Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Environ Public Health ; 2020: 4749765, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32377205

RESUMEN

The increase of urbanization level has led to the rapid increase of impervious surface area (ISA). The aim of this work is to clarify the relationship between the ISA and water quality and lay a foundation for the improvement and protection of the water quality in the basin. Taking the Fuxian Lake Basin in Yunnan Province as an example, based on the Landsat ETM+ remote sensing image and the Gram-Schmidt (GS) image fusion algorithm, the four-terminal model and the linear spectral mixture model (LSMM) were used to extract the impervious surface of the watershed from 2006 to 2015. And statistical methods were used to distinguish its relationship with water quality. The results show that the four-terminal model and the linear spectral mixture model can effectively extract the impervious surface information of the Fuxian Lake Basin. The average root mean square error (RMS) of the image decomposition results from 2006 to 2015 was less than 0.02. In the past 10 years, the ISA has changed significantly in the Fuxian Lake Basin. The ISA showed an overall upward trend from 2006 to 2015. It increased from 24.73 km2 in 2006 to 35.14 km2 in 2015, an increase of 10.81 km2. From the value anomaly, the ISA in 2006 and 2009 is lower than the multiyear average, and those in the other years are higher than the multiyear average. The percentage of ISA in the basin was significantly positively correlated with Chemical Oxygen Demand-Mn (CODMn) and total phosphorus (TP) (r is 0.772, 0.763), and the correlation in the flooding season was greater than that in the dry season. The ISA threshold for water quality deterioration is around 10% in the Fuxian Lake Basin. Reducing ISA coverage, controlling ISA to less than 10%, and preventing nonpoint source pollution during flooding season will be the best measures to effectively improve the water quality environment in the basin.


Asunto(s)
Monitoreo del Ambiente , Lagos/química , Contaminación Química del Agua/análisis , Análisis de la Demanda Biológica de Oxígeno , China , Monitoreo del Ambiente/métodos , Fenómenos Geológicos , Modelos Teóricos , Fósforo/análisis , Estaciones del Año , Urbanización , Contaminación Química del Agua/prevención & control
2.
Sci Total Environ ; 664: 865-873, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-30769310

RESUMEN

Intensive agriculture and rapid urbanization have increased nutrient inputs to Lake Taihu in recent decades. This resulted in eutrophication. We aim to better understand the sources of river export of total dissolved nitrogen (TDN) and phosphorus (TDP) to Lake Taihu in relation to critical nutrient loads. We implemented the MARINA-Lake (Model to Assess River Inputs of Nutrients to seAs) model for Lake Taihu. The MARINA-Lake model quantifies river export of dissolved inorganic and organic N and P to the lake by source from sub-basins. Results from the PCLake model are used to identify to what extent river export of nutrients exceeds critical loads. We calculate that rivers exported 61 kton of TDN and 2 kton of TDP to Lake Taihu in 2012. More than half of these nutrients were from human activities (e.g., agriculture, urbanization) in Sub-basins I (north) and IV (south). Most of the nutrients were in dissolved inorganic forms. Diffuse sources contributed 90% to river export of TDN with a relatively large share of synthetic fertilizers. Point sources contributed 52% to river export of TDP with a relatively large share of sewage systems. The relative shares of diffuse and point sources varied greatly among nutrient forms and sub-basins. To meet critical loads, river export of TDN and TDP needs to be reduced by 46-92%, depending on the desired level of chlorophyll-a. There are different opportunities to meet the critical loads. Reducing N inputs from synthetic fertilizers and P from sewage systems may be sufficient to meet the least strict critical loads. A combination of reductions in diffuse and point sources is needed to meet the most strict critical loads. Combining improved nutrient use efficiencies and best available technologies in wastewater treatment may be an effective opportunity. Our study can support the formulation of effective solutions for lake restoration.


Asunto(s)
Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/prevención & control , China , Eutrofización , Lagos/química , Contaminación Química del Agua/estadística & datos numéricos
3.
Sci Total Environ ; 665: 944-958, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30790764

RESUMEN

The objective of this study was to evaluate the impact of bioswales on nutrient pollution in an urban combined sewershed. This evaluation was based on two criteria: the ability of bioswales to (1) remove nutrient pollution from stormwater runoff directly and (2) decrease sewer overflow volumes, which indirectly reduces total sewershed nutrient pollution during a storm event. Bioswales' direct nutrient removal was determined by analyzing nitrogen and phosphorus levels in water samples at seven bioswales located in the Bronx, New York City (NYC) over 42 storm events, while a bioswale's indirect nutrient removal through combined sewer overflow reduction was estimated by quantifying water retention at one of the bioswales. The study results indicated that: 1) the bioswale retained about 40% of stormwater conveyed to it from a drainage area 231 times its size, 2) bioswales leach nutrients into the subsurface, and 3) nitrogen leaching from bioswales varied seasonally, while phosphorus leaching decreased steadily over the study period. Although the studied bioswales leached a median 1.3 kg nitrogen per year into the subsurface, they provided an aggregate decrease in watershed nutrient pollution, from 7.7 to 6 kg nitrogen per year, due to their reduction of combined sewer overflow via stormwater retention.


Asunto(s)
Nitrógeno/análisis , Fósforo/análisis , Eliminación de Residuos Líquidos/instrumentación , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/prevención & control , Humedales , Biodegradación Ambiental , Ciudad de Nueva York
4.
PLoS One ; 14(2): e0210904, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30726233

RESUMEN

The porous spinel oxide nanoparticles, MnCo2O4, were synthesized by citrate gel combustion technique. Morphology, crystallinity and Co/Mn content of modified electrode was characterized and determined by Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction pattern analysis (XRD), simultaneous thermogravimetry and differential thermal analysis (TG/DTA). Nanoparticles were used for modification of glassy carbon electrode (GCE) and new sensor was applied for simultaneous determination of Pb(II) and Cd(II) ions in water samples with the linear sweep anodic stripping voltammetry (LSASV).The factors such as pH, deposition potential and deposition time are optimized. Under optimal conditions the wide linear concentration range from 0.05 to 40 µmol/dm3was obtained for Pb(II), with limit of detection (LOD) of 8.06 nmol/dm3 and two linear concentration ranges were obtained for Cd(II), from 0.05 to 1.6 µmol/dm3 and from 1.6 to 40 µmol/dm3, with calculated LOD of 7.02 nmol/dm3. The selectivity of the new sensor was investigated in the presence of interfering ions. The sensor is stable and it gave reproducible results. The new sensor was succesfully applied on determination of heavy metals in natural waters.


Asunto(s)
Cadmio/análisis , Plomo/análisis , Nanopartículas/química , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/prevención & control , Óxido de Aluminio/química , Cadmio/toxicidad , Catálisis , Cationes Bivalentes/análisis , Cobalto/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Plomo/toxicidad , Óxido de Magnesio/química , Compuestos de Manganeso/química , Porosidad , Contaminantes Químicos del Agua/toxicidad
5.
Environ Sci Pollut Res Int ; 26(4): 3501-3516, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30519911

RESUMEN

Three different types of zirconium-modified bentonites (ZrMBs) including zirconium-modified original bentonite (ZrMOB), zirconium-modified magnesium-pretreated bentonite (ZrMMgB), and zirconium-modified calcium-pretreated bentonite (ZrMCaB) were synthesized and used as active covering materials to suppress the release of phosphorus (P) from sediments. To assess the covering efficiency of ZrMBs to inhibit P release from sediments, we examined the impact of ZrMB covering layer on P mobilization in sediments at different depths as well as the release of P through the interface between sediment and overlying water (SWI) by use of simulating P release control experiments and diffusive gradients in thin films (DGT) technology. The results showed that the amount of soluble reactive P (SRP) in the overlying water greatly decreased after covering with ZrMBs. Moreover, both pore water SRP and DGT-liable P (DGT-P) in the top sediments decreased after capping with ZrMBs. An obvious stratification of DGT-P was observed along the vertical direction after covering with ZrMBs, and static and active layers were found in the top sediment and in the lower sediment directly below the static layer, respectively. Furthermore, ZrMB covering led to the change of P species from easily released P to relatively or very stable P, making P in the top sediment more stable compared to that without ZrMB covering. Besides, an overwhelming majority of P immobilized by ZrMBs is hard to be re-released into the water column in a common environment. Overall, the above results demonstrate that sediment covering with ZrMBs could effectively prevent the transport of SRP from sediments into the overlying water through the SWI, and the control of P transport into the overlying water by ZrMB covering could be mostly due to the immobilization of pore water SRP, DGT-P, and mobile P in the top sediment by ZrMBs.


Asunto(s)
Bentonita/química , Sedimentos Geológicos/química , Fósforo/química , Contaminantes del Suelo/química , Contaminantes Químicos del Agua/química , Contaminación Química del Agua/prevención & control , Circonio/química
6.
Sci Total Environ ; 653: 264-273, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30412871

RESUMEN

The attention of current work was on the fabrication of effective nanoadsorbent of hydroxyapatite (HAp) for the controlled release of atrazine (ATZ) formulation. The ATZ-HAp complex (ATZ@HAp) was able to inhibit the growth of Brassica sp. under in situ conditions. This developed methodology aspires to cease the agricultural runoffs of ATZ applied with the HAp adjuvant and ensure their effective functioning. The efficacy of the protocol was mainly accomplished by adsorbing ATZ over the surface of HAp NPs that restricted its premature runoff and promoted the prolonged herbicidal efficiency. The influence of fundamental parameters i.e., HAp dose, ATZ dose and initial pH on the adsorption process was investigated systematically. The suitability of ATZ@HAp complex for real world application was adjudged after proofing its toxicological behaviour and its role in Zea mays plantations. The complex was found to be non-toxic and nurturing due to its phosphate rich nature. Further investigations of ATZ@HAp complex and its effect on the non-target species will help in establishing an effective framework for their commercial use in agricultural practices.


Asunto(s)
Agricultura/métodos , Atrazina/administración & dosificación , Durapatita/química , Herbicidas/administración & dosificación , Nanoestructuras/química , Contaminación Química del Agua/prevención & control , Adsorción , Contaminantes Químicos del Agua/análisis , Zea mays
7.
J Environ Qual ; 47(5): 1232-1241, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30272772

RESUMEN

Stormwater filters are a structural best management practice designed to reduce dissolved P losses from runoff. Various industrial byproducts are suitable for use as P sorbing materials (PSMs) for the treatment of drainage water; P sorption by PSMs varies with material physical and chemical properties. Previously, P removal capacity by PSMs was estimated using chemical extractions. We determined the speciation of P when reacted with various PSMs using X-ray absorption near edge structure (XANES) spectroscopy. Twelve PSMs were reacted with P solution in the laboratory under batch or flow-through conditions. In addition, three slag materials were collected from working stormwater filtration structures. Phosphorus K-edge XANES spectra were collected on each reacted PSM and compared with spectra of 22 known P standards using linear combination fitting in Athena. We found evidence of formation of a variety of Ca-, Al-, and/or Fe-phosphate minerals and sorbed phases on the reacted PSMs, with the exact speciation influenced by the chemical properties of the original unreacted PSMs. We grouped PSMs into three general categories based on the dominant P removal mechanism: (i) Fe- and Al-mediated removal [i.e., adsorption of P to Fe- or Al-(hydro-)oxide minerals and/or precipitation of Fe- or Al-phosphate minerals]; (ii) Ca-mediated removal (i.e., precipitation of Ca-phosphate mineral); and (iii) both mechanisms. We recommend the use of Fe/Al sorbing PSMs for use in stormwater filtration structures where stormwater retention time is limited because reaction of P with Fe or Al generally occurs more quickly than Ca-P precipitation.


Asunto(s)
Fósforo/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Adsorción , Filtración , Contaminación Química del Agua/prevención & control , Contaminación Química del Agua/estadística & datos numéricos
8.
Ambio ; 47(8): 884-892, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29730794

RESUMEN

Macrofaunal activities in sediments modify nutrient fluxes in different ways including the expression of species-specific functional traits and density-dependent population processes. The invasive polychaete genus Marenzelleria was first observed in the Baltic Sea in the 1980s. It has caused changes in benthic processes and affected the functioning of ecosystem services such as nutrient regulation. The large-scale effects of these changes are not known. We estimated the current Marenzelleria spp. wet weight biomass in the Baltic Sea to be 60-87 kton (95% confidence interval). We assessed the potential impact of Marenzelleria spp. on phosphorus cycling using a spatially explicit model, comparing estimates of expected sediment to water phosphorus fluxes from a biophysical model to ecologically relevant experimental measurements of benthic phosphorus flux. The estimated yearly net increases (95% CI) in phosphorous flux due to Marenzelleria spp. were 4.2-6.1 kton based on the biophysical model and 6.3-9.1 kton based on experimental data. The current biomass densities of Marenzelleria spp. in the Baltic Sea enhance the phosphorus fluxes from sediment to water on a sea basin scale. Although high densities of Marenzelleria spp. can increase phosphorus retention locally, such biomass densities are uncommon. Thus, the major effect of Marenzelleria seems to be a large-scale net decrease in the self-cleaning capacity of the Baltic Sea that counteracts human efforts to mitigate eutrophication in the region.


Asunto(s)
Ecosistema , Eutrofización , Especies Introducidas , Fósforo/metabolismo , Poliquetos/fisiología , Agua de Mar/análisis , Agua de Mar/parasitología , Contaminación Química del Agua/prevención & control , Animales , Países Bálticos , Biomasa , Sedimentos Geológicos/análisis , Nitrógeno/análisis , Concentración Osmolar , Oxígeno/análisis , Fósforo/efectos adversos , Contaminación Química del Agua/análisis , Contaminación Química del Agua/economía
9.
Environ Sci Pollut Res Int ; 25(13): 12342-12351, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29616475

RESUMEN

The variation trend and growth rate of P were analyzed by the concentration of the phosphorus fraction on surface sediment of Dongting Lake from 2012 to 2016, to reveal the cumulative effect of P in the actual environment. Meanwhile, the adsorption kinetics and adsorption isotherm were employed to examine the P-release possibility of sediment, which predicts the yearly released sediment phosphorus in Dongting Lake. The actual growth rate of TP (Total Phosphorus) is 53 mg·(kg·year)-1 in East Dongting Lake, 39 mg·(kg·year)-1 in South Dongting Lake, and 29 mg·(kg·year)-1 in West Dongting Lake, while the sum of the phosphorus fraction growth rates has little difference from the rate of TP in sediments of the three areas of Dongting Lake. Furthermore, the Elovich model and the Langmuir crossover-type equations are established to present the adsorption characteristic of sediment in Dongting Lake; the result shows that the sediments play a source role for phosphorus in East and South Dongting Lake from zero equilibrium phosphorus concentration (EPC0) in the present situation, but an adsorption effect on TP is shown in West Dongting Lake. When the conditions of environment change are ignored, the maximum P-sorption level in sediments of East Dongting Lake will reach in 2040 according to the actual growth rate of sediments, while that in West Dongting Lake and South Dongting Lake will be in 2046 and 2061, respectively.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos/química , Lagos/química , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/prevención & control , Adsorción , China , Eutrofización
10.
Water Sci Technol ; 77(7-8): 1802-1809, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29676737

RESUMEN

Eutrophication of urban rivers has caused severe environmental problems due to the pollution from point and diffuse sources. Although eutrophication can be alleviated by reducing the input to the river system, fast-treating terminal control technologies, especially under emergent situations, should be developed to reduce risks induced by eutrophication. The present study developed an emergency purification device based on dissolved air flotation (DAF) technology. After equipment commissioning and parameter optimization for applications in the field of engineering, the device was found to effectively remove total phosphorus, chlorophyll a, chemical oxygen demand, and turbidity in water by controlling the coagulant dosage and adjusting the gas-liquid mixing pump parameters. Dissolved air in water could enhance dissolved oxygen, and dissolved oxygen in polluted rivers could be raised from 0.2-2 mg/L to 3-3.5 mg/L. Removal of total nitrogen was poor because the majority of nitrogen contents were dissolved. Finally, DAF has been proven to be a promising technology due to its ease of implementation, low equipment investment requirement, and low operation cost.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Eutrofización , Ríos/química , Contaminación Química del Agua/prevención & control , Purificación del Agua/métodos , Análisis de la Demanda Biológica de Oxígeno , Clorofila/química , Clorofila A , Restauración y Remediación Ambiental/instrumentación , Fósforo/química , Purificación del Agua/instrumentación
11.
Water Res ; 125: 418-426, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28892769

RESUMEN

Landfill leachate is often an important source of emerging organic contaminants including perfluoroalkyl and polyfluoroalkyl substances (PFASs) requiring proper treatment to protect surface water and groundwater resources. This study investigated the occurrence of PFASs in the leachate of a capped landfill site in Singapore and the efficacy of PFASs removal during flow through a constructed wetland (CW) treatment system. The CW treatment system consists of equalization tank, aeration lagoons, sedimentation tank, reed beds and polishing ponds. Target compounds included 11 perfluoroalkyl acids (PFAAs) (7 perfluoroalkyl carboxylic acids (PFCAs) and 4 perfluoroalkane sulfonates (PFSAs)) and 7 PFAA precursors. Although total PFASs concentrations in the leachate varied widely (1269 to 7661 ng/L) over the one-year sampling period, the PFASs composition remained relatively stable with PFCAs consistently being predominant (64.0 ± 3.8%). Perfluorobutane sulfonate (PFBS) concentrations were highly correlated with total PFASs concentrations and could be an indicator for the release of PFASs from this landfill. The release of short-chain PFAAs strongly depended on precipitation whereas concentrations of the other PFASs appeared to be controlled by partitioning. Overall, the CW treatment system removed 61% of total PFASs and 50-96% of individual PFASs. PFAAs were removed most efficiently in the reed bed (42-49%), likely due to the combination of sorption to soils and sediments and plant uptake, whereas most of the PFAA precursors (i.e. 5:3 fluorotelomer carboxylate (5:3 acid), N-substituted perfluorooctane sulfonamides (N-MeFOSAA and N-EtFOSAA)) were removed in the aeration lagoon (>55%) by biodegradation. The sedimentation tank and polishing ponds were relatively inefficient, with only 7% PFASs removal.


Asunto(s)
Biodegradación Ambiental , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/prevención & control , Humedales , Ácidos Carboxílicos/análisis , Monitoreo del Ambiente , Sedimentos Geológicos/química , Agua Subterránea/análisis , Plantas/metabolismo , Singapur , Suelo/química , Sulfonamidas/análisis , Agua/análisis , Contaminación Química del Agua/análisis
12.
Artículo en Inglés | MEDLINE | ID: mdl-28661417

RESUMEN

Eutrophication is a major problem in China. To combat this issue, the country needs to establish water quality targets, monitoring systems, and intelligent watershed management. This study explores a new watershed management method. Water quality is first assessed using a single factor index method. Then, changes in total nitrogen/total phosphorus (TN/TP) are analyzed to determine the limiting factor. Next, the study compares the eutrophication status of two water function districts, using a comprehensive nutritional state index method and geographic information system (GIS) visualization. Finally, nutrient sources are qualitatively analyzed. Two functional water areas in Tianjin, China were selected and analyzed: Qilihai National Wetland Nature Reserve and Yuqiao Reservoir. The reservoir is a drinking water source. Results indicate that total nitrogen (TN) and total phosphorus (TP) pollution are the main factors driving eutrophication in the Qilihai Wetland and Yuqiao Reservoir. Phosphorus was the limiting factor in the Yuqiao Reservoir; nitrogen was the limiting factor in the Qilihai Wetland. Pollution in Qilihai Wetland is more serious than in Yuqiao Reservoir. The study found that external sources are the main source of pollution. These two functional water areas are vital for Tianjin; as such, the study proposes targeted management measures.


Asunto(s)
Agua Potable/análisis , Eutrofización , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/prevención & control , Calidad del Agua , China , Sistemas de Información Geográfica , Nitrógeno/análisis , Fósforo/análisis , Riesgo , Contaminación Química del Agua/análisis
13.
PLoS One ; 12(2): e0170985, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28234917

RESUMEN

The present feature describes for the first time the application of spores from Aspergillus sp. IMPMS7 to break out crude oil-in-water emulsions (O/W). The fungal spores were isolated from marine sediments polluted with petroleum hydrocarbons. The spores exhibited the ability to destabilize different O/W emulsions prepared with medium, heavy or extra-heavy Mexican crude oils with specific gravities between 10.1 and 21.2°API. The isolated fungal spores showed a high hydrophobic power of 89.3 ± 1.9% and with 2 g of spores per liter of emulsion, the half-life for emulsion destabilization was roughly 3.5 and 0.7 h for extra-heavy and medium crude oil, respectively. Then, the kinetics of water separation and the breaking of the O/W emulsion prepared with heavy oil through a spectrofluorometric technique were studied. A decrease in the fluorescence ratio at 339 and 326 nm (I339/I326) was observed in emulsions treated with spores, which is similar to previously reported results using chemical demulsifiers.


Asunto(s)
Emulsionantes/química , Emulsiones/química , Esporas Fúngicas/metabolismo , Agua/química , Aspergillus/química , Aspergillus/metabolismo , Emulsionantes/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Interacciones Hidrofóbicas e Hidrofílicas , Petróleo/efectos adversos , Esporas Fúngicas/química , Contaminación Química del Agua/efectos adversos , Contaminación Química del Agua/prevención & control
14.
Mar Pollut Bull ; 114(1): 90-101, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27593852

RESUMEN

The probability of major oil accidents in Arctic seas is increasing alongside with increasing maritime traffic. Hence, there is a growing need to understand the risks posed by oil spills to these unique and sensitive areas. So far these risks have mainly been acknowledged in terms of qualitative descriptions. We introduce a probabilistic framework, based on a general food web approach, to analyze ecological impacts of oil spills. We argue that the food web approach based on key functional groups is more appropriate for providing holistic view of the involved risks than assessments based on single species. We discuss the issues characteristic to the Arctic that need a special attention in risk assessment, and provide examples how to proceed towards quantitative risk estimates. The conceptual model presented in the paper helps to identify the most important risk factors and can be used as a template for more detailed risk assessments.


Asunto(s)
Contaminación por Petróleo/estadística & datos numéricos , Contaminación Química del Agua/estadística & datos numéricos , Accidentes , Regiones Árticas , Ambiente , Océanos y Mares , Medición de Riesgo , Contaminación Química del Agua/prevención & control
15.
J Air Waste Manag Assoc ; 67(4): 475-487, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27802127

RESUMEN

A novel nanosize metallic calcium/iron dispersed reagent was synthesized and tested as coagulant/catalyst in a hybrid zero valent iron (ZVI)/H2O2 oxidation process to treat leachate. Two different types of leachates, one from municipal solid waste (MSW) tipping hall (MSWIL) and second from an MSW landfill site (MSWLL), were collected and characterized. The morphology, elemental composition, and mineral phases of the nano-Ca/CaO and nano-Fe/Ca/CaO were characterized by scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS) and x-ray powder diffraction (XRD) analysis. The coagulation process with 2.5 g L-1 nano-Ca/CaO attained 64.0, 56.0, and 20.7% removal of color, chemical oxygen demand (COD), and total suspended solids (TSS) in MSWLL. With only 1.0 g L-1 of nano-Fe/Ca/CaO, relatively high color, COD and TSS removal was achieved in MSWLL at 67.5, 60.2, and 37.7%, respectively. The heavy metal removal efficiency reached 91-99% after treatment with nano-Fe/Ca/CaO in both leachate samples. The coupling process, using 1.0 g L-1 of nano-Fe/Ca/CaO and 20 mM H2O2 doses, achieved enhancement removal of color, COD, and TSS, up to 95%, 96%, and 66%, respectively, without initial pH control. After this treatment, the color, COD, TSS, and heavy metals were significantly decreased, fitting the Korean discharge regulation limit. A hybrid coupled zero valent iron (ZVI)/H2O2 oxidation process with novel nanosized metallic calcium/iron dispersed reagent proved to be a suitable treatment for dealing with leachate samples. IMPLICATIONS: Conventional treatments (biological or physicochemical) are not sufficient anymore to reach the level of purification needed to fully reduce the negative impact of landfill leachates on the environment. This implies that new treatment alternatives species must be proposed. A coupled zero valent iron (ZVI)/H2O2 oxidation process proved to be a suitable treatment for dealing with leachate samples. Coagulation with nFe/Ca/CaO allows 91-99% of heavy metals removal. The coupled coagulation-oxidation process by nFe/Ca/CaO reveals excellent ability to treat leachate. After coupled treatment the color, COD, and TSS were also much lower than the discharge regulation limit.


Asunto(s)
Calcio/química , Hierro/química , Administración de Residuos/métodos , Contaminación Química del Agua/prevención & control , Análisis de la Demanda Biológica de Oxígeno , Compuestos de Calcio/química , Peróxido de Hidrógeno/química , Metales Pesados/análisis , Oxidación-Reducción , Óxidos/química , Residuos Sólidos , Contaminantes Químicos del Agua/química
16.
J Environ Sci (China) ; 46: 92-100, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27521940

RESUMEN

Nitrogen (N) runoff from paddy fields serves as one of the main sources of water pollution. Our aim was to reduce N runoff from paddy fields by fertilizer management and inoculation with arbuscular mycorrhizal fungi (AMF). In northeast China, Shuangcheng city in Heilongjiang province, a field experiment was conducted, using rice provided with 0%, 20%, 40%, 60%, 80%, and 100% of the local norm of fertilization (including N, phosphorus and potassium), with or without inoculation with Glomus mosseae. The volume, concentrations of total N (TN), dissolved N (DN) and particulate N (PN) of runoff water were measured. We found that the local norm of fertilization led to 18.9kg/ha of N runoff during rice growing season, with DN accounting for 60%-70%. We also found that reduction in fertilization by 20% cut down TN runoff by 8.2% while AMF inoculation decreased N runoff at each fertilizer level and this effect was inhibited by high fertilization. The combination of inoculation with AMF and 80% of the local norm of fertilization was observed to reduce N runoff by 27.2%. Conclusively, we suggested that the contribution of AMF inoculation combined with decreasing fertilization should get more attention to slow down water eutrophication by reducing N runoff from paddy fields.


Asunto(s)
Agricultura/métodos , Fertilizantes , Micorrizas , Nitrógeno/análisis , Microbiología del Suelo , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/prevención & control , China , Monitoreo del Ambiente , Eutrofización , Oryza , Fósforo/análisis , Movimientos del Agua , Contaminación Química del Agua/estadística & datos numéricos
17.
Water Sci Technol ; 73(12): 3027-32, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27332849

RESUMEN

The aim of the study is to assess the influence of drainage layer made of reactive material Polonite(®) on the water retention and P-PO(4) concentration in runoff. A column experiment was performed for extensive substrate underlined by 2 cm of Polonite(®) layer (SP) and the same substrate without supporting layer as a reference (S). The leakage phosphorus concentration ranged from 0.001 to 0.082 mg P-PO(4)·L(-1), with average value 0.025 P-PO(4)·L(-1) of S experiment and 0.000-0.004 P-PO(4)·L(-1) and 0.001 P-PO(4)·L(-1) of SP experiment, respectively. The 2 cm layer of Polonite(®) was efficient in reducing P outflow from green roof substrate by 96%. The average effluent volumes from S and SP experiments amounted 61.1 mL (5.8-543.3 mL) and 46.4 mL (3.3-473.3 mL) with the average irrigation rate of 175.5 mL (6.3-758.0 mL). The substrate retention ability of S and SP experiments was 65% and 74%, respectively. Provided with reactive materials, green roof layers implemented in urban areas for rain water retention and delaying runoff also work for protection of water quality.


Asunto(s)
Óxidos/química , Fosfatos/química , Fósforo/química , Contaminantes Químicos del Agua/química , Contaminación Química del Agua/prevención & control , Lluvia , Calidad del Agua
19.
Sci Total Environ ; 563-564: 513-29, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27152993

RESUMEN

The aim of the study is to assess the efficacy of seaweed for circular nutrient management to reduce eutrophication levels in the aquatic environment. We performed a comparative Life Cycle Assessment (LCA) of two reference waste management systems treating seaweed as biowaste, i.e. landfill disposal and combustion, and an alternative scenario using the seaweed Saccharina latissima as a resource for biobased fertilizer production. Life Cycle Impact Assessment (LCIA) methods were improved by using a cradle-to-cradle approach, quantifying fate factors for nitrogen and phosphorus loss from fertilized agriculture to the aquatic environment. We also differentiated between nitrogen- and phosphorus-limited marine water to improve the traditional freshwater impact category, making this indicator suitable for decision support in relation to coastal water management schemes. Offshore cultivation of Saccharina latissima with an average productivity of 150Mg/km(2) in Danish waters in 2014 was applied to a cultivation scenario of 208km(2). The bioresource scenario performs better than conventional biowaste management systems, delivering a net reduction in aquatic eutrophication levels of 32.29kgNeq. and 16.58kgPO4(3-)eq. per Mg (dry weight) of seaweed, quantified by the ReCiPe and CML impact assessment methods, respectively. Seaweed cultivation, harvest and reuse of excess nutrients from the aquatic environment is a promising approach for sustainable resource cycling in a future regenerative economy that exploits manmade emissions as a resource for closed loop biobased production while significantly reducing eutrophication levels in 3 out of 7 Danish river basin districts. We obtained at least 10% bioextraction of phosphorus manmade emissions (10%, 89% and >100%) and contributed significantly to local nitrogen reduction goals according to the Water Framework Directive (23%, 78% and >100% of the target).


Asunto(s)
Eutrofización , Fertilizantes/análisis , Algas Marinas/metabolismo , Administración de Residuos/métodos , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/prevención & control , Dinamarca , Nitrógeno/análisis , Fósforo/análisis
20.
Chemosphere ; 153: 426-35, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27031806

RESUMEN

Legacy and new persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) were measured in sediments near a wastewater treatment plant (WWTP) outfall in a semi-enclosed bay, to investigate the current contamination and temporal changes in these contaminants associated with regulation activities in Korea. The concentrations of most of the POPs showed clear decreasing trends with an increase in the distance from the WWTP outfall, indicating that the WWTP discharges greatly contributed to the sediment contamination by POPs. Highly significant correlations were found for most of the POPs, indicating a common source for sediment contamination. Significant declines were found in the concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs), polybrominated diphenyl ethers (PBDEs), and PAHs in the sediments collected between 2005 and 2013. This result suggested that legislative actions (regulation of the PCDD/Fs in flue gas, total pollution load management, and whole effluent toxicity for WWTP discharges) and change of fuels, were likely to be effective at reducing the POP and PAH levels in sediments during the past several years. The different compositional profiles of the PCDD/Fs and PAHs between 2005 and 2013 implied changes in and/or additional sources of these contaminants. Despite a decline in the PCDD/Fs over time, the present levels of PCDD/Fs in the sediment exceeded some of the sediment quality guidelines suggested by the National Oceanic and Atmospheric Administration.


Asunto(s)
Restauración y Remediación Ambiental/legislación & jurisprudencia , Sedimentos Geológicos/análisis , Eliminación de Residuos Líquidos , Contaminación Química del Agua/prevención & control , Monitoreo del Ambiente , República de Corea , Aguas Residuales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA