Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 508
Filtrar
Más filtros

Intervalo de año de publicación
1.
Environ Pollut ; 349: 123920, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582187

RESUMEN

This research endeavors to elevate indoor air quality within aging school environments by concentrating on refining interior finishing materials and windows. Renovations, encompassing window and floor remodeling in classrooms, aim to mitigate particulate matter (PM) infiltration and enhance air exchange rates. Utilizing SPS30 sensors for the analysis of 0.3-2.5 µm particles, with a focus on their implications for human health, the study evaluated air exchange rates, deposition rates, infiltration rates, and particle generation during classroom activities. Post-renovation results demonstrated a noteworthy decrease in air exchange rates, indicating an enhancement in airtightness. The investigation delves into particle generation with various flooring materials, accentuating the importance of opting for durable and low-particle-generating alternatives. Health risk assessments, considering multiple exposure routes (inhalation, dermal contact, and ingestion), revealed reduced risks post-renovation, particularly for children. To further optimize indoor air quality, the study suggests the implementation of air purification systems. Examination of PM generation during student activities showcased a substantial reduction post-renovation. This study underscores the positive influence of architectural enhancements on indoor air quality while acknowledging the necessity for holistic solutions and continuous research.


Asunto(s)
Contaminación del Aire Interior , Material Particulado , Instituciones Académicas , Contaminación del Aire Interior/estadística & datos numéricos , Contaminación del Aire Interior/análisis , Material Particulado/análisis , Humanos , Pisos y Cubiertas de Piso , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis
2.
Environ Pollut ; 345: 123414, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38286258

RESUMEN

Household air pollution (HAP) from cooking with solid fuels used during pregnancy has been associated with adverse pregnancy outcomes. The Household Air Pollution Intervention Network (HAPIN) trial was a randomized controlled trial that assessed the impact of a liquefied petroleum gas (LPG) stove and fuel intervention on health in Guatemala, India, Peru, and Rwanda. Here we investigated the effects of the LPG stove and fuel intervention on stillbirth, congenital anomalies and neonatal mortality and characterized exposure-response relationships between personal exposures to fine particulate matter (PM2.5), black carbon (BC) and carbon monoxide (CO) and these outcomes. Pregnant women (18 to <35 years of age; gestation confirmed by ultrasound at 9 to <20 weeks) were randomly assigned to intervention or control arms. We monitored these fetal and neonatal outcomes and personal exposure to PM2.5, BC and CO three times during pregnancy, we conducted intention-to-treat (ITT) and exposure-response (E-R) analyses to determine if the HAPIN intervention and corresponding HAP exposure was associated with the risk of fetal/neonatal outcomes. A total of 3200 women (mean age 25.4 ± 4.4 years, mean gestational age at randomization 15.4 ± 3.1 weeks) were included in this analysis. Relative risks for stillbirth, congenital anomaly and neonatal mortality were 0.99 (0.60, 1.66), 0.92 (95 % CI 0.52, 1.61), and 0.99 (0.54, 1.85), respectively, among women in the intervention arm compared to controls in an ITT analysis. Higher mean personal exposures to PM2.5, CO and BC during pregnancy were associated with a higher, but statistically non-significant, incidence of adverse outcomes. The LPG stove and fuel intervention did not reduce the risk of these outcomes nor did we find evidence supporting an association between personal exposures to HAP and stillbirth, congenital anomalies and neonatal mortality.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Petróleo , Adulto , Femenino , Humanos , Recién Nacido , Embarazo , Adulto Joven , Contaminación del Aire Interior/análisis , Culinaria , Mortalidad Infantil , Material Particulado/análisis , Petróleo/toxicidad , Hollín , Mortinato/epidemiología , Adolescente
3.
Environ Int ; 184: 108457, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38281448

RESUMEN

Rural residents are exposed to both particulate and gaseous pesticides in the indoor-outdoor nexus in their daily routine. However, previous personal exposure assessment mostly focuses on single aspects of the exposure, such as indoor or gaseous exposure, leading to severe cognition bias to evaluate the exposure risks. In this study, residential dust and silicone wristbands (including stationary and personal wearing ones) were used to screen pesticides in different phases and unfold the hidden characteristics of personal exposure via indoor-outdoor nexus in intensive agricultural area. Mento-Carlo Simulation was performed to assess the probabilistic exposure risk by transforming adsorbed pesticides from wristbands into air concentration, which explores a new approach to integrate particulate (dust) and gaseous (silicone wristbands) pesticide exposures in indoor and outdoor environment. The results showed that particulate pesticides were more concentrated in indoor, whereas significantly higher concentrations were detected in stationary outdoor wristbands (p < 0.05). Carbendazim and chlorpyrifos were the most frequently detected pesticides in dust and stationary wristbands. Higher pesticide concentration was found in personal wristbands worn by farmers, with the maximum value of 2048 ng g-1 for difenoconazole. Based on the probabilistic risk assessment, around 7.1 % of farmers and 2.6 % of bystanders in local populations were potentially suffering from chronic health issues. One third of pesticide exposures originated mainly from occupational sources while the rest derived from remoting dissipation. Unexpectedly, 43 % of bystanders suffered the same levels of exposure as farmers under the co-existence of occupational and non-occupational exposures. Differed compositions of pesticides were found between environmental samples and personal pesticide exposure patterns, highlighting the need for holistic personal exposure measurements.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Plaguicidas , Humanos , Plaguicidas/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Polvo/análisis , Gases , Siliconas , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos
4.
J Hazard Mater ; 465: 133491, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38232548

RESUMEN

Indoor air pollution affects the global population, especially in developed countries where people spend around 90% of their time indoors. The recent pandemic exacerbated the exposure by relying on indoor spaces and a teleworking lifestyle. VOCs are a group of indoor air pollutants with harmful effects on human health at low concentrations. It is widespread that plants can remove indoor VOCs. To this day, research has combined principles of phytoremediation, biofiltration, and bioremediation into a holistic and sustainable technology called botanical biofiltration. Overall, it is sustained that its main advantage is the capacity to break down and biodegrade pollutants using low energy input. This differs from traditional systems that transfer VOCs to another phase. Furthermore, it offers additional benefits like decreased indoor air health costs, enhanced work productivity, and well-being. However, many disparities exist within the field regarding the role of plants, substrate, and phyllosphere bacteria. Yet their role has been theorized; its stability is poorly known for an engineering approach. Previous research has not addressed the bioaugmentation of the phyllosphere to increase the performance, which could boost the system. Moreover, most experiments have studied passive potted plant systems at a lab scale using small chambers, making it difficult to extrapolate findings into tangible parameters to engineer the technology. Active systems are believed to be more efficient yet require more maintenance and knowledge expertize; besides, the impact of the active flow on the long term is not fully understood. Besides, modeling the system has been oversimplified, limiting the understanding and optimization. This review sheds light on the field's gains and gaps, like concepts, experiments, and modeling. We believe that embracing a multidisciplinary approach encompassing experiments, multiphysics modeling, microbial community analysis, and coworking with the indoor air sector will enable the optimization of the technology and facilitate its adoption.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Ambientales , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Contaminantes Ambientales/metabolismo , Plantas/metabolismo
5.
N Engl J Med ; 390(1): 44-54, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38169489

RESUMEN

BACKGROUND: Household air pollution is associated with stunted growth in infants. Whether the replacement of biomass fuel (e.g., wood, dung, or agricultural crop waste) with liquefied petroleum gas (LPG) for cooking can reduce the risk of stunting is unknown. METHODS: We conducted a randomized trial involving 3200 pregnant women 18 to 34 years of age in four low- and middle-income countries. Women at 9 to less than 20 weeks' gestation were randomly assigned to use a free LPG cookstove with continuous free fuel delivery for 18 months (intervention group) or to continue using a biomass cookstove (control group). The length of each infant was measured at 12 months of age, and personal exposures to fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm) were monitored starting at pregnancy and continuing until the infants were 1 year of age. The primary outcome for which data are presented in the current report - stunting (defined as a length-for-age z score that was more than two standard deviations below the median of a growth standard) at 12 months of age - was one of four primary outcomes of the trial. Intention-to-treat analyses were performed to estimate the relative risk of stunting. RESULTS: Adherence to the intervention was high, and the intervention resulted in lower prenatal and postnatal 24-hour personal exposures to fine particulate matter than the control (mean prenatal exposure, 35.0 µg per cubic meter vs. 103.3 µg per cubic meter; mean postnatal exposure, 37.9 µg per cubic meter vs. 109.2 µg per cubic meter). Among 3061 live births, 1171 (76.2%) of the 1536 infants born to women in the intervention group and 1186 (77.8%) of the 1525 infants born to women in the control group had a valid length measurement at 12 months of age. Stunting occurred in 321 of the 1171 infants included in the analysis (27.4%) of the infants born to women in the intervention group and in 299 of the 1186 infants included in the analysis (25.2%) of those born to women in the control group (relative risk, 1.10; 98.75% confidence interval, 0.94 to 1.29; P = 0.12). CONCLUSIONS: An intervention strategy starting in pregnancy and aimed at mitigating household air pollution by replacing biomass fuel with LPG for cooking did not reduce the risk of stunting in infants. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Asunto(s)
Contaminación del Aire Interior , Petróleo , Lactante , Femenino , Humanos , Embarazo , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Biomasa , Material Particulado/efectos adversos , Material Particulado/análisis , Culinaria , Trastornos del Crecimiento/epidemiología , Trastornos del Crecimiento/etiología , Trastornos del Crecimiento/prevención & control
6.
N Engl J Med ; 390(1): 32-43, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38169488

RESUMEN

BACKGROUND: Exposure to household air pollution is a risk factor for severe pneumonia. The effect of replacing biomass cookstoves with liquefied petroleum gas (LPG) cookstoves on the incidence of severe infant pneumonia is uncertain. METHODS: We conducted a randomized, controlled trial involving pregnant women 18 to 34 years of age and between 9 to less than 20 weeks' gestation in India, Guatemala, Peru, and Rwanda from May 2018 through September 2021. The women were assigned to cook with unvented LPG stoves and fuel (intervention group) or to continue cooking with biomass fuel (control group). In each trial group, we monitored adherence to the use of the assigned cookstove and measured 24-hour personal exposure to fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) in the women and their offspring. The trial had four primary outcomes; the primary outcome for which data are presented in the current report was severe pneumonia in the first year of life, as identified through facility surveillance or on verbal autopsy. RESULTS: Among 3200 pregnant women who had undergone randomization, 3195 remained eligible and gave birth to 3061 infants (1536 in the intervention group and 1525 in the control group). High uptake of the intervention led to a reduction in personal exposure to PM2.5 among the children, with a median exposure of 24.2 µg per cubic meter (interquartile range, 17.8 to 36.4) in the intervention group and 66.0 µg per cubic meter (interquartile range, 35.2 to 132.0) in the control group. A total of 175 episodes of severe pneumonia were identified during the first year of life, with an incidence of 5.67 cases per 100 child-years (95% confidence interval [CI], 4.55 to 7.07) in the intervention group and 6.06 cases per 100 child-years (95% CI, 4.81 to 7.62) in the control group (incidence rate ratio, 0.96; 98.75% CI, 0.64 to 1.44; P = 0.81). No severe adverse events were reported to be associated with the intervention, as determined by the trial investigators. CONCLUSIONS: The incidence of severe pneumonia among infants did not differ significantly between those whose mothers were assigned to cook with LPG stoves and fuel and those whose mothers were assigned to continue cooking with biomass stoves. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Asunto(s)
Contaminación del Aire Interior , Biomasa , Culinaria , Exposición por Inhalación , Petróleo , Neumonía , Femenino , Humanos , Lactante , Embarazo , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Culinaria/métodos , Material Particulado/efectos adversos , Material Particulado/análisis , Petróleo/efectos adversos , Neumonía/etiología , Adolescente , Adulto Joven , Adulto , Internacionalidad , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/etiología
7.
Cancer Causes Control ; 35(2): 281-292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37733135

RESUMEN

PURPOSE: Gallbladder cancers (GBC), unique to certain geographical regions, are lethal digestive tract cancers, disproportionately affecting women, with limited information on risk factors. METHODS: We evaluated the association between household cooking fuel and GBC risk in a hospital-based case-control study conducted in the North-East and East Indian states of Assam and Bihar. We explored the potential mediation by diet, fire-vents, 'daily exposure duration' and parity (among women). We recruited biopsy-confirmed GBC (n = 214) men and women aged 30-69 years between 2019 and 2021, and controls frequency-matched by age, sex and region (n = 166). Information about cooking fuel, lifestyle, personal and family history, female reproductive factors, socio-demographics, and anthropometrics was collected. We tested associations using multivariable logistic regression analyses. RESULTS: All participants (73.4% women) were categorised based on predominant cooking fuel use. Group-1: LPG (Liquefied Petroleum Gas) users in the previous 20 years and above without concurrent biomass use (26.15%); Group-2: LPG users in the previous 20 years and above with concurrent secondary biomass use (15.9%); Group-3: Biomass users for ≥ 20 years (57.95%). Compared to group-1, accounting for confounders, GBC risk was higher in group-2 [OR: 2.02; 95% CI: 1.00-4.07] and group-3 [OR: 2.01; 95% CI: 1.08-3.73] (p-trend:0.020). These associations strengthened among women that attenuated with high daily consumption of fruits-vegetables but not with fire-vents, 'daily exposure duration' or parity. CONCLUSION: Biomass burning was associated with a high-risk for GBC and should be considered as a modifiable risk factor for GBC. Clean cooking fuel can potentially mitigate, and a healthy diet can partially reduce the risk among women.


Asunto(s)
Contaminación del Aire Interior , Neoplasias de la Vesícula Biliar , Petróleo , Masculino , Embarazo , Humanos , Femenino , Neoplasias de la Vesícula Biliar/epidemiología , Neoplasias de la Vesícula Biliar/etiología , Contaminación del Aire Interior/efectos adversos , Estudios de Casos y Controles , Culinaria , Factores de Riesgo , India/epidemiología
8.
Ann N Y Acad Sci ; 1531(1): 3-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38050986

RESUMEN

Throughout the history of occupational health risk control, ventilation has been implemented widely as a tried-and-true method to reduce exposure intensity to airborne contaminants. Proper determination of the ventilation rate merits careful consideration when addressing concerns directed toward occupational health and indoor air quality in commercial buildings, albeit this does not translate well among the current engineering and scientific community. This article aims to facilitate a better understanding and proper determination of ventilation rates as a countermeasure for occupational health risk control. To that end, guidance is provided to select the appropriate ventilation rate for nonpandemic versus pandemic scenarios in terms of pertinent regulatory/professional codes and mathematical modeling tools. Limitations and assumptions of the models are summarized to facilitate proper application. Furthermore, the emerging DNA-based aerosol tracing technology, which helps to verify ventilation efficacy, is discussed.


Asunto(s)
Contaminación del Aire Interior , Salud Laboral , Humanos , Contaminación del Aire Interior/prevención & control , Ventilación
9.
Environ Pollut ; 343: 123246, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38158012

RESUMEN

This study reports size-resolved dithiothreitol (DTT)-based oxidative potential (OP: total and water-soluble) in rural kitchens using liquefied petroleum gas (LPG), firewood (FW), and mixed biomass (MB) fuels in northeastern (NE) India. In comparison to LPG, volume-normalized total OP (OPtotal(v)DTT) was enhanced by a factor of ∼5 in biomass-using kitchens (74 ± 35 to 78 ± 42 nmol min-1 m-3); however, mass-normalized total OP (OPtotal(m)DTT) was similar between LPG and FW users and higher by a factor of 2 in MB-using kitchens. The water-insoluble OP (OPwi(v, m)DTT) fraction in OPtotal(v, m)DTT was greater than 50% across kitchens. Size distributions across kitchens and OPDTT categories ranged from unimodal to trimodal. OPws(v)DTT was driven by metals as well as organics across size fractions while OPwi(v)DTT was majorly constrained by metals with an increasing importance of organics in fine particles of biomass-using kitchens. Multiple linear regression analysis revealed that Cu and Ba explained 71% of the OPtotal(v)DTT variability in LPG-using kitchens, while water-soluble organic carbon (WSOC) and Ba were responsible for 44% variability in FW-using kitchens. Finally, the high internal dose of OPtotal(v)DTT (28-31 nmol min-1 m-3) in biomass-using kitchens established the severity of oxidative stress on the exposed population.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Petróleo , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , India , Aerosoles , Estrés Oxidativo , Ditiotreitol , Agua , Monitoreo del Ambiente , Contaminación del Aire Interior/análisis
10.
Environ Sci Technol ; 57(50): 21260-21271, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38060427

RESUMEN

Fine particulate matter (PM2.5) exposure has been linked to diverse human health impacts. Little is known about the potential heterogeneous impacts of PM2.5 generated from different indoor fuel sources and how exposure differs between personal and indoor environments. Therefore, we used PM2.5 collected by one stationary sampler in a kitchen and personal samplers (female and male participants), in homes (n = 24) in Kheri, India, that used either biomass or liquified petroleum gas (LPG) as primary fuel sources. PM2.5 samples (pooled by fuel type and monitor placement) were analyzed for oxidative potential and chemical composition, including elements and 125 organic compounds. Zebrafish (Danio rerio) embryos were acutely exposed to varying concentrations of PM2.5 and behavioral analyses were conducted. We found relatively high PM2.5 concentrations (5-15 times above World Health Organization daily exposure guidelines) and varied human health-related chemical composition based on fuel type and monitor placement (up to 15% carcinogenic polycyclic aromatic hydrocarbon composition). Altered biological responses, including changes to mortality, morphology, and behavior, were elicited by exposure to all sample types. These findings reveal that although LPG is generally ranked the least harmful compared to biomass fuels, chemical characteristics and biological impacts were still present, highlighting the need for further research in determining the safety of indoor fuel sources.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Petróleo , Humanos , Masculino , Femenino , Animales , Contaminantes Atmosféricos/análisis , Pez Cebra , Monitoreo del Ambiente , Contaminación del Aire Interior/análisis , Material Particulado/análisis , Culinaria
12.
Environ Int ; 180: 108223, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37748372

RESUMEN

BACKGROUND: Exclusive clean fuel use is essential for realizing health and other benefits but is often unaffordable. Decreasing household-level fuel needs could make exclusive clean fuel use more affordable, but there is a lack of knowledge on the amount of fuel savings that could be achieved through fuel conservation behaviors relevant to rural settings in low- and middle-income countries. METHODS: Within a trial in Peru, we trained a random half of intervention participants, who had previously received a liquefied petroleum gas (LPG) stove and were purchasing their own fuel, on fuel conservation strategies. We measured the amount of fuel and mega joules (MJ) of energy consumed by all participants, including control participants who were receiving free fuel from the trial. We administered surveys on fuel conservation behaviors and assigned a score based on the number of behaviors performed. RESULTS: Intervention participants with the training had a slightly higher conservation score than those without (7.2 vs. 6.6 points; p = 0.07). Across all participants, average daily energy consumption decreased by 9.5 MJ for each 1-point increase in conservation score (p < 0.001). Among households who used exclusively LPG (n = 99), each 1-point increase in conservation score was associated with a 0.04 kg decrease in LPG consumption per household per day (p = 0.03). Using pressure cookers and heating water in the sun decreased energy use, while using clay pots and forgetting to close stove knobs increased energy use. CONCLUSION: Our findings suggest that a household could save 1.16 kg of LPG per month for each additional fuel conservation behavior, for a maximum potential savings of 8.1 kg per month. Fuel conservation messaging could be integrated into national household energy policies to increase the affordability of exclusive clean fuel use, and subsequently achieve the environmental and health benefits that could accompany such a transition.


Asunto(s)
Contaminación del Aire Interior , Artículos Domésticos , Petróleo , Humanos , Contaminación del Aire Interior/análisis , Culinaria , Política Pública , Costos y Análisis de Costo
13.
Environ Pollut ; 337: 122561, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37742862

RESUMEN

Household air pollution caused by inefficient cooking practices causes 4 million deaths a year worldwide. In Nepal, 86% of the rural population use solid fuels for cooking. Over 25% of premature deaths associated with air pollution are respiratory in nature. Here we aimed to identify molecular signatures of different cookstove and fuel type exposures in human airway epithelial cells, to understand the mechanisms mediating cook stove smoke induced lung disease. Primary human airway epithelial cells in submerged culture were exposed to traditional cook stove (TCS), improved cook stove (ICS) and liquefied petroleum gas (LPG) stove smoke extracts. Changes to gene expression, DNA methylation and hydroxymethylation were measured by bulk RNA sequencing and HumanMethylationEPIC BeadChip following oxidative bisulphite conversion, respectively. TCS smoke extract alone reproducibly caused changes in the expression of 52 genes enriched for oxidative stress pathways. TCS, ICS and LPG smoke extract exposures were associated with distinct changes to DNA methylation and hydroxymethylation. A subset of TCS induced genes were associated with differentially methylated and/or hydroxymethylated CpGs sites, and enriched for the ferroptosis pathway and the upstream regulator NFE2L2. DNA methylation and hydroxymethylation changes not associated with a concurrent change in gene expression, were linked to biological processes and molecular pathways important to airway health, including neutrophil function, transforming growth factor beta signalling, GTPase activity, and cell junction organisation. Our data identified differential impacts of TCS, ICS and LPG cook stove smoke on the human airway epithelium transcriptome, DNA methylome and hydroxymethylome and provide further insight into the association between indoor air pollution exposure and chronic lung disease mechanisms.


Asunto(s)
Contaminación del Aire Interior , Enfermedades Pulmonares , Petróleo , Humanos , Humo/efectos adversos , Nepal , Metilación de ADN , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Culinaria , Población Rural , Expresión Génica
14.
Sci Total Environ ; 905: 167163, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730065

RESUMEN

Exposure to a total of 51 targeted and non-targeted polycyclic aromatic hydrocarbons (PAHs) and their oxygenated and alkylated derivatives associated with size-segregated aerosol was investigated in rural kitchens using liquefied petroleum gas (LPG), mixed biomass (MB) and firewood (FW) fuels in northeastern India. The averaged PM10-associated parent-, alkylated-, and oxygenated-PAHs concentrations increased notably from LPG (257, 54, and 116 ng m-3) to MB (838, 119, and 272 ng m-3) to FW-using kitchens (2762, 225, and 554 ng m-3), respectively. PAHs were preferentially associated with the PM1 fraction with contributions increasing from 80 % in LPG to 86 % in MB and 90 % in FW-using kitchens, which in turn was dominated by <0.25 µm particles (54-75 % of the total). A clear profile of enrichment of low-molecular weight PAHs in cleaner fuels (LPG) and a contrasting enrichment of high-molecular weight PAHs in biomass-based fuels was noted. The averaged internal dose of Benzo[a]pyrene equivalent was the lowest in the case of LPG (19 ng m-3), followed by MB (161 ng m-3) and the highest in FW users (782 ng m-3). Estimation of incremental lifetime cancer risk (ILCR) from PAH exposure revealed extremely high cancer risk in biomass users (factors of 8-40) compared to LPG. The potential years of life lost (PYLL) and PYLL rate averaged across kitchen categories was higher for lung cancer (PYLL: 10.55 ± 1.04 years; PYLL rate: 204 ± 426) compared to upper respiratory tract cancer (PYLL: 10.02 ± 0.05 years; PYLL rate: 4 ± 7), and the PYLL rates for biomass users were higher by factors of 9-56 as compared to LPG users. These findings stress the need for accelerated governmental intervention to ensure a quick transition from traditional biomass-based fuels to cleaner alternatives for the rural population of northeastern India.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Neoplasias Pulmonares , Petróleo , Hidrocarburos Policíclicos Aromáticos , Humanos , Población Rural , Contaminación del Aire Interior/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Culinaria , India , Costo de Enfermedad , Material Particulado/análisis , Contaminantes Atmosféricos/análisis
15.
Environ Int ; 179: 108137, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37579572

RESUMEN

BACKGROUND: We conducted a clean fuel intervention trial (Bangladesh Global Environmental and Occupational Health (GEOHealth) (NCT02824237) with liquefied petroleum gas (LPG) for 26 months among rural Bangladeshi women chronically exposed to household air pollution (HAP) from biomass fuel (BMF) use. We aimed to evaluate the effect of HAP reduction following LPG intervention on immune response outcome. METHODS: We supplied LPG cook stove and refills in cylinder in 200 households for 26 months. We measured personal exposure to HAP [particulate matter 2.5 (PM2·5), black carbon (BC) and carbon monoxide (CO)] in 200 women (main cook) by personal monitors at pre- and post-intervention. Immune function was assessed before and after intervention, in blood collected within 2 weeks of HAP measurements. Primary endpoints included reduction in HAP, lymphocyte proliferation and oxidative stress response, and alterations in T and B cell proportions. FINDINGS: Exclusive LPG use for 26 months resulted in significant reduction in PM2·5 (43.5%), BC (13%) and CO (48%) exposure in the women. For one unit decrease in BC, Treg cells and memory B cells increased by 7% and 34% respectively, in the peripheral circulation. One unit decrease in CO was significantly associated with increase in early B cells and plasmablasts by 66% and 5% respectively. For one unit decrease in BC, percent-dividing cells, proliferation and expansion indices increased by 2%, 0.4%, and 1%, respectively. INTERPRETATION: Reduced personal exposure to HAP through clean fuel intervention was related to a return towards cellular immune balance.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Petróleo , Femenino , Humanos , Contaminación del Aire Interior/prevención & control , Contaminación del Aire Interior/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Monóxido de Carbono/análisis , Hollín , Culinaria , Población Rural
16.
Health Place ; 83: 103021, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37402338

RESUMEN

Children's visual perceptions are critical for their comfort and health. This review explores the impacts of school indoor visual environment on children's health outcomes. A systematic search yielded 5704 articles, of which 32 studies were reviewed. Five environmental themes were identified: lighting, access to nature, window characteristics, art/environmental aesthetics, and ergonomics/spatial arrangement. Results affirm that visual environment affects children's health. There are disparities across environmental themes, with more extensive evidence for lighting and access to nature, but relatively limited in other areas. This study suggests a need for multi-disciplinary collaboration to develop a holistic perspective.


Asunto(s)
Contaminación del Aire Interior , Salud Infantil , Niño , Humanos , Instituciones Académicas
17.
Environ Int ; 178: 108059, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37413928

RESUMEN

Household air pollution from solid cooking fuel use during gestation has been associated with adverse pregnancy and birth outcomes. The Household Air Pollution Intervention Network (HAPIN) trial was a randomized controlled trial of free liquefied petroleum gas (LPG) stoves and fuel in Guatemala, Peru, India, and Rwanda. A primary outcome of the main trial was to report the effects of the intervention on infant birth weight. Here we evaluate the effects of a LPG stove and fuel intervention during pregnancy on spontaneous abortion, postpartum hemorrhage, hypertensive disorders of pregnancy, and maternal mortality compared to women who continued to use solid cooking fuels. Pregnant women (18-34 years of age; gestation confirmed by ultrasound at 9-19 weeks) were randomly assigned to an intervention (n = 1593) or control (n = 1607) arm. Intention-to-treat analyses compared outcomes between the two arms using log-binomial models. Among the 3195 pregnant women in the study, there were 10 spontaneous abortions (7 intervention, 3 control), 93 hypertensive disorders of pregnancy (47 intervention, 46 control), 11 post postpartum hemorrhage (5 intervention, 6 control) and 4 maternal deaths (3 intervention, 1 control). Compared to the control arm, the relative risk of spontaneous abortion among women randomized to the intervention was 2.32 (95% confidence interval (CI): 0.60, 8.96), hypertensive disorders of pregnancy 1.02 (95% CI: 0.68, 1.52), postpartum hemorrhage 0.83 (95% CI: 0.25, 2.71) and 2.98 (95% CI: 0.31, 28.66) for maternal mortality. In this study, we found that adverse maternal outcomes did not differ based on randomized stove type across four country research sites.


Asunto(s)
Aborto Espontáneo , Contaminación del Aire Interior , Contaminación del Aire , Hipertensión Inducida en el Embarazo , Petróleo , Hemorragia Posparto , Lactante , Femenino , Humanos , Embarazo , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Aborto Espontáneo/etiología , Aborto Espontáneo/inducido químicamente , Hemorragia Posparto/prevención & control , Hemorragia Posparto/inducido químicamente , Culinaria
18.
Molecules ; 28(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37446664

RESUMEN

Vapor intrusion is detrimental for indoor air quality. One of the most common sources of vapor intrusion is soil contaminated with petroleum hydrocarbons. To evaluate the long-term risk from individual exposure to hydrocarbons it is necessary to measure quantitively and reliably an average concentration level of individual pollutants on a monthly or yearly basis. Temporal variability of vapor intrusion from hydrocarbons poses a significant challenge to determination of average exposure and there is a need for reliable long-term integrative sampling. To this end, an analytical method for determination of 10 selected nonmethane hydrocarbons (NMHCs), including hexane, heptane, octane, decane, benzene, toluene, ethyl-benzene, m,p-xylene, o-xylene, and naphthalene, sampled on active triple-bed tubes filled with Carbograph 2, Carbograph 1, and Carboxen 1003 adsorbents was developed and validated. Extensive laboratory studies proved the absence of breakthrough at 50% HR and ambient temperature for experiments lasting up to 28 days and established a safe sampling time/volume of 20 days/114 L when sampling at a low flow rate of around 4 mL min-1. In addition, the developed method includes detailed uncertainty calculations for determination of concentrations. Finally, the method was tested by measuring NMHC concentrations in indoor air at a former industrial site during a 2-month-long field campaign in Lyon. The results of the field campaign suggest that 4-week integrated concentration measurements can be achieved by using active sampling on triple-bed tubes at 4.5 mL min-1.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Petróleo , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Benceno , Hidrocarburos/análisis , Petróleo/análisis , Gases , Monitoreo del Ambiente/métodos
19.
Environ Sci Process Impacts ; 25(11): 1839-1849, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37427597

RESUMEN

Indoor exposome is a growing concern, including a mixture of legacy and emerging contaminants. Recent studies suggest that indoor pollutants may accumulate in pet hair, a part of indoor exposome, increasing health risks to pet owners; however, the source and hazards of pollutants associated with pet hair are largely unknown. Here, we found that hydrophobic pollutants often had higher indoor concentrations than hydrophilic ones, and polycyclic aromatic hydrocarbons (PAHs) were the most dominant fractions (61.1%) in indoor air exposome while polycyclic musks (PCMs) had the highest concentrations among all contaminant classes in indoor dust (1559 ± 1598 ng g-1 dw) and pet hair (2831 ± 2458 ng g-1 dw). The levels of hygiene-related contaminants (PCMs, current-use pesticides (CUPs), and antibiotics) were higher in pet hair than dust due to direct contact during applications. Health risk assessment using toxicity thresholds from high-throughput screening data showed that human health risks from the five classes of indoor contaminants (PAHs, PCMs, organophosphate esters, CUPs, and antibiotics) via inhalation, ingestion, and dermal contact were within acceptable limits, but the children may be exposed to a higher risk than the adults. The thresholds estimated from the ToxCast data using endpoint sensitivity distribution make the exposome risk assessment feasible in the absence of benchmarks, which is beneficial for including a mixture of emerging pollutants in risk assessment.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Ambientales , Plaguicidas , Hidrocarburos Policíclicos Aromáticos , Niño , Adulto , Humanos , Monitoreo del Ambiente , Contaminación del Aire Interior/análisis , Medición de Riesgo , Hidrocarburos Policíclicos Aromáticos/análisis , Polvo/análisis , Antibacterianos , Cabello/química , Contaminantes Atmosféricos/análisis
20.
Altern Ther Health Med ; 29(6): 82-91, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37478007

RESUMEN

Damp and moisture-damaged building exposure has been linked to adverse health effects, primarily related to respiratory complications from mold spore reactions. This paper describes a case of a previously healthy man who was exposed to a home with hidden mold infestation and remained symptomatic following proper remediation. The patient presented with allergies, allergic bronchopulmonary aspergillosis, and treatment resistant asthma, as well as other non-respiratory symptoms likely related to inhalational mycotoxin exposure from his home. In this case, the addition of systemic and intranasal antifungals improved both respiratory and non-respiratory symptoms. Antifungals were used for a longer duration than customary and in combination with factors that addressed drug resistance.


Asunto(s)
Contaminación del Aire Interior , Asma , Hipersensibilidad , Masculino , Humanos , Antifúngicos/uso terapéutico , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Agua , Hipersensibilidad/tratamiento farmacológico , Hipersensibilidad/etiología , Asma/tratamiento farmacológico , Asma/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA