Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 200: 105809, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582581

RESUMEN

Culex quinquefasciatus is the main vector of lymphatic filariasis in Brazil, which present resistance to commercial insecticides. Nowadays, essential oils (EOs) exhibiting larvicidal activity, such as those derived from Piper alatipetiolatum, provide a promising alternative for vector control, including Culex species. This study aimed to investigate the larvicidal activity and the oxidative stress indicators of the EO from P. alatipetiolatum in Cx. quinquefasciatus larvae. The EO was extracted from P. alatipetiolatum leaves using the hydrodistillation method, resulting in a yield of 7.2 ± 0.1%, analysed by gas chromatography coupled with spectrometry and gas chromatography coupled with flame ionization detector (GC-MS and GC-FID), and evaluated against Cx. quinquefasciatus larvae. Reactive Oxygen and Nitrogen Species (RONS), Catalase (CAT), glutathione-S-transferase (GST), acetylcholinesterase (AChE), and Thiol levels were used as oxidative stress indicators. Analysis by CG-MS and CG-FID revealed that the main compound in the EO was the oxygenated sesquiterpene ishwarone, constituting 78.6% of the composition. Furthermore, the EO exhibited larvicidal activity, ranging from 26 to 100%, with an LC50 of 4.53 µg/mL and LC90 of 15.37 µg/mL. This activity was accompanied by a significant increase in RONS production, alterations in CAT, GST, AChE activity, and thiol levels compared to the control groups (p < 0.05). To the best of our knowledge, this is the first report describing the larvicidal activity and oxidative stress induced by the EO from P. alatipetiolatum against Cx. quinquefasciatus larvae. Therefore, we propose that this EO shows promise as larvicidal agent for the effective control of Cx. quinquefasciatus larvae.


Asunto(s)
Aedes , Culex , Culicidae , Insecticidas , Aceites Volátiles , Piper , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Larva , Acetilcolinesterasa , Mosquitos Vectores , Insecticidas/farmacología , Insecticidas/química , Compuestos de Sulfhidrilo/farmacología , Extractos Vegetales/farmacología , Hojas de la Planta
2.
Eur J Oncol Nurs ; 69: 102536, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452425

RESUMEN

PURPOSE: Antineoplastic drugs (ADs) are widely used in cancer treatment. Nurses in chemotherapy centers are exposed to these drugs during preparation. They can affect healthy cells, leading to teratogenic and mutagenic effects, as well as oxidative stress. This study aimed to evaluate oxidative stress biomarkers in the nurses exposed to these drugs. METHOD: This study was conducted on 30 nurses exposed to ADs and 30 nurses with no exposure to these drugs as non-exposed group. Oxidative stress biomarkers were measured in the blood serum samples of both groups, including malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), total antioxidant capacity (TAC), and blood thiol groups. RESULTS: Considering the possibility of confounding effect of nutritional supplement consumption, the effect of this factor was adjusted in the analysis. A significant difference was observed for CAT, SOD, thiol, and TAC biomarkers between two groups (P < 0.05). However, the difference in MDA and GPx biomarkers between two groups was not statistically significant. CONCLUSIONS: The findings of the present study showed that supplement consumption has a significant effect on the biomarker of total antioxidant capacity. Thus, total antioxidant capacity measurement is advised as the best biomarker for tracking oxidative status in nurses exposed to ADs due to its capacity to measure all antioxidants in the body, except the thiol group, and its lower cost when compared to other biomarkers. Furthermore, it can be claimed that the consumption of nutritional supplements has a greater effect on the non-enzymatic biomarkers of oxidative stress than on enzymatic antioxidant system.


Asunto(s)
Antineoplásicos , Antioxidantes , Humanos , Antioxidantes/análisis , Antioxidantes/metabolismo , Antioxidantes/farmacología , Estudios Transversales , Estrés Oxidativo , Biomarcadores , Superóxido Dismutasa/farmacología , Glutatión Peroxidasa/farmacología , Antineoplásicos/efectos adversos , Compuestos de Sulfhidrilo/farmacología
3.
Phytother Res ; 38(3): 1555-1573, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281735

RESUMEN

Anti-inflammatory and immune suppressive agents are required to moderate hyper-activation of lymphocytes under disease conditions or organ transplantation. However, selective disruption of mitochondrial redox has not been evaluated as a therapeutic strategy for suppression of T-cell-mediated pathologies. Using mitochondrial targeted curcumin (MitoC), we studied the effect of mitochondrial redox modulation on T-cell responses by flow cytometry, transmission electron microscopy, transcriptomics, and proteomics, and the role of Nrf2 was studied using Nrf2- /- mice. MitoC decreased mitochondrial TrxR activity, enhanced mitochondrial ROS (mROS) production, depleted mitochondrial glutathione, and suppressed activation-induced increase in mitochondrial biomass. This led to suppression of T-cell responses and metabolic reprogramming towards Treg differentiation. MitoC induced nuclear translocation and DNA binding of Nrf2, leading to upregulation of Nrf2-dependent genes and proteins. MitoC-mediated changes in mitochondrial redox and modulation of T-cell responses are abolished in Nrf2- /- mice. Restoration of mitochondrial thiols abrogated inhibition of T-cell responses. MitoC suppressed alloantigen-induced lymphoblast formation, inflammatory cytokines, morbidity, and mortality in acute graft-versus-host disease mice. Disruption of mitochondrial thiols but not mROS increase inculcates an Nrf2-dependent immune-suppressive disposition in T cells for the propitious treatment of graft-versus-host disease.


Asunto(s)
Curcumina , Curcumina/análogos & derivados , Enfermedad Injerto contra Huésped , Animales , Ratones , Curcumina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Linfocitos T , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped/metabolismo , Enfermedad Injerto contra Huésped/patología , Compuestos de Sulfhidrilo/metabolismo , Compuestos de Sulfhidrilo/farmacología
4.
J Nat Prod ; 86(7): 1654-1666, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37458412

RESUMEN

Artemisia annua is the plant that produces artemisinin, an endoperoxide-containing sesquiterpenoid used for the treatment of malaria. A. annua extracts, which contain other bioactive compounds, have been used to treat other diseases, including cancer and COVID-19, the disease caused by the virus SARS-CoV-2. In this study, a methyl ester derivative of arteannuin B was isolated when A. annua leaves were extracted with a 1:1 mixture of methanol and dichloromethane. This methyl ester was thought to be formed from the reaction between arteannuin B and the extracting solvent, which was supported by the fact that arteannuin B underwent 1,2-addition when it was dissolved in deuteromethanol. In contrast, in the presence of N-acetylcysteine methyl ester, a 1,4-addition (thiol-Michael reaction) occurred. Arteannuin B hindered the activity of the SARS CoV-2 main protease (nonstructural protein 5, NSP5), a cysteine protease, through time-dependent inhibition. The active site cysteine residue of NSP5 (cysteine-145) formed a covalent bond with arteannuin B as determined by mass spectrometry. In order to determine whether cysteine adduction by arteannuin B can inhibit the development of cancer cells, similar experiments were performed with caspase-8, the cysteine protease enzyme overexpressed in glioblastoma. Time-dependent inhibition and cysteine adduction assays suggested arteannuin B inhibits caspase-8 and adducts to the active site cysteine residue (cysteine-360), respectively. Overall, these results enhance our understanding of how A. annua possesses antiviral and cytotoxic activities.


Asunto(s)
Artemisininas , COVID-19 , Proteasas de Cisteína , Humanos , Caspasa 8/metabolismo , Proteasas de Cisteína/metabolismo , Compuestos de Sulfhidrilo/farmacología , Cisteína/farmacología , SARS-CoV-2 , Extractos Vegetales/química , Artemisininas/química
5.
Animal Model Exp Med ; 6(3): 221-229, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37272426

RESUMEN

BACKGROUND: Zataria multiflora and carvacrol showed various pharmacological properties including anti-inflammatory and anti-oxidant effects. However, up to now no studies have explored its potential benefits in ameliorating sepsis-induced aortic and cardiac injury. Thus, this study aimed to investigate the effects of Z. multiflora and carvacrol on nitric oxide (NO) and oxidative stress indicators in lipopolysaccharide (LPS)-induced aortic and cardiac injury. METHODS: Adult male Wistar rats were assigned to: Control, lipopolysaccharide (LPS) (1 mg/kg, intraperitoneal (i.p.)), and Z. multiflora hydro-ethanolic extract (ZME, 50-200 mg/kg, oral)- and carvacrol (25-100 mg/kg, oral)-treated groups. LPS was injected daily for 14 days. Treatment with ZME and carvacrol started 3 days before LPS administration and treatment continued during LPS administration. At the end of the study, the levels of malondialdehyde (MDA), NO, thiols, and antioxidant enzymes were evaluated. RESULTS: Our findings showed a significant reduction in the levels of superoxide dismutase (SOD), catalase (CAT), and thiols in the LPS group, which were restored by ZME and carvacrol. Furthermore, ZME and carvacrol decreased MDA and NO in cardiac and aortic tissues of LPS-injected rats. CONCLUSIONS: The results suggest protective effects of ZME and carvacrol on LPS-induced cardiovascular injury via improved redox hemostasis and attenuated NO production. However, additional studies are needed to elucidate the effects of ZME and its constituents on inflammatory responses mediated by LPS.


Asunto(s)
Óxido Nítrico , Sepsis , Ratas , Masculino , Animales , Óxido Nítrico/farmacología , Lipopolisacáridos/toxicidad , Cardiotoxicidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas Wistar , Estrés Oxidativo/fisiología , Antioxidantes/farmacología , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Compuestos de Sulfhidrilo/farmacología
6.
Allergol Immunopathol (Madr) ; 51(3): 153-162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37169573

RESUMEN

BACKGROUND: Previous studies have shown that Allium cepa (A. cepa) has relaxant and anti-inflammatory effects. In this research, A. cepa extract was examined for its prophylactic effect on lung inflammation and oxidative stress in sensitized rats. METHODS: Total and differential white blood cell (WBC) count in the blood, serum levels of oxidant and antioxidant biomarkers, total protein (TP) in bronchoalveolar lavage fluid (BALF), and lung pathology were investigated in control group (C), sensitized group (S), and sensitized groups treated with A. cepa and dexamethasone. RESULTS: Total and most differential WBC count, TP, NO2, NO3, MDA (malondialdehyde), and lung pathological scores were increased while lymphocytes, superoxide dismutase (SOD), catalase (CAT), and thiol were decreased in sensitized animals compared to controls (p < 0.01 to p < 0.001). Treatment with all concentrations of extract significantly improved total WBC, TP, NO2, NO3, interstitial fibrosis, and emphysema compared to the S group (p < 0.05 to p < 0.001). Two higher concentrations of the extract significantly decreased neutrophil and monocyte count, malondialdehyde, bleeding and epithelial damage but increased lymphocyte, CAT, and thiol compared to the S group (p < 0.05 to p < 0.001). Dexamethasone treatment also substantially improved most measured parameters (p < 0.05 to p < 0.001), but it did not change eosinophil percentage. It was proposed that A. cepa extract could affect lung inflammation and oxidative stress in sensitized rats.


Asunto(s)
Antioxidantes , Neumonía , Ratas , Animales , Antioxidantes/farmacología , Oxidantes/metabolismo , Ovalbúmina , Cebollas/metabolismo , Dióxido de Nitrógeno/farmacología , Ratas Wistar , Neumonía/patología , Pulmón/patología , Dexametasona , Biomarcadores/metabolismo , Malondialdehído/farmacología , Compuestos de Sulfhidrilo/farmacología
7.
Inorg Chem ; 61(49): 19974-19982, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36455205

RESUMEN

Tridentate thiosemicarbazones, among several families of iron chelators, have shown promising results in anticancer drug discovery because they target the increased need for iron that characterizes malignant cells. Prochelation strategies, in which the chelator is released under specific conditions, have the potential to avoid off-target metal binding (for instance, in the bloodstream) and minimize unwanted side effects. We report a prochelation approach that employs arylsulfonate esters to mask the phenolate donor of salicylaldehyde-based chelators. The new prochelators liberate a tridentate thiosemicarbazone intracellularly upon reaction with abundant nucleophile glutathione (GSH). A 5-bromo-substituted salicylaldehyde thiosemicarbazone (STC4) was selected for the chelator unit because of its antiproliferative activity at low micromolar levels in a panel of six cancer cell lines. The arylsulfonate prochelators were assessed in vitro with respect to their stability, ability to abolish metal binding, and reactivity in the presence of GSH. Cell-based assays indicated that the arylsulfonate-masked prochelators present higher antiproliferative activities relative to the parent compound after 24 h. The activation and release of the chelator intracellularly were corroborated by assays of cytosolic iron binding and iron supplementation effects as well as cell cycle analysis. This study introduces the 1,3,4-thiadiazole sulfonate moiety to mask the phenolate donor of an iron chelator and impart good solubility and stability to prochelator constructs. The reactivity of these systems can be tuned to release the chelator at high glutathione levels, as encountered in several cancer phenotypes.


Asunto(s)
Antineoplásicos , Tiosemicarbazonas , Hierro/química , Compuestos de Sulfhidrilo/farmacología , Quelantes del Hierro/farmacología , Quelantes del Hierro/química , Tiosemicarbazonas/química , Glutatión/metabolismo , Línea Celular , Antineoplásicos/farmacología , Antineoplásicos/química
8.
Molecules ; 27(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364146

RESUMEN

Schinus molle is a plant traditionally used in Mexico to treat gastric disorders. However, no scientific evidence has been reported on its gastroprotective effect. The aim of the current contribution was to conduct a bioassay-guided study on S. molle to evaluate its gastroprotective activity in a model of Wistar rats given ethanol orally to induce gastric lesions. The hexane and dichloromethane extracts from the tested plant showed over 99% gastroprotection at a dose of 100 mg/kg. From the hexane extract, two of the three fractions (F1 and F2) afforded over 99% gastroprotection. The F1 fraction was subjected to column chromatography, which revealed a white solid. Based on the ESI-MS analysis, the two main compounds in this solid were identified. The predominant compound was probably a triterpene. This mixture of compounds furnished about 67% gastroprotection at a dose of 100 mg/kg. Pretreatment with L-NAME, indomethacin, and NEM was carried out to explore the possible involvement of nitric oxide, prostaglandins, and/or sulfhydryl groups, respectively, in the gastroprotective activity of the white solid. We found evidence for the participation of all three factors. No antisecretory activity was detected (tested by pylorus ligation). In conclusion, evidence is herein provided for the first time of the gastroprotective effect of S. molle.


Asunto(s)
Anacardiaceae , Antiulcerosos , Úlcera Gástrica , Ratas , Animales , Prostaglandinas/farmacología , Óxido Nítrico/farmacología , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/patología , Antiulcerosos/química , Hexanos/farmacología , Ratas Wistar , Compuestos de Sulfhidrilo/farmacología , Extractos Vegetales/química , Mucosa Gástrica
9.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293383

RESUMEN

Deodorized garlic (DG) may favor the activity of the antioxidant enzymes and promote the synthesis of hydrogen sulfide (H2S). The objective was to test if DG favors an increase in H2S and if it decreases the oxidative stress caused by lipopolysaccharide (LPS) in rat hearts. A total of 24 rats were divided into 4 groups: Group 1 control (C), Group 2 LPS, Group 3 DG, and Group 4 LPS plus DG. The cardiac mechanical performance (CMP), coronary vascular resistance (CVR), and oxidative stress markers, such as total antioxidant capacity (TAC), glutathione (GSH), selenium (Se), lipid peroxidation (LPO), thiols, hydrogen sulfide (H2S), and the activities and expressions of thioredoxin reductase (TrxR), glutathione peroxidase (GPx), and glutathione-S-transferase (GST), cystathionine synthetase (CBS), cystathionine γ-lyase (CTH), iNOS, and eNOS-p, were analyzed in the heart. Infarct zones in the cardiac tissue were present (p = 0.01). The CMP and CVR decreased and increased (p ≤ 0.05), TAC, GSH, H2S, NO, thiols, and GST activity (p ≤ 0.01) decreased, and LPO and iNOS increased (p ≤ 0.05). The activities and expressions of TrxR, GPx, eNOS-p, CTH, and CBS (p ≤ 0.05) decreased with the LPS treatment; however, DG normalized this effect. DG treatment decreases heart damage caused by LPS through the cross-talk between the H2S and NO systems.


Asunto(s)
Ajo , Sulfuro de Hidrógeno , Selenio , Animales , Ratas , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Ajo/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Lipopolisacáridos/farmacología , Estrés Oxidativo , Selenio/farmacología , Compuestos de Sulfhidrilo/farmacología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Transferasas/metabolismo
10.
Acta Biomater ; 151: 480-490, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926781

RESUMEN

Reactive oxygen species (ROS) are important signal molecules and imbalanced ROS level could lead to cell death. Elevated ROS levels in tumor tissues offer an opportunity to design ROS-responsive drug delivery systems (DDSs) or ROS-based cancer therapies such as chemodynamic therapy. However, their anticancer efficacies are hampered by the ROS-consuming nature of these DDSs as well as the high concentration of reductive agents like glutathione (GSH). Here we developed a doxorubicin (DOX)-incorporated iron coordination polymer nanoparticle (PCFD) for efficient chemo-chemodynamic cancer therapy by using a cinnamaldehyde (CA)-based ROS-replenishing organic ligand (TCA). TCA can ROS-responsively release CA to supplement intracellular ROS and deplete GSH by a thiol-Michael addition reaction, which together with DOX-triggered ROS upregulation and Fe3+-enabled GSH depletion facilitated efficient DOX release and enhanced Fenton reaction, thereby inducing redox dyshomeostasis and cancer cell death in a concurrent apoptosis-ferroptosis way. Both in vitro and in vivo studies revealed that ROS-replenishing PCFD exhibited much better anticancer effect than ROS-consuming control nanoparticle PAFD. The ingenious ROS-replenishing strategy could be expanded to construct versatile ROS-responsive DDSs and ROS-based nanomedicines with potentiated anticancer activity. STATEMENT OF SIGNIFICANCE: We develop a doxorubicin (DOX)-incorporated iron coordination polymer nanoparticle (PCFD) for efficient chemo-chemodynamic cancer therapy by using a cinnamaldehyde-based reactive oxygen species (ROS)-replenishing organic ligand. This functional ligand can ROS-responsively release cinnamaldehyde to supplement intracellular H2O2 and deplete glutathione (GSH) by a thiol-Michael addition reaction, which together with DOX-triggered ROS upregulation and Fe3+-enabled GSH depletion facilitates efficient DOX release and enhanced Fenton reaction, thereby inducing redox dyshomeostasis and cancer cell death in a concurrent apoptosis-ferroptosis way. Both in vitro and in vivo studies reveal that ROS-replenishing PCFD exhibit much better anticancer effect than ROS consuming counterpart. This study provides a facile and straightforward strategy to design ROS amplifying nanoplatforms for cancer treatment.


Asunto(s)
Ferroptosis , Nanopartículas , Acroleína/análogos & derivados , Apoptosis , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Glutatión/farmacología , Homeostasis , Peróxido de Hidrógeno/farmacología , Hierro/farmacología , Ligandos , Nanomedicina , Oxidación-Reducción , Polímeros/farmacología , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/farmacología
11.
Inflammopharmacology ; 30(5): 1759-1768, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35723848

RESUMEN

N-Acetylcysteine (NAC) is a chemical compound with anti-inflammatory and antioxidant activity and acts as a free radical scavenger. Elaeagnus angustifolia (EA) is a plant native to the western part of Iran, with antioxidant and anti-inflammatory properties. The present study been taken evaluated the protective effect afforded by EA and NAC extracts on carrageenan-induced acute lung injury in Wistar rats. In this study, 42 rats were randomly assigned into seven groups. NAC and EA extracts were orally administered once/day for 21 continuous days. Pulmonary damage was induced by intratracheal injection of 100 µl of 2% λ-Carrageenan on day 21. Twenty-four hours post-surgery, the rats were euthanized and the samples were collected. Pretreatment with NAC and EA extracts reduced the total and differential cell accumulation as well as IL-6, and TNF-α cytokines. Antioxidant indicators demonstrate that in the groups receiving NAC and EA extract, MDA decreased while thiol and antioxidant capacity elevated. Treatment with NAC and EA significantly reduced Carrageenan-induced pathological pulmonary tissue injury. NAC and EA extract has protective effects on acute carrageenan-induced lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Elaeagnaceae , Acetilcisteína/farmacología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Carragenina/farmacología , Citocinas , Elaeagnaceae/química , Depuradores de Radicales Libres/farmacología , Interleucina-6 , Pulmón , Extractos Vegetales/farmacología , Ratas , Ratas Wistar , Compuestos de Sulfhidrilo/farmacología , Factor de Necrosis Tumoral alfa/farmacología
12.
J Complement Integr Med ; 19(3): 513-530, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35749142

RESUMEN

Heavy metals are known to be carcinogenic, mutagenic, and teratogenic. Some heavy metals are necessary while present in the growing medium in moderate concentrations known to be essential heavy metals as they required for the body functioning as a nutrient. But there are some unwanted metals and are also toxic to the environment and create a harmful impact on the body, which termed to be non-essential heavy metals. Upon exposure, the heavy metals decrease the major antioxidants of cells and enzymes with the thiol group and affect cell division, proliferation, and apoptosis. It interacts with the DNA repair mechanism and initiates the production of reactive oxygen species (ROS). It subsequently binds to the mitochondria and may inhibit respiratory and oxidative phosphorylation in even low concentrations. This mechanism leads to damage antioxidant repair mechanism of neuronal cells and turns into neurotoxicity. Now, phytochemicals have led to good practices in the health system. Phytochemicals that are present in the fruits and herbs can preserve upon free radical damage. Thus, this review paper summarized various phytochemicals which can be utilized as a treatment option to reverse the effect of the toxicity caused by the ingestion of heavy metals in our body through various environmental or lifestyles ways.


Asunto(s)
Antioxidantes , Metales Pesados , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Radicales Libres/metabolismo , Radicales Libres/farmacología , Metales Pesados/metabolismo , Metales Pesados/toxicidad , Estrés Oxidativo , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/farmacología
13.
J Pharm Pharmacol ; 74(7): 961-972, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35551403

RESUMEN

OBJECTIVES: Inflammatory process and apoptosis are involved in the pathogenesis of cardiac injury and oxidative damage caused by diabetes mellitus. The cardioprotective effects of standardized aqueous ethanolic olive leaf extract (OLE), metformin (as a cardiovascular protective agent) and valsartan (as an angiotensin receptor blocker) in the streptozotocin-induced diabetic rats were evaluated. METHODS: Wistar rats divided into control, diabetic, OLE-treated (100, 200 and 400 mg/kg), metformin (300 mg/kg)-treated, valsartan (30 mg/kg)-treated and metformin/valsartan-treated diabetic groups. Biochemical parameters, including malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase (CAT) activates, and the total contents of thiol were measured, and histopathological and gene expression studies were done on cardiac tissues. Fasting blood sugar (FBS) and cardiac injury markers were examined in serum. KEY FINDINGS: FBS; the serum levels of lactate dehydrogenase (LDH), creatine kinase-muscle/brain (CK-MB), aspartate aminotransferase (AST); and heart tissue MDA levels due to diabetes were significantly alleviated by OLE treatment (effect size; ηp2 = 0.934, 0.888, 0.848, 0.888 and 0.879, respectively), and SOD and CAT activity and the thiol content in heart tissue were significantly increased (effect size; ηp2 = 0.770, 0.749 and 0.753, respectively). Interleukin-1ß (IL-1ß), tumour necrosis factor-α (TNF-α) and the number of infiltrating inflammatory cells were reduced in cardiac tissues of OLE-treated groups compared with the diabetic rats (effect size; ηp2 = 0.969 and 0.949, respectively). OLE up-regulated BCL2 gene expression and down-regulated BAX gene expression in cardiac tissue (effect size; ηp2= 0.490 and 0.522, respectively). CONCLUSION: OLE in a dose-dependent manner ameliorates cardiac damage in diabetic cardiomyopathy, perhaps through attenuating inflammation, oxidative stress and apoptosis.


Asunto(s)
Diabetes Mellitus Experimental , Metformina , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Metformina/farmacología , Olea , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Ratas Wistar , Compuestos de Sulfhidrilo/farmacología , Compuestos de Sulfhidrilo/uso terapéutico , Superóxido Dismutasa/metabolismo , Valsartán/farmacología
14.
J Ethnopharmacol ; 295: 115388, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35577159

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum) is a traditional Chinese medicine and mainly adopted to treat gastric ulcer, gastritis and stomach cancer. Sanguinarine (SNG), a natural alkaloid isolated from Z. nitidum, possesses significant anti-Helicobacter pylori and gastric protection effects. However, the underlying mechanism is sparsely elucidated. AIM OF THIS STUDY: The present study aims to explore the inhibition effect, kinetics and potential mechanism of SNG against H. pylori urease (HPU) and jack bean urease (JBU). MATERIALS AND METHODS: The improved spectrophotometric berthelot method was applied to estimate the inhibitory effect of SNG against HPU and JBU. The Lineweaver-Burk plots were adopted for investigating the inhibitory pattern in enzymatic kinetics. Sulfydryl-containing compounds and competitive active-site Ni2+ binding depressors were used for mechanism research. RESULTS: SNG remarkably suppressed the activities of HPU and JBU in concentration-and time-dependent mode with IC50 of 0.48 ± 0.14 mM and 0.11 ± 0.02 mM, respectively, in comparison with urease retardant acetohydroxamic acid (0.06 ± 0.01 mM for HPU and 0.03 ± 0.00 mM for JBU, respectively). Kinetic analysis demonstrated that the inhibition of SNG against HPU and JBU were separately characterized by slow-binding, mixed-type and slow-binding, non-competitive type. Addition of sulfydryl-containing reagents (dithiothreitol, glutathione and L-cysteine) and competitive Ni2+ binding restrainers (boric acid and sodium fluoride) significantly abrogated the urease inhibitory effect of SNG, suggesting the significant role of the thiols and Ni2+ for the urease inhibition by SNG. By contrast, interaction with thiol groups possibly contributed to the repression of SNG on JBU. Furthermore, the urease suppression was proved to be partially reversible since the SNG-blocked enzyme could be partly reactivated by glutathione. CONCLUSION: SNG could observably inhibit H. pylori urease targeting the thiols and Ni2+, which indicated that SNG was a new urease suppressant with great promise. The present research also provided scientific evidence for the application of SNG and Z. nitidum treating H. pylori-associated gastrointestinal diseases.


Asunto(s)
Alcaloides , Helicobacter pylori , Zanthoxylum , Alcaloides/farmacología , Benzofenantridinas , Canavalia , Glutatión/farmacología , Isoquinolinas , Cinética , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Ureasa
15.
Cells ; 11(10)2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35626733

RESUMEN

BACKGROUND: Breast cancer (BC) is the leading cause of death worldwide. The severity of BC strictly depends on the molecular subtype. The less aggressive hormone-positive subtype is treated with adjuvant endocrine therapy (AET), which causes both physical and psychological side effects. This condition strongly impacts the adherence and persistence of AET among oncologic patients. Moreover, viral infections also constitute a serious problem for public health. Despite their efficacy, antiviral agents present several therapeutic limits. Accordingly, in the present work, we investigated the antitumor and antiviral activities of Orobanche crenata Forssk. (O. crenata), a parasitic plant, endemic to the Mediterranean basin, traditionally known for its beneficial properties for human health. METHODS: The MTT assay was carried out to evaluate the cytotoxic effect of O. crenata leaf extract (OCLE) on human breast cancer cells (MCF-7 and MDA-MB-231) and the primary HFF-1 cell line. The lactic dehydrogenase (LDH) assay was performed on MCF-7 cells to analyze necrotic cell death. The antioxidant effect of OCLE was evaluated by intracellular determination of the reactive oxygen species and thiol groups, by DPPH and ABTS assays. The antiviral activity of OCLE was determined against Poliovirus 1, Echovirus 9, Human respiratory syncytial virus, Adenovirus type 2 and type 5, Coxsackievirus B1 (CoxB1) and B3 (CoxB3), Herpes simplex type 1 (HSV-1) and type 2 (HSV-2), and ß-Coronavirus by the plaque reduction assay. RESULTS: The extract, after 24 h of incubation, did not affect MDA-MB-231 and HFF-1 cell viability. However, at the same time point, it showed a dose-dependent inhibitory effect on MCF-7 cells, with an increase in LDH release. OCLE exhibited free radical scavenging activity and significantly increased non-protein thiol levels in MCF-7 cells. OCLE effectively inhibited HSV-1, HSV-2, CoxB1, and CoxB3 replication. CONCLUSIONS: The overall results showed an interesting inhibitory effect of OCLE on both MCF-7 cell survival and viral replication.


Asunto(s)
Neoplasias de la Mama , Herpesvirus Humano 1 , Orobanche , Femenino , Humanos , Antivirales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Herpesvirus Humano 1/fisiología , Células MCF-7 , Extractos Vegetales/química , Extractos Vegetales/farmacología , Compuestos de Sulfhidrilo/farmacología , Replicación Viral
16.
J Complement Integr Med ; 19(2): 311-321, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506695

RESUMEN

OBJECTIVES: Many diabetes-related complications are caused by oxidative stress. In the current study, the protective effect of Cinnamomum cassia against diabetes-induced liver and kidney oxidative stress was evaluated. METHODS: The male Wistar rats (n=48) were randomly divided into six groups including; control group received 500 µL normal saline orally for 42 days. Diabetes groups received intraperitoneally (i.p.) streptozotocin (STZ) as single-dose (60 mg/kg, i.p.). Cinnamon extract (100, 200, 400 mg/kg) and metformin (300 mg/kg) were orally administered to diabetic rats for 42 days. After the experiment period, the animals were anesthetized and the liver and kidney tissues were quickly removed and restored for oxidative stress evaluation. The levels of malondialdehyde (MDA), total thiol content, glutathione (GSH), nitric oxide (NO) metabolites, as well as, superoxide dismutase (SOD) and catalase (CAT) activities were measured in kidney and liver tissue. RESULTS: The level of MDA, SOD, and CAT activities increased significantly, while the total thiol content, and NO production were significantly reduced in diabetic animals compared to the control group (from p<0.05 to p<0.001). Treatment with cinnamon extract significantly decreased the MDA level, as well as, SOD and CAT activities in the liver and kidney of diabetic rats (from p<0.05 to p<0.001). In the liver and kidney of cinnamon treated groups, GSH and total thiol contents and NO production were significantly higher than diabetic group (from p<0.05 to p<0.001). CONCLUSIONS: Cinnamon extract due to its potent antioxidant property could be effective in decrease of diabetes-induced oxidative stress that plays a major role in renal and hepatic complications.


Asunto(s)
Cinnamomum aromaticum , Diabetes Mellitus Experimental , Animales , Antioxidantes/metabolismo , Cinnamomum aromaticum/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glutatión/metabolismo , Riñón , Peroxidación de Lípido , Hígado , Masculino , Óxido Nítrico/metabolismo , Estrés Oxidativo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Ratas Wistar , Estreptozocina/metabolismo , Estreptozocina/farmacología , Estreptozocina/uso terapéutico , Compuestos de Sulfhidrilo/metabolismo , Compuestos de Sulfhidrilo/farmacología , Compuestos de Sulfhidrilo/uso terapéutico , Superóxido Dismutasa/metabolismo
17.
J Am Coll Cardiol ; 78(16): 1635-1654, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34649702

RESUMEN

Coronavirus disease-2019 (COVID-19) is associated with systemic inflammation, endothelial activation, and multiorgan manifestations. Lipid-modulating agents may be useful in treating patients with COVID-19. These agents may inhibit viral entry by lipid raft disruption or ameliorate the inflammatory response and endothelial activation. In addition, dyslipidemia with lower high-density lipoprotein cholesterol and higher triglyceride levels portend worse outcomes in patients with COVID-19. Upon a systematic search, 40 randomized controlled trials (RCTs) with lipid-modulating agents were identified, including 17 statin trials, 14 omega-3 fatty acids RCTs, 3 fibrate RCTs, 5 niacin RCTs, and 1 dalcetrapib RCT for the management or prevention of COVID-19. From these 40 RCTs, only 2 have reported preliminary results, and most others are ongoing. This paper summarizes the ongoing or completed RCTs of lipid-modulating agents in COVID-19 and the implications of these trials for patient management.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/prevención & control , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Fíbricos/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Niacina/uso terapéutico , Amidas/farmacología , Amidas/uso terapéutico , Ésteres/farmacología , Ésteres/uso terapéutico , Ácidos Grasos Omega-3/farmacología , Ácidos Fíbricos/farmacología , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Reguladores del Metabolismo de Lípidos/farmacología , Reguladores del Metabolismo de Lípidos/uso terapéutico , Niacina/farmacología , Ensayos Clínicos Controlados Aleatorios como Asunto , Compuestos de Sulfhidrilo/farmacología , Compuestos de Sulfhidrilo/uso terapéutico
18.
J Mater Chem B ; 9(42): 8832-8841, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34636390

RESUMEN

Tumor-targeting gold nanorods (AuNRs) assembled through Au-S bonds have been widely used for photothermal therapy (PTT) via intravenous injection. However, with extended in vivo circulation times, biothiols can replace some S-modified targeting ligands on the surface of the AuNRs, which lowers their targeting efficacy towards cancer cells, resulting in a non-ideal PTT effect. To address this problem, herein, we utilized Se-modified AuNRs to establish a dual functional nanoprobe (Casp-RGD-Se-AuNRs) for improving the therapeutic effect and real-time monitoring of Caspase-9 levels to indicate the degree of cell apoptosis. The experiments demonstrated that the Casp-RGD-Se-AuNRs are better at avoiding interference from biothiols than the S-modified nanoprobe (Casp-RGD-S-AuNRs) for extended blood-circulation times after intravenous injection, significantly improving the PTT efficacy via more effectively targeting cancer cells. Simultaneously, the change of Caspase-9 levels visually shows the degree of apoptosis. Moreover, an in vivo study showed that, compared with the S-modified nanoprobe, the Se-modified nanoprobe exhibits a higher delivery efficiency to the tumor region after intravenous injection (accumulation in the tumor increased by 87%) and a better anticancer efficacy under NIR light irradiation (the tumor inhibition rate increased 6-fold). This work provides a valuable strategy to overcome the off-target problem, and new ideas for avoiding interference by biomolecules during blood circulation.


Asunto(s)
Antineoplásicos/farmacología , Oro/farmacología , Nanotubos/química , Fármacos Fotosensibilizantes/farmacología , Terapia Fototérmica , Selenio/farmacología , Compuestos de Sulfhidrilo/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Oro/sangre , Oro/química , Humanos , Rayos Infrarrojos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Selenio/sangre , Selenio/química , Compuestos de Sulfhidrilo/sangre , Compuestos de Sulfhidrilo/química
19.
Angew Chem Int Ed Engl ; 60(21): 11758-11762, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33724623

RESUMEN

Extensive recent efforts have been put on the design of high-performance organic near-infrared (NIR) photothermal agents (PTAs), especially over NIR-II bio-window (1000-1350 nm). So far, the development is mainly limited by the rarity of molecules with good NIR-II response. Here, we report organic nanoparticles of intermolecular charge-transfer complexes (CTCs) with easily programmable optical absorption. By employing different common donor and acceptor molecules to form CTC nanoparticles (CT NPs), absorption peaks of CT NPs can be controllably tuned from the NIR-I to NIR-II region. Notably, CT NPs formed with perylene and TCNQ have a considerably red-shifted absorption peak at 1040 nm and achieves a good photothermal conversion efficiency of 42 % under 1064 nm excitation. These nanoparticles were used for antibacterial application with effective activity towards both Gram-negative and Gram-positive bacteria. This work opens a new avenue into the development of efficient PTAs.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas/química , Antibacterianos/química , Antibacterianos/efectos de la radiación , Derivados del Benceno/química , Derivados del Benceno/farmacología , Derivados del Benceno/efectos de la radiación , Escherichia coli/efectos de los fármacos , Rayos Infrarrojos , Pruebas de Sensibilidad Microbiana , Nanopartículas/efectos de la radiación , Nitrilos/química , Nitrilos/farmacología , Nitrilos/efectos de la radiación , Perileno/química , Perileno/farmacología , Perileno/efectos de la radiación , Compuestos Policíclicos/química , Compuestos Policíclicos/farmacología , Compuestos Policíclicos/efectos de la radiación , Solubilidad , Staphylococcus aureus/efectos de los fármacos , Electricidad Estática/efectos adversos , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Compuestos de Sulfhidrilo/efectos de la radiación , Agua/química
20.
Fitoterapia ; 149: 104804, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33309970

RESUMEN

A series of novel myricetin derivatives containing benzimidazole skeleton were constructed. The structure of compound 4g was further corroborated via X-ray single crystal diffractometer. The antimicrobial bioassays showed that all compounds exhibited potent inhibitory activities against Xanthomonas axonopodis pv. Citri (Xac), Ralstonia solanacearum (Rs) and Xanthomonas oryzae pv. Oryzae (Xoo) in vitro. Significantly, compound 4q showed the best inhibitory activities against Xoo, with the EC50 value of 8.2 µg/mL, which was better than thiodiazole copper (83.1 µg/mL) and bismerthiazol (60.1 µg/mL). In vivo experimental studies showed that compound 4q can treat rice bacterial leaf blight at 200 µg/mL, and the corresponding curative and protection efficiencies were 45.2 and 48.6%, respectively. Meanwhile, the antimicrobial mechanism of the compounds 4l and 4q were investigated through scanning electron microscopy (SEM). Studies showed that compounds 4l or 4q can cause deformation or rupture of Rs or Xoo cell membrane. These results indicated that novel benzimidazole-containing myricetin derivatives can be used as a potential antibacterial reagent.


Asunto(s)
Antibacterianos/farmacología , Bencimidazoles/farmacología , Flavonoides/farmacología , Enfermedades de las Plantas/microbiología , Antibacterianos/química , Bencimidazoles/química , Cobre/farmacología , Flavonoides/química , Estructura Molecular , Oryza/microbiología , Ralstonia solanacearum/efectos de los fármacos , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/farmacología , Tiadiazoles/farmacología , Xanthomonas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA