináptica/genética , Pez Cebra/genética , Pez Cebra/metabolismo
8.
Environ Sci Pollut Res Int ; 23(19): 19450-60, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27381355

RESUMEN

Toxicants are generally harmful to biotechnology in wastewater treatment. However, trace toxicant can induce microbial hormesis, but to date, it is still unknown how this phenomenon affects nutrient removal during municipal wastewater treatment process. Therefore, this study focused on the effects of hormesis induced by cetyltrimethyl ammonium bromide (CTAB), a representative quaternary ammonium cationic surfactant, on nutrient removal by Chlorella vulgaris F1068. Results showed that when the concentration of CTAB was less than 10 ng/L, the cellular components chlorophyll a, proteins, polysaccharides, and total lipids increased by 10.11, 58.17, 38.78, and 11.87 %, respectively, and some enzymes in nutrient metabolism of algal cells, such as glutamine synthetase (GS), acid phosphatase (ACP), H(+)-ATPase, and esterase, were also enhanced. As a result, the removal efficiencies of ammonia nitrogen (NH4 (+)) and total phosphorus (TP) increased by 14.66 and 8.51 %, respectively, compared to the control during a 7-day test period. The underlying mechanism was mainly due to an enhanced photosynthetic activity of C. vulgaris F1068 indicated by the increase in chlorophyll fluorescence parameters (the value of Fv/Fm, ΦII, Fv/Fo, and rETR increased by 12.99, 7.56, 25.59, and 8.11 %, respectively) and adenylate energy charge (AEC) (from 0.68 to 0.72). These results suggest that hormesis induced by trace toxicants could enhance the nutrient removal, which would be further considered in the design of municipal wastewater treatment processes. Graphical abstract The schematic mechanism of C. vulgaris F1068 under CTAB induced hormesis. Green arrows ( ) represent the increase and the red arrow ( ) represents the decrease.


Asunto(s)
Compuestos de Cetrimonio/metabolismo , Chlorella vulgaris/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bromuros , Cetrimonio , Chlorella/metabolismo , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila A , Hormesis , Nitrógeno/análisis , Fósforo/análisis , Fotosíntesis , Compuestos de Amonio Cuaternario/metabolismo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
9.
Sci Rep ; 6: 22055, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26902313

RESUMEN

Efficiently introducing molecules such as chemical drugs, proteins, or nucleic acids into cells is a central technique in cell and molecular biology, gene therapy and regenerative medicine. The cell membrane is a critical barrier for this purpose. While many approaches exist, some of which are applicable to single cells that researchers specify under microscopy, no reliable and efficient technique has been invented. In this study, cells were cultured on a coverslip that had been coated with carbon by vapor deposition, and a laser beam was focused on a small local spot beneath a single cell under microscopy. The absorbed energy of the laser beam by the carbon made a pore only in the cell membrane that was attached to the carbon coat, which resulted in an efficient introduction. An inexpensive and lower-power laser could be used for this method, and the introduction efficiency was 100% without any loss of cell viability. This new technique will provide a powerful tool not only to research but also to many applied fields.


Asunto(s)
Carbono/química , Permeabilidad de la Membrana Celular/efectos de la radiación , Membrana Celular/efectos de la radiación , Materiales Biocompatibles Revestidos/química , Terapia por Luz de Baja Intensidad , Animales , Transporte Biológico , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Dictyostelium/metabolismo , Dictyostelium/efectos de la radiación , Colorantes Fluorescentes/metabolismo , Rayos Láser , Plásmidos/metabolismo , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Análisis de la Célula Individual/métodos
10.
J Anat ; 227(2): 194-213, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26179025

RESUMEN

This article summarises progress to date over an exciting and very enjoyable first 15 years of collaboration with Bob Banks. Our collaboration began when I contacted him with (to me) an unexpected observation that a dye used to mark recycling synaptic vesicle membrane at efferent terminals also labelled muscle spindle afferent terminals. This observation led to the re-discovery of a system of small clear vesicles present in all vertebrate primary mechanosensory nerve terminals. These synaptic-like vesicles (SLVs) have been, and continue to be, the major focus of our work. This article describes our characterisation of the properties and functional significance of these SLVs, combining our complementary skills: Bob's technical expertise and encyclopaedic knowledge of mechanosensation with my experience of synaptic vesicles and the development of the styryl pyridinium dyes, of which the most widely used is FM1-43. On the way we have found that SLVs seem to be part of a constitutive glutamate secretory system necessary to maintain the stretch-sensitivity of spindle endings. The glutamate activates a highly unusual glutamate receptor linked to phospholipase D activation, which we have termed the PLD-mGluR. It has a totally distinct pharmacology first described in the hippocampus nearly 20 years ago but, like the SLVs that were first described over 50 years ago, has since been little researched. Yet, our evidence and literature searches suggest this glutamate/SLV/PLD-mGluR system is a ubiquitous feature of mechanosensory endings and, at least for spindles, is essential for maintaining mechanosensory function. This article summarises how this system integrates with the classical model of mechanosensitive channels in spindles and other mechanosensory nerve terminals, including hair follicle afferents and baroreceptors controlling blood pressure. Finally, in this time when there is an imperative to show translational relevance, I describe how this fascinating system might actually be a useful therapeutic drug target for clinical conditions such as hypertension and muscle spasticity. This has been a fascinating 15-year journey in collaboration with Bob who, as well as having an astute scientific mind, is also a great enthusiast, motivator and friend. I hope this exciting and enjoyable journey will continue well into the future.


Asunto(s)
Mecanotransducción Celular/fisiología , Husos Musculares/fisiología , Terminaciones Nerviosas/fisiología , Neuronas Eferentes/fisiología , Transducción de Señal/fisiología , Vesículas Sinápticas/fisiología , Colorantes Fluorescentes/metabolismo , Ácido Glutámico/metabolismo , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Receptores de Glutamato/metabolismo
11.
PLoS One ; 8(10): e76660, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24146903

RESUMEN

Cellulose is an important component of cell wall, yet its location and function in pollen tubes remain speculative. In this paper, we studied the role of cellulose synthesis in pollen tube elongation in Pinus bungeana Zucc. by using the specific inhibitor, 2, 6-dichlorobenzonitrile (DCB). In the presence of DCB, the growth rate and morphology of pollen tubes were distinctly changed. The organization of cytoskeleton and vesicle trafficking were also disturbed. Ultrastructure of pollen tubes treated with DCB was characterized by the loose tube wall and damaged organelles. DCB treatment induced distinct changes in tube wall components. Fluorescence labeling results showed that callose, and acidic pectin accumulated in the tip regions, whereas there was less cellulose when treated with DCB. These results were confirmed by FTIR microspectroscopic analysis. In summary, our findings showed that inhibition of cellulose synthesis by DCB affected the organization of cytoskeleton and vesicle trafficking in pollen tubes, and induced changes in the tube wall chemical composition in a dose-dependent manner. These results confirm that cellulose is involved in the establishment of growth direction of pollen tubes, and plays important role in the cell wall construction during pollen tube development despite its lower quantity.


Asunto(s)
Celulosa/biosíntesis , Nitrilos/farmacología , Pinus/efectos de los fármacos , Pinus/crecimiento & desarrollo , Tubo Polínico/crecimiento & desarrollo , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Endocitosis/efectos de los fármacos , Fluorescencia , Germinación/efectos de los fármacos , Glucanos/metabolismo , Pectinas/metabolismo , Pinus/citología , Pinus/ultraestructura , Tubo Polínico/citología , Tubo Polínico/efectos de los fármacos , Tubo Polínico/ultraestructura , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo
12.
Planta ; 238(5): 831-43, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23900837

RESUMEN

γ-Aminobutyric acid (GABA) is a four-carbon non-protein amino acid found in a wide range of organisms. Recently, GABA accumulation has been shown to play a role in the stress response and cell growth in angiosperms. However, the effect of GABA deficiency on pollen tube development remains unclear. Here, we demonstrated that specific concentrations of exogenous GABA stimulated pollen tube growth in Picea wilsonii, while an overdose suppressed pollen tube elongation. The germination percentage of pollen grains and morphological variations in pollen tubes responded in a dose-dependent manner to treatment with 3-mercaptopropionic acid (3-MP), a glutamate decarboxylase inhibitor, while the inhibitory effects could be recovered in calcium-containing medium supplemented with GABA. Using immunofluorescence labeling, we found that the actin cables were disorganized in 3-MP treated cells, followed by the transition of endo/exocytosis activating sites from the apex to the whole tube shank. In addition, variations in the deposition of cell wall components were detected upon labeling with JIM5, JIM7, and aniline blue. Our results demonstrated that calcium-dependent GABA signaling regulates pollen germination and polarized tube growth in P. wilsonii by affecting actin filament patterns, vesicle trafficking, and the configuration and distribution of cell wall components.


Asunto(s)
Germinación/efectos de los fármacos , Homeostasis/efectos de los fármacos , Picea/efectos de los fármacos , Picea/crecimiento & desarrollo , Polen/crecimiento & desarrollo , Ácido gamma-Aminobutírico/farmacología , Ácido 3-Mercaptopropiónico/farmacología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Transporte Biológico/efectos de los fármacos , Calcio/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Vesículas Citoplasmáticas/efectos de los fármacos , Vesículas Citoplasmáticas/metabolismo , Fluorescencia , Polen/anatomía & histología , Polen/efectos de los fármacos , Tubo Polínico/efectos de los fármacos , Tubo Polínico/crecimiento & desarrollo , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Factores de Tiempo
13.
Water Sci Technol ; 68(2): 269-75, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23863416

RESUMEN

Due to the nutrient characteristics of the high concentration of available ammonium in digested piggery wastewater (DPW), microalgae can be used to treat DPW before its final discharge. Four green microalgae (Hydrodictyaceae reticulatum Lag, Scenedesmus obliquus, Oedogonium sp. and Chlorella pyrenoidosa) and three blue-green algae (Anabaena flos-aquae, Oscillatoria amoena Gom and Spirulina platensis) were used to remove the nutrients (N, P, C), especially ammonium nitrogen (NH4(+)-N), from diluted DPW with 300 mg/L algae density in batch tests. The microalgae with the best NH4(+)-N nutrient removal was then selected for further optimization of the variables to improve NH4(+)-N removal efficiency using a central composite design (CCD) experiment. Taking into account the nutrient removal efficiency, Oedogonium sp. showed the best performance (reduction of 95.9% NH4(+)-N, 92.9% total phosphorus (TP) and 62.5% chemical oxygen demand (COD)) based on the results of the batch tests. The CCD results suggested that the optimal values of variables were initial Oedogonium sp. density of 399.2 mg/L and DPW diluted by 16.3, while the predicted value of NH4(+)-N removal efficiency obtained was 97.0%.


Asunto(s)
Chlorophyta/metabolismo , Microalgas/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Crianza de Animales Domésticos , Animales , Análisis de la Demanda Biológica de Oxígeno , Cianobacterias/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Porcinos , Aguas Residuales
14.
Water Sci Technol ; 68(2): 335-41, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23863425

RESUMEN

Four constructed wetland systems were studied to investigate the effects of adding Eisenia fetida on the purifying capacity of constructed wetlands. Addition of E. fetida increased the photosynthetic rate (Pn), transpiration rate (Tr) and chlorophyll meter value of leaves of Iris pseudacorus L. in the constructed wetlands by 16, 35 and 7%, respectively. Compared with the substrate only system, evapotranspiration losses were increased by 8, 48 and 56% for the wetland systems with substrate and E. fetida, with substrate and I. pseudacorus, and with substrate, I. pseudacorus and E. fetida, respectively. Addition of E. fetida to the substrate only and substrate and plant wetland systems decreased the substrate bulk density by 3 and 6%, respectively. The addition of E. fetida to the system with substrate and plants increased the removal efficiency of chemical oxygen demand (CODMn), total nitrogen (TN) and total phosphorus by 5, 7 and 22%, respectively. Evapotranspiration losses were significantly positively correlated with the removal efficiency of CODMn (P < 0.01). The significantly negative correlation between the removal efficiency TN and bulk density was found (P < 0.05). Therefore, E. fetida could stimulate I. pseudacorus growth and improve the substrate bulk density in the constructed wetland, resulting in enhanced purifying capacity.


Asunto(s)
Género Iris/fisiología , Oligoquetos/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Humedales , Animales , Análisis de la Demanda Biológica de Oxígeno , Nitratos/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Fotosíntesis , Hojas de la Planta/fisiología , Transpiración de Plantas , Compuestos de Amonio Cuaternario/metabolismo
15.
Water Sci Technol ; 68(2): 479-85, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23863444

RESUMEN

Biological reuse of spent sulfidic caustic (SSC) originating from oil refineries is a promising method for the petrochemical industry because of low handling cost. SSC typically contains high concentrations of sulfur, with the most dominant sulfur compounds being sulfide (S(2-)). SSC is also characterized by a high pH and elevated alkalinity up to 5-15% by weight. Because of these characteristics, SSC can be used for denitrification of NO3(-)-N in the biological nitrogen removal process as both the electron donor and buffering agent in sulfur-utilizing autotrophic denitrification. In this study, two kinds of SSC (SSC I, SSC II) produced from two petrochemical companies were used for autotrophic denitrification in a field-scale wastewater treatment plant (WWTP). The effluent total nitrogen (TN) concentration in this process was about 10.5 mg/L without any external carbon sources and the nitrification efficiency was low, about 93.0%, because of alkalinity deficiency in the influent. The injection of SSC I, but not SSC II, promoted nitrification efficiency, which was attributed to the difference in the NaOH/S ratio between SSC I and II. SSC was injected based on sulfide concentration of SSC required to denitrify NO3(-)-N in the WWTP. SSC I had higher NaOH/S than SSC II and thus could supply more alkalinity for nitrification than SSC II. On the other hand, additional TN removal of about 9.0% was achieved with the injection of both SSCs. However, denitrification efficiency was not proportionally increased with increasing SSC injection because of NO3(-)-N deficiency in the anoxic tank due to the limited capacity of the recycling pump. For the same reason, sulfate concentration, which is the end product of sulfur-utilizing autotrophic denitrificaiton in the effluent, was also not increased with increasing SSC injection.


Asunto(s)
Residuos Industriales , Sulfuros/metabolismo , Eliminación de Residuos Líquidos/métodos , Procesos Autotróficos , Análisis de la Demanda Biológica de Oxígeno , Cáusticos , Desnitrificación , Electrones , Nitratos/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción , Petróleo , Compuestos de Amonio Cuaternario/metabolismo , Sulfatos/metabolismo , Contaminantes Químicos del Agua/metabolismo
16.
Int J Phytoremediation ; 15(6): 522-35, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23819294

RESUMEN

Seasonal variations and aeration effects on water quality improvements and the physiological responses of Nymphaea tetragona Georgi were investigated with mesocosm experiments. Plants were hydroponically cultivated in six purifying tanks (aerated, non-aerated) and the characteristics of the plants were measured. Water quality improvements in purifying tanks were evaluated by comparing to the control tanks. The results showed that continuous aeration affected the plant morphology and physiology. The lengths of the roots, petioles and leaf limbs in aeration conditions were shorter than in non-aeration conditions. Chlorophyll and soluble protein contents of the leaf limbs in aerated tanks decreased, while peroxidase and catalase activities of roots tissues increased. In spring and summer, effects of aeration on the plants were less than in autumn. Total nitrogen (TN) and ammonia nitrogen (NH4(+)-N) in aerated tanks were lower than in non-aerated tanks, while total phosphorus (TP) and dissolved phosphorus (DP) increased in spring and summer. In autumn, effects of aeration on the plants became more significant. TN, NH4(+)-N, TP and DP became higher in aerated tanks than in non-aerated tanks in autumn. This work provided evidences for regulating aeration techniques based on seasonal variations of the plant physiology in restoring polluted stagnant water.


Asunto(s)
Nitrógeno/metabolismo , Nymphaea/fisiología , Oxígeno/farmacología , Fósforo/metabolismo , Estaciones del Año , Calidad del Agua , Biodegradación Ambiental , Biomasa , Catalasa/metabolismo , China , Clorofila/metabolismo , Nitrógeno/análisis , Nymphaea/anatomía & histología , Nymphaea/crecimiento & desarrollo , Peroxidasa/metabolismo , Fósforo/análisis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Mejoramiento de la Calidad , Compuestos de Amonio Cuaternario/análisis , Compuestos de Amonio Cuaternario/metabolismo , Plantones/anatomía & histología , Plantones/crecimiento & desarrollo , Plantones/fisiología , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
17.
Int J Phytoremediation ; 15(1): 38-50, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23487984

RESUMEN

To determine how plantations of Caragana microphylla shrubs affect saline-alkali soil amelioration and revegetation, we investigated the vegetation and sampled soils from saline-alkali wasteland (SAW), perennial Caragana forestland (PCF), Caragana forest after fire disturbance (CFF). Results showed that with the development of Caragana Fabr., highly dominant species of Poaceae family, including Elymus dahuricus, Thermopsis lanceolata, Stipa tianschanica, died out in PCF. Moreover, Papilionaceaefamily, including Lespedeza indica, Oxytropis psammocharis, and Astragalus scaberrimus, was established both in PCF and CFF. Phytoremediation of saline-alkali wasteland (SAW) was achieved by plantation, resulting in the reduced soil pH, sodium adsorption ratio, exchangeable sodium percentage, salinity, and Na+ concentration around Caragana shrubs. Greater amounts of soil organic, total nitrogen, ammonium nitrogen, available phosphorus, and available potassium were observed in PCF topsoil than in SAW topsoil The concentration of mineralized N in PCF soil was significantly lower than that in SAW soil at all sampled depths, indicating that Caragana shrubs were just using N and therefore less measured in soils. Fire disturbance resulted in decreased soil pH and salinity, but increased organic content, total nitrogen, and ammonium nitrogen. The improved soil parameters and self-recovery of shrubs indicated that Caragana shrubs were well established after burning event.


Asunto(s)
Caragana/fisiología , Fabaceae/crecimiento & desarrollo , Minerales/metabolismo , Poaceae/crecimiento & desarrollo , Sodio/metabolismo , Suelo/química , Álcalis/efectos adversos , Biodegradación Ambiental , Biodiversidad , Caragana/metabolismo , China , Conservación de los Recursos Naturales , Ecosistema , Incendios , Concentración de Iones de Hidrógeno , Minerales/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Fósforo/análisis , Fósforo/metabolismo , Compuestos de Amonio Cuaternario/análisis , Compuestos de Amonio Cuaternario/metabolismo , Salinidad , Sodio/análisis , Árboles
18.
Arch Biochem Biophys ; 536(2): 176-82, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23416740

RESUMEN

Hyperammonemia is a major pathophysiological factor in encephalopathies associated with acute and chronic liver failure. On mouse brain slice preparations we analyzed the effects of ammonium on the characteristics of corticostriatal long-term potentiation (LTP) induced by high-frequency electrical stimulation (HFS) of cortical input and the long-lasting effects of pharmacological NMDA receptor (NMDAR) activation. Ammonium chloride exposure enhanced the expression of HFS-induced LTP at the expense of LTD and promoted the generation of NMDA-induced LTD. This treatment did not affect two NMDAR-independent forms of plasticity: taurine-induced LTP and histamine-induced LTD. Alterations in NMDA-induced plasticity were prevented by treatment with green tea polyphenols suggesting the contribution of oxidative stress to the expression of abnormal corticostriatal plasticity.


Asunto(s)
Antioxidantes/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Polifenoles/farmacología , Compuestos de Amonio Cuaternario/metabolismo , , Animales , Antioxidantes/química , Catequina/química , Catequina/farmacología , Estimulación Eléctrica , Histamina/metabolismo , Hiperamonemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Polifenoles/química , Receptores de N-Metil-D-Aspartato/metabolismo , Taurina/metabolismo , Té/química
19.
Appl Environ Microbiol ; 79(8): 2749-58, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23417007

RESUMEN

Nitrogen supplementation, which is widely used in winemaking to improve fermentation kinetics, also affects the products of fermentation, including volatile compounds. However, the mechanisms underlying the metabolic response of yeast to nitrogen additions remain unclear. We studied the consequences for Saccharomyces cerevisiae metabolism of valine and ammonium pulses during the stationary phase of four-stage continuous fermentation (FSCF). This culture technique provides cells at steady state similar to that of the stationary phase of batch wine fermentation. Thus, the FSCF device is an appropriate and reliable tool for individual analysis of the metabolic rerouting associated with nutrient additions, in isolation from the continuous evolution of the environment in batch processes. Nitrogen additions, irrespective of the nitrogen-containing compound added, substantially modified the formation of fermentation metabolites, including glycerol, succinate, isoamyl alcohol, propanol, and ethyl esters. This flux redistribution, fulfilling the requirements for precursors of amino acids, was consistent with increased protein synthesis resulting from increased nitrogen availability. Valine pulses, less efficient than ammonium addition in increasing the fermentation rate, were followed by a massive conversion of this amino acid in isobutanol and isobutyl acetate through the Ehrlich pathway. However, additional routes were involved in valine assimilation when added in stationary phase. Overall, we found that particular metabolic changes may be triggered according to the nature of the amino acid supplied, in addition to the common response. Both these shared and specific modifications should be considered when designing strategies to modulate the production of volatile compounds, a current challenge for winemakers.


Asunto(s)
Fermentación , Compuestos de Amonio Cuaternario/metabolismo , Saccharomyces cerevisiae/metabolismo , Valina/metabolismo , Vino , 1-Propanol/metabolismo , Aminoácidos/metabolismo , Glicerol/metabolismo , Nitrógeno/metabolismo , Pentanoles/metabolismo , Ácido Succínico/metabolismo
20.
J Hazard Mater ; 244-245: 671-80, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23182247

RESUMEN

This study investigated effects of unsaturated zone depth on nitrogen removal via simultaneous nitritation and anammox in three vertical flow recirculating biofilters. The biofilters had different depths (25, 40, and 60 cm) of an unsaturated zone and the same depth (35 cm) of a saturated zone. Unsaturated zone depth could be regulated to maintain suitable dissolved oxygen concentrations and enhance entrapment of carbon dioxide for co-occurrence of aerobic ammonia oxidation and anammox in the saturated zones. The biofilters with the larger unsaturated zones had higher ammonium and total inorganic nitrogen removal rates (16.2-33.5 g N/m(3)/d and 4.6-16.7 g N/m(3)/d, respectively) than the biofilter with the smallest unsaturated zone (11.9-18.1 g N/m(3)/d and 4.4-7.9 g N/m(3)/d, respectively). Electric arc furnace slag and marble chips were packed in the unsaturated and saturated zones, respectively, as low-cost materials to supplement alkalinity and buffer pH. Laboratory experiments showed that the maximum alkalinity dissolution efficiency was 513 mg CaCO(3)/kg marble chips and 761 mg CaCO(3)/kg electric arc furnace slag. Marble chips and electric arc furnace slag could increase dairy wastewater pH up to 7 and 9, respectively. The laboratory results are also useful for utilization of furnace slag and marble chips in constructed wetlands.


Asunto(s)
Reactores Biológicos , Industria Lechera , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Aerobiosis , Amoníaco/metabolismo , Anaerobiosis , Bacterias/metabolismo , Carbonato de Calcio , Concentración de Iones de Hidrógeno , Hibridación Fluorescente in Situ , Residuos Industriales , Látex , Oxidación-Reducción , Compuestos de Amonio Cuaternario/metabolismo , Aguas del Alcantarillado/microbiología , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA