Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.921
Filtrar
Más filtros

Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7766, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565927

RESUMEN

The occurrence of major depressive disorder is widespread and can be observed in individuals belonging to all societies. It has been suggested that changes in the NO pathway and heightened oxidative stress may play a role in developing this condition. Anethole is a diterpene aromatic compound found in the Umbelliferae, Apiaceae, and Schisandraceae families. It has potential pharmacological effects like antioxidant, anxiolytic, analgesic, anti-inflammatory, antidiabetic, gastroprotective, anticancer, estrogenic, and antimicrobial activities. This study aimed to investigate the potential antidepressant properties of Anethole in a mouse model experiencing maternal separation stress while also examining its impact on oxidative stress and nitrite levels. The research involved the participation of 40 male NMRI mice, separated into five distinct groups to conduct the study. The control group was administered 1 ml/kg of normal saline, while the MS groups were given normal saline and Anethole at 10, 50, and 100 mg/kg doses. The study comprised various behavioural tests, including the open field test (OFT), forced swimming test (FST), and splash test, to assess the effects of Anethole on the mice. In addition to the behavioural tests, measurements were taken to evaluate the total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels in the hippocampus of the mice. According to the findings, maternal separation stress (MS) led to depressive-like conduct in mice, including a rise in immobility duration during the FST and a reduction in the duration of grooming behaviour in the splash test. Additionally, the results indicated that MS correlated with an increase in the levels of MDA and nitrite and a reduction in the TAC in the hippocampus. However, the administration of Anethole resulted in an increase in grooming activity time during the splash test and a decrease in immobility time during the FST. Anethole also exhibited antioxidant characteristics, as demonstrated by its ability to lower MDA and nitrite levels while increasing the TAC in the hippocampus. The results suggest that Anethole may have an antidepressant-like impact on mice separated from their mothers, likely partly due to its antioxidant properties in the hippocampus.


Asunto(s)
Derivados de Alilbenceno , Anisoles , Antioxidantes , Trastorno Depresivo Mayor , Humanos , Ratones , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Nitritos/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Privación Materna , Solución Salina/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Estrés Oxidativo , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Conducta Animal
2.
J Nutr Biochem ; 129: 109638, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583499

RESUMEN

Maternal infection during pregnancy is an important cause of autism spectrum disorder (ASD) in offspring, and inflammatory infiltration caused by maternal immune activation (MIA) can cause neurodevelopmental disorders in the fetus. Medicine food homologous (MFH) refers to a traditional Chinese medicine (TCM) concept, which effectively combines food functions and medicinal effects. However, no previous study has screened, predicted, and validated the potential targets of MFH herbs for treating ASD. Therefore, in this study, we used comprehensive bioinformatics methods to screen and analyze MFH herbs and drug targets on a large scale, and identified resveratrol and Thoc5 as the best small molecular ingredient and drug target, respectively, for the treatment of MIA-induced ASD. Additionally, the results of in vitro experiments revealed that resveratrol increased the expression of Thoc5 and effectively inhibited lipopolysaccharide-induced inflammatory factor production by BV2 cells. Moreover, in vivo, resveratrol increased the expression of Thoc5 and effectively inhibited placental and fetal brain inflammation in MIA pregnancy mice, and improved ASD-like behaviors in offspring.


Asunto(s)
Trastorno del Espectro Autista , Efectos Tardíos de la Exposición Prenatal , Resveratrol , Resveratrol/farmacología , Animales , Femenino , Embarazo , Ratones , Masculino , Lipopolisacáridos/toxicidad , Conducta Animal/efectos de los fármacos , Ratones Endogámicos C57BL , Trastorno Autístico/inducido químicamente , Modelos Animales de Enfermedad
3.
Behav Brain Res ; 466: 114976, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38599249

RESUMEN

Although there are various treatments available for depression, some patients may experience resistance to treatment or encounter adverse effects. Centella asiatica (C. asiatica) is an ancient medicinal herb used in Ayurvedic medicine for its rejuvenating, neuroprotective and psychoactive properties. This study aims to explore the antidepressant-like effects of the major constituents found in C. asiatica, i.e., asiatic acid, asiaticoside, madecassic acid, and madecassoside at three doses (1.25, 2.5, and 5 mg/kg, i.p), on the behavioural and cortisol level of unpredictable chronic stress (UCS) zebrafish model. Based on the findings from the behavioural study, the cortisol levels in the zebrafish body after treatment with the two most effective compounds were measured using enzyme-linked immunosorbent assay (ELISA). Furthermore, a molecular docking study was conducted to predict the inhibitory impact of the triterpenoid compounds on serotonin reuptake. The in vivo results indicate that madecassoside (1.25, 2.5, and 5 mg/kg), asiaticoside and asiatic acid (5 mg/kg) activated locomotor behaviour. Madecassoside at all tested doses and asiaticoside at 2.5 and 5 mg/kg significantly decreased cortisol levels compared to the stressed group, indicating the potential regulation effect of madecassoside and asiaticoside on the hypothalamic-pituitary-adrenal axis overactivity. This study highlights the potential benefits of madecassoside and asiaticoside in alleviating depressive symptoms through their positive effects on behaviour and the hypothalamic-pituitary-adrenal (HPA)- axis in a chronic unpredictable stress zebrafish model. Furthermore, the in silico study provided additional evidence to support these findings. These promising results suggest that C. asiatica may be a valuable and cost-effective therapeutic option for depression, and further research should be conducted to explore its potential benefits.


Asunto(s)
Antidepresivos , Centella , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos , Triterpenos , Pez Cebra , Animales , Triterpenos/farmacología , Centella/química , Antidepresivos/farmacología , Triterpenos Pentacíclicos/farmacología , Hidrocortisona/metabolismo , Modelos Animales de Enfermedad , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Depresión/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Biomarcadores/metabolismo , Masculino
4.
Behav Brain Res ; 465: 114968, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38521360

RESUMEN

PURPOSE: Depression is a psychiatric disorder and the treatment of depression is an urgent problem that need to be solved. Gastrodin (GAS) is a Traditional Chinese Medicine from an orchid and is used for neurological diseases, including depressive disorders. METHODS: To assess the effect of GAS on gut microbiota of depressive mice, we established a chronic unpredictable mild stress (CUMS)-induced mouse model, and GAS was administered to one group of the mice. Animal behavior experiments were used to detect depressive-like behaviors, and 16 S rRNA gene analysis was applied to detect the gut microbiota of each group. All raw sequences were deposited in the NCBI Sequence Read Archive under accession number SRP491061. RESULTS: GAS treatment significantly improved depressive-like behaviors as well as the diversity and abundance of the gut microbiota. The depressive-like behaviors of the CUMS-GAS group were improved in different degrees compared with the CUMS group. The linear discriminant analysis (LDA) of the gut microbiota showed that the makeup of the gut microbiota in mice changed dramatically in the CUMS-GAS group, compared with the CUMS group, Bacteroides (LDA = 3.94, P < 0.05) were enriched in the CUMS-GAS group at the genus level. In comparison to the CUMS group, the CUMS-GAS group had a greater concentration numbers of Lactobacillus, Corynebacterium, Staphylococcus, Bacteroides, Psychrobacter, and Alistipes. CONCLUSION: Our results suggested that GAS improved depressive-like behaviors in mice and impacted the microbial composition of the gut. Our research indicated that dysbiosis of the gut microbiota may be affected by GAS treatment, which improved depressive-like behaviors in the CUMS-induced mouse model of depression.


Asunto(s)
Alcoholes Bencílicos , Depresión , Microbioma Gastrointestinal , Glucósidos , Humanos , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/psicología , Conducta Animal , Estrés Psicológico/complicaciones
5.
Phytomedicine ; 128: 155507, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552430

RESUMEN

BACKGROUND: Abnormal activation of astrocytes in the amygdala contributes to anxiety after hemorrhagic shock and resuscitation (HSR). Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-associated epigenetic reprogramming of astrocytic activation is crucial to anxiety. A bioactive monomer derived from Epimedium icariin (ICA) has been reported to modulate NF-κB signaling and astrocytic activation. PURPOSE: The present study aimed to investigate the effects of ICA on post-HSR anxiety disorders and its potential mechanism of action. METHODS: We first induced HSR in mice through a bleeding and re-transfusion model and selectively inhibited and activated astrocytes in the amygdala using chemogenetics. Then, ICA (40 mg/kg) was administered by oral gavage once daily for 21 days. Behavioral, electrophysiological, and pathological changes were assessed after HSR using the light-dark transition test, elevated plus maze, recording of local field potential (LFP), and immunofluorescence assays. RESULTS: Exposure to HSR reduced the duration of the light chamber and attenuated open-arm entries. Moreover, HSR exposure increased the theta oscillation power in the amygdala and upregulated NF-κB p65, H3K27ac, and H3K4me3 expression. Contrarily, chemogenetic inhibition of astrocytes significantly reversed these changes. Chemogenetic inhibition in astrocytes was simulated by ICA, but chemogenetic activation of astrocytes blocked the neuroprotective effects of ICA. CONCLUSION: ICA mitigated anxiety-like behaviors induced by HSR in mice via inhibiting astrocytic activation, which is possibly associated with NF-κB-induced epigenetic reprogramming.


Asunto(s)
Ansiedad , Astrocitos , Flavonoides , Choque Hemorrágico , Animales , Astrocitos/efectos de los fármacos , Flavonoides/farmacología , Choque Hemorrágico/tratamiento farmacológico , Ratones , Ansiedad/tratamiento farmacológico , Masculino , Resucitación/métodos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Conducta Animal/efectos de los fármacos , Amígdala del Cerebelo/efectos de los fármacos , Epimedium/química
6.
Phytomedicine ; 128: 155324, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552437

RESUMEN

BACKGROUND: Researchers have not studied the integrity, orderly correlation, and dynamic openness of complex organisms and explored the laws of systems from a global perspective. In the context of reductionism, antidepressant development formerly focused on advanced technology and molecular details, clear targets and mechanisms, but the clinical results were often unsatisfactory. PURPOSE: MDD represents an aggregate of different and highly diverse disease subtypes. The co-occurrence of stress-induced nonrandom multimorbidity is widespread, whereas only a fraction of the potential clusters are well known, such as the MDD-FGID cluster. Mapping these clusters, and determining which are nonrandom, is vital for discovering new mechanisms, developing treatments, and reconfiguring services to better meet patient needs. STUDY DESIGN: Acute stress 15-minute forced swimming (AFS) or CUMS protocols can induce the nonrandom MDD-FGID cluster. Multiple biological processes of rats with depression-like behaviours and gastrointestinal dysmobility will be captured under conditions of stress, and the Fructus Aurantii-Rhizoma Chuanxiong (ZQCX) decoction will be utilized to dock the MDD-FGID cluster. METHODS/RESULTS: Here, Rhizoma Chuanxiong, one of the seven components of Chaihu-shugan-San, elicited the best antidepressant effect on CUMS rats, followed by Fructus Aurantii. ZQCX reversed AFS-induced depression-like behaviours and gastrointestinal dysmobility by regulating the glutamatergic system, AMPAR/BDNF/mTOR/synapsin I pathway, ghrelin signalling and gastrointestinal nitric oxide synthase. Based on the bioethnopharmacological analysis strategy, the determined meranzin hydrate (MH) and senkyunolide I (SI) by UPLC-PDA, simultaneously absorbed by the jejunum and hippocampus of rats, have been considered major absorbed bioactive compounds acting on behalf of ZQCX. Cotreatment with MH and SI at an equivalent dose in ZQCX synergistically replicated over 50.33 % efficacy of the parent formula in terms of antidepressant and prokinetic actions by modulating neuroinflammation and ghrelin signalling. CONCLUSION: Brain-centric mind shifts require the integration of multiple central and peripheral systems and the elucidation of the underlying neurobiological mechanisms that ultimately contribute to novel therapeutic options. Ghrelin signalling and the immune system may partially underlie multimorbidity vulnerability, and ZQCX anchors stress-induced MDD-FGID clusters by docking them. Combining the results of micro details with the laws of the macro world may be more effective in finding treatments for MDD.


Asunto(s)
Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Estrés Psicológico , Animales , Medicamentos Herbarios Chinos/farmacología , Estrés Psicológico/tratamiento farmacológico , Masculino , Ratas , Antidepresivos/farmacología , Modelos Animales de Enfermedad , Enfermedades Gastrointestinales/tratamiento farmacológico , Depresión/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Motilidad Gastrointestinal/efectos de los fármacos , Sistemas Neurosecretores/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Citrus/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo
7.
Biomed Pharmacother ; 173: 116425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490155

RESUMEN

Depression is a common mental health disorder, and in recent years, the incidence of various forms of depression has been on the rise. Most medications for depression are highly dependency-inducing and can lead to relapse upon discontinuation. Therefore, novel treatment modalities and therapeutic targets are urgently required. Traditional Chinese medicine (TCM) offers advantages in the treatment of depression owing to its multi-target, multi-dimensional approach that addresses the root cause of depression by regulating organ functions and balancing Yin and Yang, with minimal side effects. Cynaroside (CNS), an extract from the traditional Chinese herb honeysuckle, is a flavonoid compound with antioxidant properties. In this study, network pharmacology identified 44 potential targets of CNS associated with depression and several highly correlated inflammatory signaling pathways. CNS alleviated LPS-induced M1 polarization and the release of inflammatory factors in BV-2 cells. Transcriptomic analysis and validation revealed that CNS reduced inflammatory polarization, lipid peroxidation, and ferroptosis via the IRF1/SLC7A11/GPX4 signaling pathway. In vivo experiments showed that CNS treatment had effects similar to those of fluoxetine (FLX). It effectively ameliorated anxiety-, despair-, and anhedonia-like states in chronic unpredictable mild stress (CUMS)-induced mice and reduced microglial activation in the hippocampus. Thus, we conclude that CNS exerts its therapeutic effect on depression by inhibiting microglial cells from polarizing into the M1 phenotype and reducing inflammation and ferroptosis levels. This study provides further evidence that CNS is a potential antidepressant, offering new avenues for the treatment of depression.


Asunto(s)
Depresión , Ferroptosis , Glucósidos , Luteolina , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Microglía/metabolismo , Hipocampo , Conducta Animal , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad
8.
PLoS One ; 19(3): e0300529, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38498506

RESUMEN

Behavioral thresholds define the lowest stimulus intensities sufficient to elicit a behavioral response. Establishment of baseline behavioral thresholds during development is critical for proper responses throughout the animal's life. Despite the relevance of such innate thresholds, the molecular mechanisms critical to establishing behavioral thresholds during development are not well understood. The acoustic startle response is a conserved behavior whose threshold is established during development yet is subsequently acutely regulated. We have previously identified a zebrafish mutant line (escapist) that displays a decreased baseline or innate acoustic startle threshold. Here, we identify a single base pair substitution on Chromosome 25 located within the coding sequence of the synaptotagmin 7a (syt7a) gene that is tightly linked to the escapist acoustic hypersensitivity phenotype. By generating animals in which we deleted the syt7a open reading frame, and subsequent complementation testing with the escapist line, we demonstrate that loss of syt7a function is not the cause of the escapist behavioral phenotype. Nonetheless, escapist mutants provide a powerful tool to decipher the overlap between acute and developmental regulation of behavioral thresholds. Extensive behavioral analyses reveal that in escapist mutants the establishment of the innate acoustic startle threshold is impaired, while regulation of its acute threshold remains intact. Moreover, our behavioral analyses reveal a deficit in baseline responses to visual stimuli, but not in the acute regulation of responses to visual stimuli. Together, this work eliminates loss of syt7a as causative for the escapist phenotype and suggests that mechanisms that regulate the establishment of behavioral thresholds in escapist larvae can operate independently from those regulating acute threshold regulation.


Asunto(s)
Reflejo de Sobresalto , Pez Cebra , Animales , Reflejo de Sobresalto/genética , Pez Cebra/genética , Emparejamiento Base , Estimulación Acústica , Conducta Animal/fisiología
9.
Biotechniques ; 76(5): 174-182, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38425192

RESUMEN

Characterizing swimming behavior can provide a holistic assessment of the health, physiology and ecology of microfaunal species when done in conjunction with measuring other biological parameters. However, tracking and quantifying microfauna swimming behavior using existing automated tools is often difficult due to the animals' small size or transparency, or because of the high cost, expertise, or labor needed for the analysis. To address these issues, we created a cost-effective, user-friendly protocol for behavior analysis that employs the free software packages HitFilm and ToxTrac along with the R package 'trajr' and used the method to quantify the behavior of rotifers. This protocol can be used for other microfaunal species for which investigators may face similar issues in obtaining measurements of swimming behavior.


Asunto(s)
Programas Informáticos , Natación , Natación/fisiología , Animales , Conducta Animal/fisiología , Rotíferos/fisiología
10.
Eur Rev Med Pharmacol Sci ; 28(3): 1202-1212, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38375725

RESUMEN

OBJECTIVE: Standard phytochemical investigations were performed to identify the secondary metabolites in the methanol extract of Chaetocarpus castanocarpus bark (MECC) and investigate the neuropharmacological potential of MECC in Swiss albino mice. MATERIALS AND METHODS: Swiss albino mice were used in the forced swimming test (FST) and tail suspension test (TST) to evaluate the antidepressant effect of MECC. Also, the hole board test (HBT) and elevated plus maze (EPM) were conducted to examine anxiolytic activities. In contrast, the open field test (OFT) and hole cross test (HCT) were employed to evaluate sleeping disorders. RESULTS: Alkaloids, glycosides, flavonoids, terpenoids, coumarins, and tannins are only a few secondary metabolites identified in MECC by qualitative and quantitative phytochemical investigations. The oral administration of MECC considerably shortened the immobility duration during FST and TST. Encouraging dose-dependent anxiolytic effects were also observed in all relevant experiments compared to the control. Additionally, during the OFT and HCT assessment, a noteworthy decline in the locomotor activities of the experimental animals was observed. CONCLUSIONS: The results of this investigation suggest that the Chaetocarpus castanocarpus bark is a possible source of therapeutic candidates for treating neurological disorders.


Asunto(s)
Ansiolíticos , Ratones , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Hipnóticos y Sedantes/farmacología , Corteza de la Planta , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Conducta Animal , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Metanol/farmacología , Fitoquímicos/farmacología
11.
J Ethnopharmacol ; 325: 117891, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38331122

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Parishin C (Par), a prominent bioactive compound in Gastrodia elata Blume with little toxicity and shown neuroprotective effects. However, its impact on depression remains largely unexplored. AIM OF THE STUDY: This study aims to investigate the antidepressant effects of Par using a chronic social defeat stress (CSDS) mouse model and elucidate its molecular mechanisms. MATERIALS AND METHODS: The CSDS-induced depression mouse model was used to evaluate the therapeutic efficacy of Par. The social interaction test (SIT) and sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were conducted to assess the effects of Par on depressive-like behaviours. The levels of corticosterone, neurotransmitters (5-HT, DA and NE) and inflammatory cytokines (IL-1ß, TNF-α, and IL-6) were evaluated by enzyme-linked immunosorbent assay (ELISA). Activation of a microglia was assessed by immunofluorescence labeling Iba-1. The protein expressions of NLRP3, ASC, caspase-1, and IL-6 verified by Western blot. RESULT: Oral administration of Par (4 and 8 mg/kg) and fluoxetine (10 mg/kg, administration significantly ameliorate depression-like behaviors induced by CSDS, as shown by the increase social interaction in SIT, increase sucrose preference in SPT and the decrease immobility in TST and FST. Par administration decreased serum corticosterone level and increased the 5-HT, DA and NE concentration in the hippocampus and prefrontal cortex. Furthermore, Par treatment suppressed microglial activation (Iba1) as well as reduced levels of IL-1ß, TNF-α, and IL-6) with decreased protein expressions of NLRP3, ASC, caspase-1, and IL-6. CONCLUSIONS: our study provides the first evidence that Par exerts antidepressant-like effects in mice with CSDS-induced depression. This effect appears to be mediated by the normalization of neurotransmitter and corticosterone levels, inhibition of NLRP3 inflammasome activation. This newfound antidepressant property of Par offers a novel perspective on its pharmacological effects, providing valuable insights into its potential therapeutic and preventive applications in depression treatment.


Asunto(s)
Glucósidos , Proteína con Dominio Pirina 3 de la Familia NLR , Factor de Necrosis Tumoral alfa , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Derrota Social , Corticosterona , Serotonina/metabolismo , Conducta Animal , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/metabolismo , Hipocampo , Sacarosa/metabolismo , Caspasas/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad
12.
J Ethnopharmacol ; 326: 117923, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38367929

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoyaosan (XYS) is a traditional prescription for the treatment of liver depression and qi stagnation, and pharmacological studies have shown that XYS has great potential to reverse depression. However, anti-depression targets and the mechanism of XYS are still not entirely clear. AIM OF THE STUDY: The present study aims to explore and verify the anti-depression mechanism of XYS. MATERIALS AND METHODS: The antidepressant effect of XYS was assessed in rats with depression induced by chronic unpredictable mild stimulation (CUMS). The levels of 5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE) in different brain regions were measured using ELISA. The expression of organic cation transporters (Octs) were detected by western blot and immunohistochemical techniques. Then, Decynium-22 (D22), an Octs inhibitor, was injected into the prefrontal cortex (PFC) to verify the correlation between Octs and depression-like behavior. Then, the effects of XYS on the behavior, neurotransmitter concentration, and Octs expression in D22-induced rats were examined. Finally, primary astrocytes were used to verify the mechanism of XYS exerting anti-depressant activity by regulating Octs. RESULTS: The result showed that XYS had a significant positive impact on the behavior of depression rats induced by CUMS. XYS also improved the secretion of 5-HT, DA, and NE in the PFC, as well as the promotion of Oct1, Oct2, and Oct3 expression in the PFC. These results suggest that XYS has the potential to alleviate depression by enhancing the secretion of neurotransmitters. This may be related to XYS regulation of Oct's expression. When the expression of Octs was inhibited in the PFC, rats exhibited behavior similar to depression, and XYS was able to reverse this behavior, indicating that Octs play a significant role in the development of depression and XYS may exert its antidepressant effects through the regulation of Octs. Furthermore, the study also found that dopamine uptake decreased after inhibiting the expression of Octs, and XYS-containing serum could reverse the downregulation of Oct1 and Oct3 and promote intracellular dopamine homeostasis in the astrocytes. Overall, XYS may exert antidepressant effects by promoting dopamine uptake to improve neurotransmitter transport by regulating the protein expression of Oct1 and Oct3 in astrocytes. CONCLUSIONS: The antidepressant effect of XYS may be attributed to its ability to regulate the expression of Oct1 and Oct3 in astrocytes of the PFC, thereby promoting neurotransmitter transport.


Asunto(s)
Astrocitos , Depresión , Medicamentos Herbarios Chinos , Ratas , Animales , Depresión/tratamiento farmacológico , Depresión/etiología , Depresión/metabolismo , Dopamina , Serotonina , Conducta Animal , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Corteza Prefrontal , Neurotransmisores
13.
J Ethnopharmacol ; 324: 117775, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38224793

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Perillae Folium, the leaves and twigs of Perilla frutescens (L.) Britton, has been included in many traditional Chinese medicine herbal formulas to treat depression. However, the precise antidepressant mechanism of the essential oil from Perillae Folium (PFEO) has not been fully investigated. AIM OF THE STUDY: To assess the effects and potential mechanisms of PFEO on depression using animal models and network pharmacology analysis. MATERIALS AND METHODS: PFEO was intranasally administered to a mouse model of social defeat stress (SDS). The antidepressant effects of PFEO on SDS-induced mice were evaluated using behavioral tests. Enzyme-linked immunosorbent assay (ELISA) and western blot were performed to measure the levels of depression-related biomarkers in the hippocampus and serum of the mice. The chemical compounds of PFEO were determined using gas chromatography-mass spectrometry (GC-MS). Network pharmacology and molecular docking analyses were conducted to investigate the potential bioactive components of PFEO and the mechanisms underlying the antidepressant effects. To validate the mechanisms of the bioactive compounds, in vitro models using PC12 and BV2 cells were established and the blood-brain barrier (BBB) permeability was evaluated. RESULTS: The intranasal administration of PFEO suppressed SDS-induced depression in mice by increasing the time spent in the social zone and the social interactions in the social interaction test and by decreasing the immobility time in the tail suspension and forced swimming tests. Moreover, the PFEO treatment reduced the SDS-induced anxiety-like behavior, as inferred from the increased activity in the central zone observed in the open field test and in the open arms observed in the elevated plus maze test. PFEO administration recovered the SDS-induced decrease in the levels of 5-HT, NE, gamma-aminobutyric acid (GABA), and p-ERK in the hippocampus of mice. Furthermore, the increased serum corticosterone level was also attenuated by the PFEO treatment. A total of 21 volatile compounds were detected in PFEO using GC-MS, among which elemicin (15.52%), apiol (15.16%), and perillaldehyde (12.79%) were the most abundant ones. The PFEO compounds targeted 32 depression-associated genes, which were mainly related to neural cells and neurotransmission pathways. Molecular docking indicated good binding affinities between the bioactive components of PFEO (apiol, ß-caryophyllene, elemicin, and myristicin) and the key targets, including ACHE, IL1B, IL6, MAOB, SLC6A2, SLC6A3, SLC6A4, and tumor necrosis factor. Among the four compounds, ß-caryophyllene, elemicin, and myristicin were more effective in reducing neurotoxicity and neuroinflammation. Elemicin showed the highest BBB permeability rate. CONCLUSIONS: This study shows the antidepressant activities of PFEO in an SDS-induced mouse model and suggests its potential mechanisms of action: regulation of the corticosterone levels, hippocampal neurotransmitters, and ERK signaling. Apiol, ß-caryophyllene, elemicin, and myristicin may be the main contributors to the observed effects induced by PFEO. Further studies are needed to fully elucidate the underlying mechanisms and the main PFEO bioactive components.


Asunto(s)
Derivados de Alilbenceno , Depresión , Dioxolanos , Aceites Volátiles , Sesquiterpenos Policíclicos , Pirogalol/análogos & derivados , Animales , Ratones , Depresión/tratamiento farmacológico , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Corticosterona , Administración Intranasal , Simulación del Acoplamiento Molecular , Derrota Social , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal , Hipocampo , Modelos Animales de Enfermedad
14.
Toxicol Appl Pharmacol ; 483: 116830, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38246289

RESUMEN

BACKGROUND: There is strong evidence that prenatal infection during a specific period of brain development increases the risk of neurodevelopmental disorders, partly through immune-inflammatory pathways. This suggests that anti-inflammatory agents could prevent these disorders by targeting the maternal inflammatory response. In the present study, we used a rat model of maternal immune activation (MIA) to examine whether maternal quercetin (QE) supplementation can alleviate behavioral deficits and inflammatory mediators in the prefrontal cortex (PFC) and hippocampus of adult male offspring. METHODS: Pregnant rats were supplemented with QE (50 mg/kg) or vehicle throughout pregnancy and injected with either lipopolysaccharide (0.5 mg/kg) or saline on gestational days 15/16. At postnatal day 60, we evaluated the offspring's behavior, hippocampal and prefrontal cortex glial density, pro-inflammatory gene expression, and neuronal survival. RESULTS: Our data showed that maternal QE supplementation can prevent working and recognition memory impairments in adult MIA offspring. This behavioral improvement correlates with the decrease in MIA-induced expression of pro-inflammatory genes, microglia, and astrocyte densities, without affecting neuronal survival, in both PFC and CA1 hippocampus areas. CONCLUSION: Therefore, our study supports the potential preventive effect of QE on MIA-induced behavioral dysfunctions, at least in part, by suppressing the glial-mediated inflammatory response.


Asunto(s)
Lipopolisacáridos , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Humanos , Ratas , Animales , Masculino , Lipopolisacáridos/toxicidad , Quercetina/farmacología , Quercetina/uso terapéutico , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Cognición , Suplementos Dietéticos , Conducta Animal , Modelos Animales de Enfermedad
15.
Phytother Res ; 38(1): 231-240, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37857401

RESUMEN

To explore the antidepressant effects and targets of atractylenolide I (ATR) through a network pharmacological approach. Relevant targets of ATR and depression analyzed by network pharmacology were scored (identifying 5-HT2A targets). Through elevated plus maze, open field, tail suspension, and forced swimming tests, the behavioral changes of mice with depression (chronic unpredictable mild stress [CUMS]) were examined, and the levels of neurotransmitters including serotonin, dopamine, and norepinephrine (5-HT, DA, and NE) were determined. The binding of ATR to 5-HT2A was verified by small molecular-protein docking. ATR improved the behaviors of CUMS mice, elevated their levels of neurotransmitters 5-HT, DA, and NE, and exerted a protective effect on their nerve cell injury. After 5-HT2A knockout, ATR failed to further improve the CUMS behaviors. According to the results of small molecular-protein docking and network pharmacological analysis, ATR acted as an inhibitor by binding to 5-HT2A. ATR can improve the behaviors and modulate the neurotransmitters of CUMS mice by targeting 5-HT2A.


Asunto(s)
Depresión , Lactonas , Serotonina , Sesquiterpenos , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Serotonina/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Neurotransmisores/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad , Hipocampo , Conducta Animal
16.
J Exp Biol ; 227(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38044836

RESUMEN

Pollen is the protein resource for Apis mellifera and its selection affects colony development and productivity. Honey bee foragers mainly lose their capacity to digest pollen, so we expect that those pollen constituents that can only be evaluated after ingestion will not influence their initial foraging preferences at food sources. We predicted that pollen composition may be evaluated in a delayed manner within the nest, for example, through the effects that the pollen causes on the colony according to its suitability after being used by in-hive bees. To address whether pollen foraging is mediated by in-hive experiences, we conducted dual-choice experiments to test the avoidance of pollen adulterated with amygdalin, a deterrent that causes post-ingestion malaise. In addition, we recorded pollen selection in colonies foraging in the field after being supplied or not with amygdalin-adulterated pollen from one of the dominant flowering plants (Diplotaxis tenuifolia). Dual-choice experiments revealed that foragers did not avoid adulterated pollens at the foraging site; however, they avoided pollen that had been offered adulterated within the nest on the previous days. In field experiments, pollen samples from colonies supplied with amygdalin-adulterated pollen were more diverse than controls, suggesting that pollen foraging was biased towards novel sources. Our findings support the hypothesis that pollen assessment relies on in-hive experiences mediated by pollen that causes post-ingestive malaise.


Asunto(s)
Amigdalina , Abejas , Animales , Conducta Animal , Comunicación Animal , Polen , Alimentos
17.
Behav Brain Res ; 459: 114788, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38036263

RESUMEN

Does it make a difference what we eat when it comes to our mental health? Food and nutrients are essential not only for human biology and physical appearance but also for mental and emotional well-being. There has been a significant increase in the favourable effects of dietary supplements in the treatment of depressive state in the latest days. Co-supplements which can be a great contribution in the management of depression from the future perspective and might help to reduce standard anti-depressant drug doses, which can be a strategic way to reduce the side effect of standard anti-depressants drugs. This study was designed to evaluate and compare the anti-depressant effects of cholecalciferol-D3 (V.D3), n-3 polyunsaturated fatty acid (PUFA), and a combination of V.D3 + n-3 PUFA with fluoxetine treatment in chronic unpredictable mild stress (CUMS) induced depression in the mice model. We established CUMS depressant mice model and treated CUMS mice with V.D3, n-3 PUFA, and a combination of V.D3 + n-3 PUFA with fluoxetine. Behavioral changes were measured by the forced swim and tail suspension test. Oxidative stress markers and anti-depressant activity were assessed through parameters such as superoxide dismutase, reduced glutathione, lipid peroxidation, and serum corticosterone levels. Additionally, we measured the levels of neurotransmitters dopamine and serotonin. CUMS induced mice displayed depressive-like behaviours. Moreover, cholecalciferol-D3, n-3 PUFA, and a combination of Cholecalciferol-D3 + n-3 PUFA with fluoxetine treatment attenuated the depressive-like behaviour in CUMS mice accompanied with suppression of oxidative stress markers by up-regulated the expression of an antioxidant signalling pathway. The results suggested that treatment of cholecalciferol-D3, n-3 PUFA, and a combination of Cholecalciferol-D3 + n-3 PUFA with fluoxetine significantly ameliorated depressive-like behaviours in CUMS induced depression in mice. To delve further into the implications of these findings, future studies could explore the specific molecular mechanisms underlying the observed effects on oxidative stress markers and the antioxidant signaling pathway. This could provide valuable insights into the potential of dietary supplements in the management of depression and help in reducing the reliance on conventional antidepressant medications, thus improving the overall quality of treatment for this prevalent mental health condition.


Asunto(s)
Depresión , Ácidos Grasos Omega-3 , Ratones , Humanos , Animales , Depresión/tratamiento farmacológico , Depresión/etiología , Depresión/metabolismo , Fluoxetina/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Colecalciferol/farmacología , Colecalciferol/metabolismo , Suplementos Dietéticos , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Conducta Animal
18.
J Ethnopharmacol ; 321: 117489, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38012973

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Litsea glaucescens K. (Lauraceae) is a small tree from the Mexican and Central American temperate forests, named as "Laurel". Its aromatic leaves are ordinarily consumed as condiments, but also are important in Mexican Traditional Medicine, and among the most important non wood forest products in this area. The leaves are currently used in a decoction for the relief of sadness by the Mazahua ethnic group. Interestingly, "Laurel" has a long history. It was named as "Ehecapahtli" (wind medicine) in pre-Columbian times and applied to heal maladies correlated to the Central Nervous System, among them depression, according to botanical texts written in the American Continent almost five centuries ago. AIM OF THE STUDY: Depression is the first cause of incapacity in the world, and society demands alternative treatments, including aromatherapy. We have previously demonstrated the antidepressant-like activity of L. glaucescens leaves' essential oil (LEO), as well as their monoterpenes linalool, and beta-pinene by intraperitoneal route in a mice behavioral model. Here we now examined if LEO and linalool exhibit this property and anxiolytic activity when administered to mice by inhalation. We also investigated if these effects occur by BDNF pathway activation in the brain. MATERIALS AND METHODS: The LEO was prepared by distillation with water steam and analyzed by gas chromatography-mass spectrometry (GC-MS). The monoterpenes linalool, eucalyptol and ß-pinene were identified and quantified. Antidepressant type properties were determined with the Forced Swim Test (FST) on mice previously exposed to LEO or linalool in an inhalation chamber. The spontaneous locomotor activity and the sedative effect were assessed with the Open Field Test (OFT), and the Exploratory Cylinder (EC), respectively. The anxiolytic properties were investigated with the Elevated Plus Maze Apparatus (EPM) and the Hole Board Test (HBT). All experiments were video documented. The mice were subjected to euthanasia, and the brain hippocampus and prefrontal cortex were dissected. RESULTS: The L. glaucescens essential oil (LEO) contains 31 compounds according to GC/MS, including eucalyptol, linalool and beta-pinene. The LEO has anxiolytic effect by inhalation in mice, as well as linalool, and ß-pinene, as indicated by OFT and EC tests. The LEO and imipramine have antidepressant like activity in mice as revealed by the FST; however, linalool and ketamine treatments didn't modify the time of immobility. The BDNF was increased in FST in mice treated with LEO in both areas of the brain as revealed by Western blot; but did not decrease the level of corticosterone in plasma. The OFT indicated that LEO and imipramine didn't reduce the spontaneous motor activity, while linalool and ketamine caused a significant decrease. CONCLUSION: Here we report by the first time that L. glaucescens leaves essential oil has anxiolytic effect by inhalation in mice, as well as linalool, and ß-pinene. This oil also maintains its antidepressant-like activity by this administration way, similarly to the previously determined intraperitoneally. Since inhalation is a common administration route for humans, our results suggest L. glaucescens essential oil deserve future investigation due to its potential application in aromatherapy.


Asunto(s)
Ansiolíticos , Ketamina , Lauraceae , Litsea , Aceites Volátiles , Humanos , Ratones , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Aceites Volátiles/química , Factor Neurotrófico Derivado del Encéfalo , Imipramina/farmacología , Eucaliptol/farmacología , Ketamina/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/química , Monoterpenos/farmacología , Conducta Animal
19.
Brain Behav Immun ; 116: 349-361, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142918

RESUMEN

Maternal immune activation (MIA) during pregnancy increases the risk for the unborn foetus to develop neurodevelopmental conditions such as autism spectrum disorder and schizophrenia later in life. MIA mouse models recapitulate behavioural and biological phenotypes relevant to both conditions, and are valuable models to test novel treatment approaches. Selenium (Se) has potent anti-inflammatory properties suggesting it may be an effective prophylactic treatment against MIA. The aim of this study was to determine if Se supplementation during pregnancy can prevent adverse effects of MIA on offspring brain and behaviour in a mouse model. Selenium was administered via drinking water (1.5 ppm) to pregnant dams from gestational day (GD) 9 to birth, and MIA was induced at GD17 using polyinosinic:polycytidylic acid (poly-I:C, 20 mg/kg via intraperitoneal injection). Foetal placenta and brain cytokine levels were assessed using a Luminex assay and brain elemental nutrients assessed using inductively coupled plasma- mass spectrometry. Adult offspring were behaviourally assessed using a reinforcement learning paradigm, the three-chamber sociability test and the open field test. MIA elevated placental IL-1ß and IL-17, and Se supplementation successfully prevented this elevation. MIA caused an increase in foetal brain calcium, which was prevented by Se supplement. MIA caused in offspring a female-specific reduction in sociability, which was recovered by Se, and a male-specific reduction in social memory, which was not recovered by Se. Exposure to poly-I:C or selenium, but not both, reduced performance in the reinforcement learning task. Computational modelling indicated that this was predominantly due to increased exploratory behaviour, rather than reduced rate of learning the location of the food reward. This study demonstrates that while Se may be beneficial in ameliorating sociability deficits caused by MIA, it may have negative effects in other behavioural domains. Caution in the use of Se supplementation during pregnancy is therefore warranted.


Asunto(s)
Trastorno del Espectro Autista , Efectos Tardíos de la Exposición Prenatal , Selenio , Ratones , Animales , Femenino , Embarazo , Masculino , Humanos , Conducta Animal/fisiología , Selenio/farmacología , Placenta , Modelos Animales de Enfermedad , Poli I-C/farmacología , Suplementos Dietéticos
20.
J Ethnopharmacol ; 320: 117415, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-37977425

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Central nervous system (CNS) diseases can be diverse and usually present with comorbidity, as in the case of depression and anxiety. Despite alternatives like Psilocybe mushrooms for mental health there is no basic research to evidence their CNS benefits. AIM OF THE STUDY: To evaluate the anxiolytic- and antidepressant-like effects, as well as the acute toxicity of P. cubensis mushroom. MATERIAL AND METHODS: First, the acute toxicity (LD50) of P. cubensis (2000 mg/kg) was determined after the esophageal (p.o.) and intraperitoneal (i.p.) route of administration. The rota-rod test and electroencephalogram (EEG) were included to assess CNS toxicity in free moving mice. Anxiolytic (ambulatory or exploratory and rearing behaviors) and antidepressant behavioral responses were assayed in the open-field, plus-maze, and forced swimming test, respectively, after administration of 1000 mg/kg, p.o., of the whole P. cubensis mushroom or the polar aqueous (AQ) or methanolic (MeOH) extractions (1, 10, and/or 100 mg/kg, i.p.) in comparison to the reference drugs buspirone (4 mg/kg, i.p.), fluoxetine and/or imipramine (10 mg/kg, s.c. and i.p., respectively). A chemical analysis of the AQ and MeOH extractions was performed to detect psilocybin and/or psilocin by using UHPLC. RESULTS: Neurotoxic effects of P. cubensis mushroom administered at high doses were absent in mice assessed in the rota-rod test or for EEG activity. A LD50 > 2000 mg/kg was calculated by p.o. or i.p. administration. While significant and/or dose-response antidepressant-like effects were produced with the whole P. cubensis mushroom, p.o., and after parenteral administration of the AQ or MeOH extractions resembling the effects of the reference drugs. Behavioral responses were associated with an anxiolytic-like effect in the open-field as corroborated in the plus-maze tests. The presence of psilocybin and psilocin was mainly characterized in the AQ extraction. CONCLUSION: Our results provide preclinical evidence of the anxiolytic- and antidepressant-like effects of the P. cubensis mushroom without producing neurotoxicity after enteral or parenteral administration, where psilocybin and psilocin were identified mainly after AQ extraction. This study reinforces the benefits of the P. cubensis mushroom in mental health and therapy for anxiety and depression.


Asunto(s)
Agaricales , Ansiolíticos , Psilocybe , Animales , Ratones , Agaricales/química , Ansiolíticos/farmacología , Ansiolíticos/toxicidad , Antidepresivos/farmacología , Antidepresivos/toxicidad , Conducta Animal , Metanol , Modelos Teóricos , Psilocibina/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA