Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.056
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Med Rep ; 29(6)2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38639187

RESUMEN

Knee osteoarthritis (KOA) is a chronic degenerative disease that affects the quality of life of middle­aged and elderly individuals, and is one of the major factors leading to disability. Rongjin Niantong Fang (RJNTF) can alleviate the clinical symptoms of patients with KOA, but the molecular mechanism underlying its beneficial effects on KOA remains unknown. Using pharmacological analysis and in vitro experiments, the active components of RJNTF were analyzed to explore their potential therapeutic targets and mechanisms in KOA. The potential targets and core signaling pathways by which RJNTF exerts its effects on KOA were obtained from databases such as Gene Expression Omnibus, Traditional Chinese Medicine Systems Pharmacology and Analysis Platform. Subsequently, chondrocyte apoptosis was modeled using hydrogen peroxide (H2O2). Cell Counting Kit­8 assay involving a poly [ADP­ribose] polymerase­1 (PARP1) inhibitor, DAPI staining, reverse transcription­quantitative PCR, Annexin V­FITC/PI staining and flow cytometry, western blotting and co­immunoprecipitation analysis were used to determine the therapeutic efficacy of RJNTF on KOA and to uncover the molecular mechanism. It was found that PARP1­knockdown lentivirus, incubation with PARP1 inhibitor PJ34, medium and high doses of RJNTF significantly reduced H2O2­induced chondrocyte apoptosis. Medium and high doses of RJNTF downregulated the expression of cleaved caspase­3, cleaved PARP1 and PAR total proteins, as well as nucleus proteins of apoptosis­inducing factor (AIF) and migration inhibitory factor (MIF), and upregulated the expression of caspase­3, PARP1 total protein, as well as the cytoplasmic expression of AIF and MIF, suggesting that RJNTF may inhibit chondrocyte apoptosis through the PARP1/AIF signaling pathway.


Asunto(s)
Condrocitos , Osteoartritis de la Rodilla , Anciano , Persona de Mediana Edad , Humanos , Condrocitos/metabolismo , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Caspasa 3/metabolismo , Farmacología en Red , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Calidad de Vida , Apoptosis
2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1007-1016, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621908

RESUMEN

Chondrocytes are unique resident cells in the articular cartilage, and the pathological changes of them can lead to the occurrence of osteoarthritis(OA). Ligusticum cycloprolactam(LIGc) are derivatives of Z-ligustilide(LIG), a pharmacodynamic marker of Angelica sinensis, which has various biological functions such as anti-inflammation and inhibition of cell apoptosis. However, its protective effect on chondrocytes in the case of OA and the underlying mechanism remain unclear. This study conducted in vitro experiments to explore the molecular mechanism of LIGc in protecting chondrocytes from OA. The inflammation model of rat OA chondrocyte model was established by using interleukin-1ß(IL-1ß) to induce. LIGc alone and combined with glycyrrhizic acid(GA), a blocker of the high mobility group box-1 protein(HMGB1)/Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) signaling pathway, were used to intervene in the model, and the therapeutic effects were systematically evaluated. The viability of chondrocytes treated with different concentrations of LIGc was measured by the cell counting kit-8(CCK-8), and the optimal LIGc concentration was screened out. Annexin V-FITC/PI apoptosis detection kit was employed to examine the apoptosis of chondrocytes in each group. The enzyme-linked immunosorbent assay(ELISA) was employed to measure the expression of cyclooxygenase-2(COX-2), prostaglandin-2(PGE2), and tumor necrosis factor-alpha(TNF-α) in the supernatant of chondrocytes in each group. Western blot was employed to determine the protein levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), caspase-3, HMGB1, TLR4, and NF-κB p65. The mRNA levels of HMGB1, TLR4, NF-κB p65, and myeloid differentiation factor 88(MyD88) in chondrocytes were determined by real-time fluorescent quantitative PCR(RT-qPCR). The safe concentration range of LIGc on chondrocytes was determined by CCK-8, and then the optimal concentration of LIGc for exerting the effect was clarified. Under the intervention of IL-1ß, the rat chondrocyte model of OA was successfully established. The modeled chondrocytes showed increased apoptosis rate, promoted expression of COX-2, PGE2, and TNF-α, up-regulated protein levels of Bax, caspase-3, HMGB1, TLR4, and NF-κB p65 and mRNA levels of HMGB1, TLR4, NF-κB p65, and MyD88, and down-regulated protein level of Bcl-2. However, LIGc reversed the IL-1ß-induced changes of the above factors. Moreover, LIGc combined with GA showed more significant reversal effect than LIGc alone. These fin-dings indicate that LIGc extracted and derived from the traditional Chinese medicine A. sinensis can inhibit the inflammatory response of chondrocytes and reduce the apoptosis of chondrocytes, and this effect may be related to the HMGB1/TLR4/NF-κB signaling pathway. The pharmacological effect of LIGc on protecting chondrocytes has potential value in delaying the progression of OA and improving the clinical symptoms of patients, and deserves further study.


Asunto(s)
Proteína HMGB1 , Ligusticum , Osteoartritis , Humanos , Ratas , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Condrocitos , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacología , Dinoprostona , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Transducción de Señal , Inflamación/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Apoptosis , ARN Mensajero/metabolismo
3.
Phytomedicine ; 128: 155279, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581801

RESUMEN

BACKGROUND: Osteoarthritis (OA) is characterized by degeneration of articular cartilage, leading to joint pain and dysfunction. Gubi Zhitong formula (GBZTF), a traditional Chinese medicine formula, has been used in the clinical treatment of OA for decades, demonstrating definite efficacy. However, its mechanism of action remains unclear, hindering its further application. METHODS: The ingredients of GBZTF were analyzed and performed with liquid chromatography-mass spectrometry (LC-MS). 6 weeks old SD rats were underwent running exercise (25 m/min, 80 min, 0°) to construct OA model with cartilage wear and tear. It was estimated by Micro-CT, Gait Analysis, Histological Stain. RNA-seq technology was performed with OA Rats' cartilage, and primary chondrocytes induced by IL-1ß (mimics OA chondrocytes) were utilized to evaluated and investigated the mechanism of how GBZTF protected OA cartilage from being damaged with some functional experiments. RESULTS: A total of 1006 compounds were identified under positive and negative ion modes by LC-MS. Then, we assessed the function of GBZTF through in vitro and vivo. It was found GBZTF could significantly up-regulate OA rats' limb coordination and weight-bearing capacity, and reduce the surface and sub-chondral bone erosions of OA joints, and protect cartilage from being destroyed by inflammatory factors (iNOS, IL-6, IL-1ß, TNF- α, MMP13, ADAMTS5), and promote OA chondrocytes proliferation and increase the S phage of cell cycle. In terms of mechanism, RNA-seq analysis of cartilage tissues revealed 1,778 and 3,824 differentially expressed genes (DEGs) in model vs control group and GBZTF vs model group, respectively. The mitophagy pathway was most significantly enriched in these DEGs. Further results of subunits of OA chondrocytes confirmed that GBZTF could alleviate OA-associated inflammation and cartilage damage through modulation BCL2 interacting protein 3-like (BNIP3L)-mediated mitophagy. CONCLUSION: The therapeutic effectiveness of GBZTF on OA were first time verified in vivo and vitro through functional experiments and RNA-seq, which provides convincing evidence to support the molecular mechanisms of GBZTF as a promising therapeutic decoction for OA.


Asunto(s)
Condrocitos , Medicamentos Herbarios Chinos , Mitofagia , Osteoartritis , Ratas Sprague-Dawley , Animales , Osteoartritis/tratamiento farmacológico , Condrocitos/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Ratas , Mitofagia/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Proteínas de la Membrana/metabolismo , Cartílago Articular/efectos de los fármacos , Proteínas Mitocondriales/metabolismo
4.
J Mater Chem B ; 12(17): 4148-4161, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38591180

RESUMEN

Cyaonoside A (CyA), derived from the natural Chinese medicine, Cyathula officinalis Kuan, which was for a long time used to treat knee injuries and relieve joint pain in traditional Chinese medicine, showed an unclear mechanism for protecting cartilage. In addition, CyA was poorly hydrosoluble and incapable of being injected directly into the joint cavity, which limited its clinical application. This study reveals that CyA resisted IL-1ß-mediated chondrogenic inflammation and apoptosis. Next, transcriptome sequencing is used to explore the potential mechanisms underlying CyA regulation of MSC chondrogenic differentiation. Based on these findings, CyA-loaded composite hydrogel microspheres (HLC) were developed and they possessed satisfactory loading efficiency, a suitable degradation rate and good biocompatibility. HLC increased chondrogenic anabolic gene (Acan, COL2A, and SOX9) expression, while downregulating the expression of the catabolic marker MMP13 in vitro. In the osteoarthritis mouse model, HLC demonstrated promising therapeutic capabilities by protecting the integrity of articular cartilage. In conclusion, this study provides insights into the regulatory mechanisms of CyA for chondrocytes and proposes a composite hydrogel microsphere-based advanced therapeutic strategy for osteoarthritis.


Asunto(s)
Condrocitos , Hidrogeles , Microesferas , Osteoartritis , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Animales , Hidrogeles/química , Hidrogeles/farmacología , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Ratones , Inflamación/tratamiento farmacológico , Ratones Endogámicos C57BL , Masculino , Tamaño de la Partícula , Células Cultivadas
5.
J Orthop Surg Res ; 19(1): 198, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528538

RESUMEN

PURPOSE: This study aimed to evaluate the protective effects of gentiopicroside against lipopolysaccharide-induced chondrocyte inflammation. METHODS: SW 1353 chondrosarcoma cells were stimulated with LPS (5 µg/ml) for 24 h and treated with different concentrations of gentiopicroside (GPS) for 24 h. The toxic effects of GPS on chondrocytes were determined using a CCK-8 assay and EdU staining. Western blotting, qPCR, and immunofluorescence analysis were used to examine the protective effect of GPS against the inflammatory response in chondrocytes induced by lipopolysaccharide (LPS). One-way ANOVA was used to compare the differences between the groups (significance level of 0.05). RESULTS: The CCK-8 results showed that 10, 20 and 40 µM GPS had no significant toxic effects on chondrocytes; GPS effectively reduced the production of IL-1ß and PGE2, reversed LPS-induced extracellular matrix degradation in cartilage by inhibiting the Stat3/Runx2 signaling pathway, and suppressed the hypertrophic transformation of SW 1353 chondrosarcoma cells. CONCLUSION: Our study demonstrated that GPS significantly inhibited the LPS-induced inflammatory response and hypertrophic cellular degeneration in SW 1353 chondrosarcoma cells and is a valuable traditional Chinese medicine for the treatment of knee osteoarthritis.


Asunto(s)
Condrosarcoma , Glucósidos Iridoides , Osteoartritis , Humanos , Condrocitos/metabolismo , Lipopolisacáridos/toxicidad , Osteoartritis/metabolismo , Sincalida/metabolismo , Sincalida/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hipertrofia , Condrosarcoma/tratamiento farmacológico , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo
6.
Zhen Ci Yan Jiu ; 49(3): 247-255, 2024 Mar 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38500321

RESUMEN

OBJECTIVES: To observe the effect of Guasha on inflammation factors, apoptosis and autophagy in the cartilage tissue of knee joint in rats with knee osteoarthritis (KOA), so as to explore its mechanisms underlying improvement of KOA. METHODS: A total of 51 male SD rats were randomized into three groups:blank control, KOA model and Guasha (n= 17 in each group) . The rats in the blank control group received intra-articular injection of 0.9% NaCl solution in the right knee joint. The KOA model was established by intraarticular injection of glutamate sodium iodoacetic acid in the right knee joint. For rats of the Guasha group, Guasha (at a frequency of 1 time/s, and an applied pressure of 0.3-0.5 kgf) was applied to "Yanglingquan" (GB34) and "Xuehai"(SP10) areas of the right leg, once every other day, for 7 consecutive sessions. The circumference of the right knee was measured, The histopathological changes of right knee cartilage were observed after H.E. staining. The contents of inflammatory factors interleukin (IL)-1ß and tumor necrosis factor (TNF)-α in the right knee articular cartilage tissue were assayed using ELISA. The expression levels of autophagy-related key molecule Beclin-1 (homologous series of yeast Atg6), light chain protease complication 3 type II/I (LC3II/LC3 I), ubiquitin binding factor 62 (P62) and cysteine aspartate protease-3 (Caspase-3) mRNAs and proteins of the right knee articular cartilage tissue were measured using real-time fluorescent quantitative PCR and Western blot, separately. The apoptosis of chondrocytes was assayed using TUNEL staining, and the immunoactivity of LC3 determined using immunofluorescence staining. RESULTS: After modeling, the right knee circumfe-rence of the model and Guasha groups was significantly increased compared with the blank control group (P<0.01), and after the intervention, the knee circumference of the Guasha group was markedly decreased in comparison with that of the model group (P<0.05). Results of H.E. staining showed obvious degeneration and defects in the cartilage tissue, necrosis of a large number of chondrocytes, fibrous hyperplasia, accompanied by inflammatory cell infiltration, osteoclast increase, fibroplasia and bone trabecular destruction in the model group, which was relatively milder in the Guasha group. Compared with the blank control group, the expression of Beclin-1 and LC3 mRNAs and proteins, and LC immunofluorescence intensity in the right knee articular cartilage tissue were significantly down-regulated (P<0.01, P<0.001), whereas the expression of P62 and Caspase-3 mRNAs and proteins, the apoptosis rate, contents of IL-1ß and TNF-α in the right knee articular cartilage tissue considerably increased (P<0.01, P<0.001) in the model group. In contrast to the model group, the Guasha group had an apparent increase in the expression levels of Beclin-1 and LC3 mRNAs and proteins and LC immunofluorescence intensity in the right knee articular cartilage tissue (P<0.05), and a pronounced decrease in the expression of P62 and Caspase-3 mRNAs and proteins, the apoptosis rate, and contents of IL-1ß and TNF-α in the right knee articular cartilage tissue (P<0.05, P<0.01). CONCLUSIONS: Guasha stimulation of GB34 and SP10 can improve joint cartilage damage in KOA rats, which may be associated with its functions in inhibiting the excessive release of inflammatory factors and apoptosis, possibly by down-regulating the expression of P62 and Caspase-3 mRNAs and proteins and up-regulating the expression of Beclin-1 and LC3 mRNAs and proteins, and by promoting autophagy of chondrocytes.


Asunto(s)
Osteoartritis de la Rodilla , Ratas , Masculino , Animales , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/terapia , Caspasa 3/metabolismo , Condrocitos/metabolismo , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Beclina-1/metabolismo , Apoptosis/genética , Autofagia/genética
7.
J Ethnopharmacol ; 328: 118095, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548121

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Gu Yan Xiao tincture, a blend of traditional Chinese herbs, is traditionally used for osteoarthritis and related pain. This study investigated its mechanism of action in order to rationalize and validate its therapeutic use. AIM OF THE STUDY: This study analyzed, in a rabbit model of knee osteoarthritis, whether and how Gu Yan Xiao tincture exerts therapeutic benefits by modulating chondrocyte autophagy. MATERIALS AND METHODS: The active constituents within the GYX tincture were identified using liquid chromatography-mass spectrometry. The rabbit model was established by injecting animals with type II collagenase intra-articularly, and the effects of topically applied tincture were examined on osteoarthritis lesions of the knee using histopathology, micro-computed tomography and x-ray imaging. Effects of the tincture were also evaluated on levels of inflammatory cytokines, matrix metalloproteases, and autophagy in chondrocytes. As a positive control, animals were treated with sodium diclofenac. RESULTS: The tincture mitigated the reduction in joint space, hyperplasia of the synovium and matrix metalloproteases in serum that occurred after injection of type II collagenase in rabbits. These therapeutic effects were associated with inhibition of mTOR and activation of autophagy in articular chondrocytes. Inhibiting mTOR with rapamycin potentiated the therapeutic effects of the tincture, while inhibiting autophagy with 3-methyladenine antagonized them. CONCLUSIONS: Gu Yan Xiao tincture mitigates tissue injury in a rabbit model of osteoarthritis, at least in part by inhibiting mTOR and thereby promoting autophagy in chondrocytes. These results rationalize the use of the tincture not only against osteoarthritis but also potentially other diseases involving inhibition of autophagy in bones and joints.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Animales , Conejos , Condrocitos , Microtomografía por Rayos X , Serina-Treonina Quinasas TOR , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/patología , Metaloproteasas/farmacología , Metaloproteasas/uso terapéutico , Autofagia , Colagenasas
8.
Zhongguo Gu Shang ; 37(2): 196-206, 2024 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-38425073

RESUMEN

OBJECTIVE: To investigate whether Bushen Huoxue recipe can protect articular cartilage by regulating Akt/mTOR signaling pathway to promote the autophagy of chondrocytes in ovariectomized rats. METHODS: Among 30 SPF 12-week-old female SD rats weighing (247.0±7.0) g, 6 were randomly selected as the blank control group, and the remaining rats were randomly divided into model group, BSHXR-L group, BSHXR-M group and BSHXR-H group, with 6 rats in each group. The protective effect of Bushen Huoxue recipe on articular cartilage injury in rats was determined by visual observation score, muscovine O-solid green staining and immunohistochemistry. The expression of autophagy related proteins was detected by Western-blot, and the relative expression of Akt, mTOR and downstream autophagy genes was detected by qPCR. RESULTS: After modeling, BSHXR (L, M, H) groups could alleviate the histological damage of cartilage. Immunohistochemistry showed that the expression of Collagen-Ⅱand Aggrecan gradually increased, and the expression of MMP-13 gradually decreased, and the differences between BSHXR-M and BSHXR-H groups and model group were statistically significant (P<0.05). The results of Western-blot showed that the autophagy pathway proteins p-Akt/Akt and p-mTOR/mTOR were inhibited in the BSHXR(L, M, H) groups, and the expressions of downstream proteins Beclin-1 and LC3Ⅱwere gradually increased, while p62 was gradually decreased, showing a dose effect. QPCR results showed that BSHXR(L, M, H) groups could promote the relative expression of Beclin-1 and LC3ⅡmRNA, and inhibit the relative expression of p62, Akt, mTOR mRNA, and the differences were statistically significant compared with model group (P<0.05). CONCLUSION: Bushen Huoxue recipe can enhance the cartilage autophagy response by inhibiting the Akt/mTOR signaling pathway, and then protect the cartilage.


Asunto(s)
Cartílago Articular , Condrocitos , Medicamentos Herbarios Chinos , Ratas , Femenino , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Beclina-1/genética , Beclina-1/metabolismo , Beclina-1/farmacología , Ratas Sprague-Dawley , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Autofagia/genética
9.
J Orthop Surg Res ; 19(1): 178, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468339

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a common degenerative joint disease characterized by persistent articular cartilage degeneration and synovitis. Oxymatrine (OMT) is a quinzolazine alkaloid extracted from the traditional Chinese medicine, matrine, and possesses anti-inflammatory properties that may help regulate the pathogenesis of OA; however, its mechanism has not been elucidated. This study aimed to investigate the effects of OMT on interleukin-1ß (IL-1ß)-induced damage and the potential mechanisms of action. METHODS: Chondrocytes were isolated from Sprague-Dawley rats. Toluidine blue and Collagen II immunofluorescence staining were used to determine the purity of the chondrocytes. Thereafter, the chondrocytes were subjected to IL-1ß stimulation, both in the presence and absence of OMT, or the autophagy inhibitor 3-methyladenine (3-MA). Cell viability was assessed using the MTT assay and SYTOX Green staining. Additionally, flow cytometry was used to determine cell apoptosis rate and reactive oxygen species (ROS) levels. The protein levels of AKT, mTOR, LC3, P62, matrix metalloproteinase-13, and collagen II were quantitatively analyzed using western blotting. Immunofluorescence was used to assess LC3 expression. RESULTS: OMT alleviated IL-1ß-induced damage in chondrocytes, by increasing the survival rate, reducing the apoptosis rates of chondrocytes, and preventing the degradation of the cartilage matrix. In addition, OMT decreased the ROS levels and inhibited the AKT/mTOR signaling pathway while promoting autophagy in IL-1ß treated chondrocytes. However, the effectiveness of OMT in improving chondrocyte viability under IL-1ß treatment was limited when autophagy was inhibited by 3-MA. CONCLUSIONS: OMT decreases oxidative stress and inhibits the AKT/mTOR signaling pathway to enhance autophagy, thus inhibiting IL-1ß-induced damage. Therefore, OMT may be a novel and effective therapeutic agent for the clinical treatment of OA.


Asunto(s)
Alcaloides , Cartílago Articular , Matrinas , Osteoartritis , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Condrocitos/metabolismo , Interleucina-1beta/toxicidad , Interleucina-1beta/metabolismo , Osteoartritis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Cartílago Articular/metabolismo , Alcaloides/farmacología , Alcaloides/uso terapéutico , Alcaloides/metabolismo , Autofagia , Colágeno/metabolismo , Apoptosis
10.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473759

RESUMEN

Osteoarthritis (OA) causes joint pain and disability due to the abnormal production of inflammatory cytokines and reactive oxygen species (ROS) in chondrocytes, leading to cell death and cartilage matrix destruction. Selenium (Se) intake can protect cells against oxidative damage. It is still unknown whether Se supplementation is beneficial for OA. This study investigated the effects of Se on sodium iodoacetate (MIA)-imitated OA progress in human chondrocyte cell line (SW1353 cells) and rats. The results showed that 0.3 µM of Se treatment could protect SW1353 cells from MIA-induced damage by the Nrf2 pathway by promoting the gene expression of glutathione-synthesis-related enzymes such as the glutamate-cysteine ligase catalytic subunit, the glutamate-cysteine ligase modifier subunit, and glutathione synthetase. In addition, glutathione, superoxide dismutase, glutathione peroxidase, and glutathione reductase expressions are also elevated to eliminate excessive ROS production. Moreover, Se could downregulate NF-κB, leading to a decrease in cytokines, matrix proteases, and glycosaminoglycans. In the rats, MIA-induced cartilage loss was lessened after 2 weeks of Se supplementation by oral gavage; meanwhile, glutathione synthesis was increased, and the expressions of pro-inflammatory cytokines were decreased. These results suggest that Se intake is beneficial for OA due to its effects of decreasing cartilage loss by enhancing antioxidant capacity and reducing inflammation.


Asunto(s)
Cartílago Articular , Osteoartritis , Selenio , Humanos , Ratas , Animales , FN-kappa B/metabolismo , Condrocitos/metabolismo , Selenio/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Glutamato-Cisteína Ligasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Osteoartritis/metabolismo , Estrés Oxidativo , Citocinas/metabolismo , Glutatión/metabolismo , Cartílago Articular/metabolismo
11.
Fitoterapia ; 174: 105870, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423225

RESUMEN

A systematic mechanistic review was performed to determine mechanistic evidence for curcumin on pro-inflammatory matrix metalloproteinases and Osteoarthritis to understand the underlying pathophysiology, and to evaluate available human intervention evidence to inform clinical decision making. The systematic literature search was performed in 3 tranches (reviews, mechanistic, intervention studies) using PubMed, with no date limitations and using specific search terms. 65 out of 393 screened papers were accepted based on detailed inclusion and exclusion criteria. The mechanistic search was divided into three searches and the intervention searches were subdivided into four searches. Curcumin demonstrated significant inhibition of matrix metalloproteinases linked to cartilage degradation in Osteoarthritis through reduced activation of the nuclear factor kappa-B signaling pathway via suppressing phosphorylation of Iκßa and p65 nuclear translocation. Mechanistic evidence implicated matrix metalloproteinases in Osteoarthritis by decreasing Type II collagen, leading to cartilage damage. As a potential nutritional intervention for Osteoarthritis, curcumin could reduce inflammatory markers and improve pain and function scores. The evidence indicates most formulations of turmeric extract and curcumin extract, bio-enhanced and non-bio-enhanced, are effective at improving inflammatory markers and pain and function to a greater or lesser extent. Due to the high heterogeneity of the formulations, dosage, and duration of the studies, further research is needed to fully understand curcumin's potential as a promising non-pharmaceutical intervention for Osteoarthritis. This mechanism review identifies a gap in current research for the mechanism by which Type II collagen is mediated.


Asunto(s)
Curcumina , Osteoartritis , Humanos , Curcumina/farmacología , Curcumina/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo II/farmacología , Condrocitos/metabolismo , Estructura Molecular , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , FN-kappa B/metabolismo , Dolor , Metaloproteinasas de la Matriz/metabolismo
12.
J Med Food ; 27(4): 301-311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38377551

RESUMEN

Baicalin has been acknowledged for its anti-inflammatory properties. However, its potential impact on osteoarthritis (OA) has not yet been explored. Therefore, our study aimed to examine the effects of Baicalin on OA, both in laboratory and animal models. To evaluate its efficacy, human chondrocytes affected by OA were treated with interleukin-1ß and/or Baicalin. The effects were then assessed through viability tests using the cell counting kit-8 (CCK-8) method and flow cytometry. In addition, we analyzed the expressions of various factors such as FOXO1, autophagy, apoptosis, and cartilage synthesis and breakdown to corroborate the effects of Baicalin. We also assessed the severity of OA through analysis of tissue samples. Our findings demonstrate that Baicalin effectively suppresses inflammatory cytokines and MMP-13 levels caused by collagenase-induced osteoarthritis, while simultaneously preserving the levels of Aggrecan and Col2. Furthermore, Baicalin has been shown to enhance autophagy. Through the use of FOXO1 inhibitors, lentivirus-mediated knockdown, and chromatin immunoprecipitation, we verified that Baicalin exerts its protective effects by activating FOXO1, which binds to the Beclin-1 promoter, thereby promoting autophagy. In conclusion, our results show that Baicalin has potential as a therapeutic agent for treating OA (Clinical Trial Registration number: 2023-61).


Asunto(s)
Cartílago Articular , Flavonoides , Proteína Forkhead Box O1 , Osteoartritis , Animales , Humanos , Apoptosis , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Condrocitos , Flavonoides/farmacología , Flavonoides/uso terapéutico , Proteína Forkhead Box O1/efectos de los fármacos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Homeostasis , Interleucina-1beta/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Osteoartritis/metabolismo
13.
Aging (Albany NY) ; 16(5): 4250-4269, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38407978

RESUMEN

Lei's formula (LSF), a traditional Chinese herbal remedy, is recognized for its remarkable clinical effectiveness in treating osteoarthritis (OA). Despite its therapeutic potential, the exact molecular mechanisms underlying LSF's action in OA have remained enigmatic. Existing research has shed light on the role of the mTOR signaling pathway in promoting chondrocyte senescence, a central factor in OA-related cartilage degeneration. Consequently, targeting mTOR to mitigate chondrocyte senescence presents a promising avenue for OA treatment. The primary objective of this study is to establish LSF's chondroprotective potential and confirm its anti-osteoarthritic efficacy through mTOR inhibition. In vivo assessments using an OA mouse model reveal substantial articular cartilage degeneration. However, LSF serves as an effective guardian of articular cartilage, evidenced by reduced subchondral osteosclerosis, increased cartilage thickness, improved surface smoothness, decreased OARSI scores, elevated expression of cartilage anabolic markers (Col2 and Aggrecan), reduced expression of catabolic markers (Adamts5 and MMP13), increased expression of the chondrocyte hypertrophy marker (Col10), and decreased expression of chondrocyte senescence markers (P16 and P21). In vitro findings demonstrate that LSF shields chondrocytes from H2O2-induced apoptosis, inhibits senescence, enhances chondrocyte differentiation, promotes the synthesis of type II collagen and proteoglycans, and reduces cartilage degradation. Mechanistically, LSF suppresses chondrocyte senescence through the mTOR axis, orchestrating the equilibrium between chondrocyte anabolism and catabolism, ultimately leading to reduced apoptosis and decelerated OA cartilage degradation. LSF holds significant promise as a therapeutic approach for OA treatment, offering new insights into potential treatments for this prevalent age-related condition.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratones , Animales , Condrocitos/metabolismo , Peróxido de Hidrógeno/farmacología , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Cartílago Articular/metabolismo
14.
Sci Rep ; 14(1): 2696, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302538

RESUMEN

Osteoarthritis is the most common degenerative joint condition, leading to articular cartilage (AC) degradation, chronic pain and immobility. The lack of appropriate therapies that provide tissue restoration combined with the limited lifespan of joint-replacement implants indicate the need for alternative AC regeneration strategies. Differentiation of human pluripotent stem cells (hPSCs) into AC progenitors may provide a long-term regenerative solution but is still limited due to the continued reliance upon growth factors to recapitulate developmental signalling processes. Recently, TTNPB, a small molecule activator of retinoic acid receptors (RARs), has been shown to be sufficient to guide mesodermal specification and early chondrogenesis of hPSCs. Here, we modified our previous differentiation protocol, by supplementing cells with TTNPB and administering BMP2 at specific times to enhance early development (referred to as the RAPID-E protocol). Transcriptomic analyses indicated that activation of RAR signalling significantly upregulated genes related to limb and embryonic skeletal development in the early stages of the protocol and upregulated genes related to AC development in later stages. Chondroprogenitors obtained from RAPID-E could generate cartilaginous pellets that expressed AC-related matrix proteins such as Lubricin, Aggrecan, and Collagen II, but additionally expressed Collagen X, indicative of hypertrophy. This protocol could lay the foundations for cell therapy strategies for osteoarthritis and improve the understanding of AC development in humans.


Asunto(s)
Benzoatos , Cartílago Articular , Osteoartritis , Células Madre Pluripotentes , Retinoides , Humanos , Condrocitos/metabolismo , Tretinoina/farmacología , Condrogénesis/genética , Diferenciación Celular , Cartílago Articular/metabolismo , Colágeno/metabolismo , Osteoartritis/metabolismo
15.
J Ethnopharmacol ; 325: 117887, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38346525

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba, as the most widely available medicinal plant worldwide, has been frequently utilized for treat cardiovascular, cerebrovascular, diabetic and other diseases. Due to its distinct pharmacological effects, it has been broadly applications in pharmaceuticals, health products, dietary supplements, and so on. Ginkgolide C (GC), a prominent extract of Ginkgo biloba, possesses potential in anti-inflammatory and anti-oxidant efficacy. AIMS OF THE STUDY: To determine whether GC mitigated the progressive degeneration of articular cartilage in a Monosodium Iodoacetate (MIA)-induced osteoarthritis (OA) rat model by inhibiting the activation of the NLRP3 inflammasome, and the specific underlying mechanisms. MATERIALS AND METHODS: In vivo, an OA rat model was established by intra-articular injection of MIA. The protective effect of GC (10 mg/kg) on articular cartilage was evaluated. Application of ATDC5 cells to elucidate the mechanism of the protective effect of GC on articular cartilage. Specifically, the expression levels of molecules associated with cartilage ECM degrading enzymes, OS, ERS, and NLRP3 inflammasome activation were analyzed. RESULTS: In vivo, GC ameliorated MIA-induced OA rat joint pain, and exhibited remarkable anti-inflammatory and anti- ECM degradation effects via inhibition of the activation of NLRP3 inflammasome, the release of inflammatory factors, and the expression of matrix-degrading enzymes in cartilage. Mechanically, GC inhibited the activation of NLRP3 inflammasome by restraining ROS-mediated p-IRE1α and activating Nrf2/NQO1 signal path, thereby alleviating OA. The ROS scavenger NAC was as effective as GC in reducing ROS production and inhibiting the activation of NLRP3 inflammasome. CONCLUSIONS: GC have exerted chondroprotective effects by inhibiting the activation of NLRP3 inflammasome.


Asunto(s)
Cartílago Articular , Ginkgólidos , Lactonas , Osteoartritis , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Condrocitos , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Osteoartritis/inducido químicamente , Osteoartritis/tratamiento farmacológico , Antiinflamatorios/efectos adversos , Ácido Yodoacético/efectos adversos , Ácido Yodoacético/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/metabolismo
16.
Chin J Nat Med ; 22(2): 137-145, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38342566

RESUMEN

Excessive oxidative stress impairs cartilage matrix metabolism balance, significantly contributing to osteoarthritis (OA) development. Celastrol (CSL), a drug derived from Tripterygium wilfordii, has recognized applications in the treatment of cancer and immune system disorders, yet its antioxidative stress mechanisms in OA remain underexplored. This study aimed to substantiate CSL's chondroprotective effects and unravel its underlying mechanisms. We investigated CSL's impact on chondrocytes under both normal and inflammatory conditions. In vitro, CSL mitigated interleukin (IL)-1ß-induced activation of proteinases and promoted cartilage extracellular matrix (ECM) synthesis. In vivo, intra-articular injection of CSL ameliorated cartilage degeneration and mitigated subchondral bone lesions in OA mice. Mechanistically, it was found that inhibiting nuclear factor erythroid 2-related factor 2 (NRF2) abrogated CSL-mediated antioxidative functions and exacerbated the progression of OA. This study is the first to elucidate the role of CSL in the treatment of OA through the activation of NRF2, offering a novel therapeutic avenue for arthritis therapy.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Osteoartritis , Ratones , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoartritis/patología , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/metabolismo , Condrocitos , Interleucina-1beta
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(1): 108-118, 2024 Jan 20.
Artículo en Chino | MEDLINE | ID: mdl-38293982

RESUMEN

OBJECTIVE: To investigate the mechanism that mediates the inhibitory effect of Xinfeng Capsule (XFC) on interleukin (IL)-1ß-induced impairment of chondrocytes. METHODS: XFC-medicated serum was collected from SD rats with XFC gavage, and its optimal concentration for chondrocyte treatment was determined using Cell Counting Kit-8 assay and flow cytometry. Dual luciferase reporter analysis was performed to analyze the targeting relationship between miR-502-5p and TRAF2. In cultured human chondrocytes induced with IL-1ß, the effects of transfection with miR-502-5p inhibitor and XFC-medicated serum, alone or in combination, on expression levels of IL-1ß, tumor necrosis factor-α (TNF-α), IL-4, and IL-10 were examined with ELISA, and the changes in the expressions of collagen type Ⅱ alpha 1 (COL2A1), matrix metalloproteinase 13 (MMP13), adisintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), and miR-502-5p/TRAF2/NF-κB axis gene expression were detected using RT-qPCR, Western blotting, and immunofluorescence assay. RESULTS: In cultured human chondrocytes, treatment with IL-1ß significantly decreased the cell viability, increased cell apoptosis rate, lowered miR-502-5p, IL-4, IL-10, and COL2A1 expressions, and enhanced IL-1ß, TNF-α, ADAMTS5, MMP13, TRAF2, and NF-κB p65 expressions (P < 0.05), and these changes were significantly improved by treatment with XFC-medicated serum at the optimal concentration of 20% (P < 0.05). Transfection of the chondrocytes with miR-502-5p inhibitor resulted in elevated expressions of IL-1ß, TNF-α, ADAMTS5, MMP13, TRAF2, and NF-κB p65 and lowered expressions of miR-502-5p, IL-4, IL-10, and COL2A1, and XFC-medicated serum obviously reversed the effects of miR-502-5p inhibitor. CONCLUSION: XFC can inhibit IL-1ß-induced inflammatory response and ECM degradation in cultured human chondrocytes possibly by regulating the miR-502-5p/TRAF2/NF-κB axis.


Asunto(s)
Medicamentos Herbarios Chinos , MicroARNs , FN-kappa B , Humanos , Animales , Ratas , FN-kappa B/metabolismo , Interleucina-10 , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 2 Asociado a Receptor de TNF/farmacología , Condrocitos/metabolismo , Interleucina-1beta/farmacología , Interleucina-1beta/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , MicroARNs/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-4/metabolismo , Ratas Sprague-Dawley , Inflamación/metabolismo , Matriz Extracelular/metabolismo
18.
PLoS One ; 19(1): e0290925, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38166086

RESUMEN

BACKGROUND: Articular cartilage and cartilage matrix degradation are key pathological changes occurring in the early stage of knee osteoarthritis (KOA). However, currently, there are limited strategies for early prevention and treatment of KOA. Duhuo Jisheng Decoction (DHJSD) is a formula quoted in Bei Ji Qian jin Yao Fang, which was compiled by Sun Simiao in the Tang Dynasty of China. As a complementary therapy, it is widely used to treat early-stage KOA in China; however, its mechanism has not been completely elucidated. OBJECTIVE: This study investigated the potential role of DHJSD in preventing cartilage degradation and the underlying mechanism. METHODS: A rat model of KOA model was established via the Hulth method. Subsequently, 25 rats were randomized into sham (saline), model control (saline), high-DHJSD (1.9g/mL of DHJSD), medium-DHJSD (1.2g/mL of DHJSD), and low-DHJSD groups (0.6g/mL of DHJSD). After 4 weeks of treatment, all rats were sacrificed and the severity of the cartilage degeneration was evaluated by a series of histological methods. The autophagosome was observed using transmission electron microscopy, and the related functional proteins were detected by the western blotting and real-time polymerase chain reaction. Next, the mechanism by which DHJSD improves knee cartilage degeneration was further clarified the in vitro by gene silencing technology combined with a series of functional experiments. The proteins levels of PTEN, Akt, p-Akt, mTOR, and p-mTOR, as well as the marker proteins of autophagy and apoptosis were determined. Zinc levels in chondrocytes were determined using inductively coupled plasma mass spectrometry. RESULTS: Histopathological staining revealed that DHJSD had a protective effect on the cartilage. DHJSD increased autophagosome synthesis and the expression of autophagy proteins LC3 and Beclin-1 in chondrocytes. Moreover, it reduced the phosphorylation levels of Akt and mTOR and the levels of zinc, MMP-13, Bax, and Bcl-2. Following PTEN silencing, this DHJSD-mediated reduction in Akt and mTOR phosphorylation and Bax, Bcl-2, and zinc levels were further decreased; in addition, DHJSD-mediated increase in LC3 and Beclin-1 levels was decreased. CONCLUSION: DHJSD inhibits the Akt/mTOR signaling pathway by targeting PTEN to promote autophagy in chondrocytes, which may help reduce MMP-13 production by regulating zinc levels in chondrocytes.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Ratas Sprague-Dawley , Proteína X Asociada a bcl-2/metabolismo , Beclina-1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Condrocitos/metabolismo , Osteoartritis de la Rodilla/patología , Cartílago Articular/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Autofagia , Homeostasis
19.
Aging (Albany NY) ; 16(1): 648-664, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38194722

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a common chronic age-related joint disease characterized primarily by inflammation of synovial membrane and degeneration of articular cartilage. Accumulating evidence has demonstrated that Danggui-Shaoyao-San (DSS) exerts significant anti-inflammatory effects, suggesting that it may play an important role in the treatment of knee osteoarthritis (KOA). METHODS: In the present study, DSS was prepared and analyzed by high-performance liquid chromatography (HPLC). Bioinformatics analyses were carried out to uncover the functions and possible molecular mechanisms by which DSS against KOA. Furthermore, the protective effects of DSS on lipopolysaccharide (LPS)-induced rat chondrocytes and cartilage degeneration in a rat OA model were investigated in vivo and in vitro. RESULTS: In total, 114 targets of DSS were identified, of which 60 candidate targets were related to KOA. The target enrichment analysis suggested that the NF-κB signaling pathway may be an effective mechanism of DSS. In vitro, we found that DSS significantly inhibited LPS-induced upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), matrix metalloproteinase-3 (MMP3), and matrix metalloproteinase-13 (MMP13). Meanwhile, the degradation of collagen II was also reversed by DSS. Mechanistically, DSS dramatically suppressed LPS-induced activation of the nuclear factor kappa B (NF-κB) signaling pathway. In vivo, DSS treatment prevented cartilage degeneration in a rat OA model. CONCLUSIONS: DSS could ameliorate the progression of OA through suppressing the NF-κB signaling pathway. Our findings indicate that DSS may be a promising therapeutic approach for the treatment of KOA.


Asunto(s)
Medicamentos Herbarios Chinos , FN-kappa B , Osteoartritis de la Rodilla , Ratas , Animales , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Transducción de Señal , Inflamación/metabolismo , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/metabolismo , Condrocitos/metabolismo
20.
Appl Biochem Biotechnol ; 196(1): 203-219, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37103740

RESUMEN

Articular cartilage defect treatment is a very important problem because its therapeutic options are not successful enough. Due to the weak self-repairing capacity of the avascular cartilage, even minor damage can progress and cause joint damage leading to osteoarthritis. Although various treatment strategies have been developed to repair damaged cartilage, cell- and exosome-based therapies are promising. Plant extracts have been used for decades, and their effects on cartilage regeneration have been studied. Exosome-like vesicles, which are secreted by all living cells, are involved in cell-to-cell communication and cell homeostasis. The differentiation potential of exosome-like vesicles isolated from S. lycopersicum and C. limon, which are known to have anti-inflammatory and antioxidant properties, was investigated in the differentiation of human adipose-derived mesenchymal stem cells (hASCs) into chondrocytes. In order to obtain tomato-derived exosome-like vesicles (TELVs) and lemon-derived exosome-like vesicles (LELVs) Aquous Two- Phase system was performed. Characterisation of isolated vesicles based on size, shape were achived via Zetasizer, NTA FAME analysis, and SEM techniques. These results showed that TELVs and LELVs increased cell viability and did not show any toxic effects on stem cells. Although TELVs triggered chondrocyte formation, LELVs downregulated. The expression of ACAN, SOX9, and COMP, known as chondrocyte markers, was increased by TELV treatment. In addition, protein expression of the two most important proteins, COL2 and COLXI, found in the extracellular matrix of cartilage, increased. These findings suggest that TELVs can be used for cartilage regeneration, and may be a novel and promising treatment for osteoarthritis.


Asunto(s)
Cartílago Articular , Exosomas , Osteoartritis , Solanum lycopersicum , Humanos , Condrocitos , Diferenciación Celular , Células Madre , Osteoartritis/terapia , Osteoartritis/metabolismo , Condrogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA