Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Sci (China) ; 135: 669-680, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37778837

RESUMEN

The co-occurrence of glyphosate (GLP) and aminomethylphosphonic acid (AMPA) in contaminated water, soil, sediment and plants is a cause for concern due to potential threats to the ecosystem and human health. A major route of exposure is through contact with contaminated soil and consumption of crops containing GLP and AMPA residues. However, clay-based sorption strategies for mixtures of GLP and AMPA in soil, plants and garden produce have been very limited. In this study, in vitro soil and in vivo genetically modified corn models were used to establish the proof of concept that the inclusion of clay sorbents in contaminated soils will reduce the bioavailability of GLP and AMPA in soils and their adverse effects on plant growth. Effects of chemical concentration (1-10 mg/kg), sorbent dose (0.5%-3% in soil and 0.5%-1% in plants) and duration (up to 28 days) on sorption kinetics were studied. The time course results showed a continuous GLP degradation to AMPA. The inclusion of calcium montmorillonite (CM) and acid processed montmorillonite (APM) clays at all doses significantly and consistently reduced the bioavailability of both chemicals from soils to plant roots and leaves in a dose- and time-dependent manner without detectable dissociation. Plants treated with 0.5% and 1% APM inclusion showed the highest growth rate (p ≤ 0.05) and lowest chemical bioavailability with up to 76% reduction in roots and 57% reduction in leaves. Results indicated that montmorillonite clays could be added as soil supplements to reduce hazardous mixtures of GLP and AMPA in soils and plants.


Asunto(s)
Bentonita , Bioacumulación , Herbicidas , Organofosfonatos , Contaminantes del Suelo , Zea mays , Humanos , Bentonita/química , Arcilla/química , Ecosistema , Herbicidas/análisis , Herbicidas/química , Herbicidas/farmacocinética , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética , Zea mays/química , Zea mays/fisiología , Organofosfonatos/análisis , Organofosfonatos/química , Organofosfonatos/farmacocinética , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/fisiología , Bioacumulación/fisiología , Glifosato
2.
Molecules ; 26(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809305

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.


Asunto(s)
Bacillus cereus/fisiología , Cromo/farmacocinética , Planta de la Mostaza/metabolismo , Planta de la Mostaza/microbiología , Contaminantes del Suelo/farmacocinética , Antioxidantes/metabolismo , Bacillus cereus/genética , Biodegradación Ambiental , Clorofila/metabolismo , Genes Bacterianos , Planta de la Mostaza/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Rhizobiaceae/fisiología , Microbiología del Suelo , Estrés Fisiológico , Simbiosis
3.
Environ Geochem Health ; 42(12): 4213-4231, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32495026

RESUMEN

Usage of native plant species for traditional medicine or nutritional supplement is a popular practice among various cultures. But consumption of plants growing on polluted soil can cause serious human health hazard due to bioaccumulation of toxic heavy metals. Present study deals with the ecological and human health impact of heavy metals, in six native plant species with ethnobotanical significance growing at the largest chromite mine of India. Exchangeable, oxidizable, reducible and residual fractions of the metals in plant rhizosphere were analyzed. Only 2-6% of total Cr (270-330 mg/kg) and Ni (150-190 mg/kg) at the mining site is bioavailable. Cd showed highest bioavailability (~ 60%) in mining site posing very high ecological risk (1055-5291) followed by Ni (1297-2124) and Cr (309-1105). The heavy metals in the shoot of the targeted plants were about 0.7 to 80 times higher than the standard limit as per Indian statutory body. The total hazard quotient (THQ) by the consumption of plants growing in mining region was very high (> 1) and varied from 2.6 to 5.9 in adult and 0.6-1.3 in children, while in non-mining region the THQ of same plants indicates low risk (< 1). This study indicates THQ (adult) in the order of, Euphorbia hirta (5.9) > Calotropis procera (4.9) > Argemone mexicana (3.6) > Vernonia cinerea (3.5) > Pteridium latiusculum (3.4) > Tridax procumbens (2.6) through consumption pathway growing in mine soil. This study concludes that consumption of plants growing in heavy metal polluted soil should be avoided due to their potential health hazard.


Asunto(s)
Cromo/toxicidad , Metales Pesados/toxicidad , Minería , Plantas/metabolismo , Contaminantes del Suelo/toxicidad , Adulto , Disponibilidad Biológica , Niño , Cromo/farmacocinética , Exposición a Riesgos Ambientales , Humanos , India , Metales Pesados/farmacocinética , Rizosfera , Suelo , Contaminantes del Suelo/farmacocinética
4.
Artículo en Inglés | MEDLINE | ID: mdl-32455743

RESUMEN

This study investigates how arsenic (As) uptake, accumulation, and migration responds to selenium (Se) foliar application (0-5.0 mg × kg-1). Rice varieties known to accumulate low (DOURADOAGULHA) and high (SINALOAA68) concentrations of arsenic were chosen to grow on soil with different As concentrations (20.1, 65.2, 83.9 mg × kg-1). The results showed that Se of 1.0 mg × L-1 significantly alleviated As stress on upland rice grown on the As-contaminated soil. Under light (65.2 mg × kg-1) and moderate (83.9 mg × kg-1) As concentration treatments, the biomass of upland rice was increased by 23.15% and 36.46% for DOURADOAGULHA, and 46.3% and 54.9% for SINALOAA68. However, the high Se dose (5.0 mg × kg-1) had no significant effect on biomass and heights of upland rice compared to plants where no Se was added. Se significantly decreased As contents in stems and leaves and had different effects on As transfer coefficients for the two rice varieties: when grown on soil with low and moderate As concentrations, Se could reduce the transfer coefficient from stems to leaves, but when grown on the high As soils, this was not the case. The chlorophyll content in plants grown in soil with the moderate concentration of As could be improved by 27.4%-55.3% compared with no Se treatment. Under different As stress, the Se foliar application increased the net photosynthesis, stomatal conductance, and transpiration rate, which meant that Se could enhance the photosynthesis of rice. The intercellular CO2 concentration variation implied that the stomatal or non-stomatal limitations could both occur for different rice varieties under different Se application doses. In conclusion, under moderate As stress, foliar application of Se (1.0 mg × L-1) is recommend to overcome plant damage and As accumulation.


Asunto(s)
Arsénico , Oryza , Selenio , Contaminantes del Suelo , Arsénico/farmacocinética , Cadmio , Fotosíntesis , Ácido Selenioso , Selenio/farmacología , Contaminantes del Suelo/farmacocinética
5.
Ecotoxicol Environ Saf ; 196: 110539, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32247959

RESUMEN

Contamination of arable land with trace metals is a global environmental issue which has serious consequences on human health and food security. Present study evaluates the adsorption of cadmium (Cd) and lead (Pb) by using different quantities of composite of sepiolite, organic manure and lime (SOL) at field and laboratory scale (batch experiments). Characterization of SOL by SEM, EDS and FTIR spectroscopy revealed the presence of elemental and functional groups (hydroxyl, C⋯H and -COOH groups) on its surface. The field experiment was performed in a paddy field of gleysol having moderate contamination of Cd and Pb (0.64 mg kg-1 and 53.44 mg kg-1). Here, different rates of SOL (0.25, 0.5, 1, 1.5 and 2% w/w) were applied by growing low and high Cd accumulator rice cultivars. Application of SOL at 2% w/w showed considerable efficiency to increase soil pH (up to 19%) and to reduce available Cd (42-66%) and Pb (22-55%) as compared to the control. Moreover, its application reduced metal contents in roots, shoots and grains of rice by 31%, 36% and 72% (for Cd) and 41%, 81% and 84% (for Pb), respectively in low accumulator cultivar. Further, the batch sorption experiment was performed to evaluate the adsorption capacity of SOL in a wide range of contamination. Obtained sorption data was better fitted to the Langmuir equation. Our results highlight the strong efficiency of composite treatment for an enhanced in-situ metal immobilization under field and lab conditions. Further, applied treatments greatly reduced the metal contents in rice grains. In a nut shell, application of SOL in a contaminated gleysol should be considered for soil remediation and safe food production.


Asunto(s)
Cadmio/química , Compuestos de Calcio/química , Plomo/química , Silicatos de Magnesio/química , Estiércol , Óxidos/química , Adsorción , Disponibilidad Biológica , Cadmio/farmacocinética , Plomo/farmacocinética , Oryza/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/química , Contaminantes del Suelo/farmacocinética
6.
Ecotoxicol Environ Saf ; 197: 110563, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32278824

RESUMEN

Sodium sulfide (Na2S) is usually used as an amendment in industrial sewage treatment. To evaluate the effects of Na2S on the growth of Robinia pseudoacacia (black locust), heavy metal immobilization, and soil microbial activity, the R. pseudoacacia biomass and nutrient content and the soil heavy metal bioavailability, enzyme activity, and arbuscular mycorrhizal (AM) fungal community were measured by a single-factor pot experiment. The Pb-Zn-contaminated soil was collected from a Pb-Zn mine that had been remediated by R. pseudoacacia for five years. Three pollution levels (unpolluted, mildly polluted, and severely polluted) were evaluated by the pollution load index. Na2S application increased the shoot biomass under severe and mild contamination. In soil, Na2S application decreased the bioavailable Pb and Zn contents under severe and mild contamination, which resulted in a decrease in the Pb and Zn content in R. pseudoacacia. However, Na2S application did not affect the total Pb content per plant and enhanced the total Zn content per plant because of the higher biomass of the plants under Na2S application. Increased phosphatase activity and increased available phosphorous content may promote the uptake of phosphorus in R. pseudoacacia. Moreover, Na2S application is beneficial to the diversity of AM fungi under mild and severe pollution. Overall, Na2S application has great potential for enhancing soil heavy metal immobilization, enhancing soil microbial activity, and improving the growth of R. pseudoacacia in polluted soils. Therefore, Na2S is suitable for use in Pb-Zn remediation to ameliorate environmental heavy metal pollution.


Asunto(s)
Metales Pesados/farmacocinética , Robinia/crecimiento & desarrollo , Microbiología del Suelo , Contaminantes del Suelo/farmacocinética , Sulfuros/farmacología , Biodegradación Ambiental , Disponibilidad Biológica , Biomasa , Plomo/farmacocinética , Micorrizas/clasificación , Micorrizas/efectos de los fármacos , Fósforo/metabolismo , Robinia/efectos de los fármacos , Robinia/metabolismo , Robinia/microbiología , Zinc/farmacocinética
7.
Ecotoxicol Environ Saf ; 193: 110355, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32120164

RESUMEN

In the Montado system, in Portuguese Alentejo region, some Eutric Cambisols are known to promote manganese (Mn) toxicity in wheat. Variation on bioavailable Mn concentration depends on soil acidity, which can be increased by natural events (e.g. waterlogging) or human activity (e.g. excess use of chemical fertilizers). The effect of increasing soil Mn on crop element uptake, element distribution and oxidative stress was evaluated on winter wheat (Triticum aestivum). Plants were grown for 3 weeks in an acidic Cambisol spiked with increasing Mn concentrations (0, 45.2 and 90.4 mg MnCl2/Kg soil). Calcium (Ca), phosphorus (P), magnesium (Mg) and Mn were quantified in the soil solution, root and shoot tissues and respective subcellular fractions. The activity of the antioxidant enzymes ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), guaiacol peroxidase (GPX) and superoxide dismutase (SOD) were determined in extracts of wheat shoots and roots. Overall, increase in soil bioavailable Mn inhibited the uptake of other elements, increased the Ca proportion in the root apoplast, promoted the translocation of Mn and P to shoot tissues and increased their proportion in the shoot vacuoles. Wheat roots showed greater antioxidant enzymes activities than shoots. These activities decreased at the highest soil Mn concentration in both plant parts. Wheat roots appear to be more sensitive to oxidative stress derived from excess soil Mn and promote Mn translocation and storage in shoot vacuoles, probably in Mn and P complexes, as a detoxification strategy. Improvement in wheat production, in acidic soils, may rely on the enhancement of its Mn detoxification strategies.


Asunto(s)
Manganeso/toxicidad , Contaminantes del Suelo/toxicidad , Triticum/efectos de los fármacos , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Transporte Biológico , Calcio/metabolismo , Catalasa/metabolismo , Glutatión Reductasa/metabolismo , Magnesio/metabolismo , Manganeso/farmacocinética , Estrés Oxidativo , Peroxidasa/metabolismo , Fósforo/metabolismo , Suelo/química , Contaminantes del Suelo/farmacocinética , Superóxido Dismutasa/metabolismo , Triticum/enzimología , Triticum/metabolismo
8.
Ecotoxicol Environ Saf ; 193: 110342, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32109585

RESUMEN

Agricultural production of Ligusticum chuanxiong Hort. is often affected by heavy metal pollution in soil, especially mixtures of cadmium (Cd) and lead (Pb). We assessed metal-induced phytotoxicity in L. chuanxiong by exposing the plants to soil treated with Cd, Pb, or Cd/Pb mixtures. A combined Cd/Pb treatment alleviated the inhibition in plant growth, photosynthesis, and secondary metabolite generation seen in single-metal exposures in three of the four combinations. Most combined Cd/Pb treatments resulted in preferential uptake of magnesium, copper, and nitrogen in underground plant parts and accumulation of phosphorus and calcium in aboveground plant parts, thereby leading to improvements in photosynthetic potential. Compared with single-metal exposures, combined Cd/Pb treatment significantly decreased the contents of Cd by 16.67%-40.12% and Pb by 10.68%-21.70% in the plant, respectively. At the subcellular level, the Pb presence increased the Cd percentage associated with cell wall from 64.79% to 67.93% in rhizomes and from 32.76% to 45.32% in leaves, while Cd reduced Pb contents by 9.36%-46.39% in the subcellular fractions. A combined Cd/Pb treatment decreased the contents of water- and ethanol-extractable metal forms and increased the contents of acetic acid- and hydrochloric acid-extractable forms. The lower toxic effects of the Cd/Pb mixture in L. chuanxiong were associated with photosynthetic potential, subcellular distribution, the chemical forms of Cd and Pb, and synthesis of secondary metabolites. These findings are useful for plant production strategies in soils contaminated by heavy metals.


Asunto(s)
Cadmio/toxicidad , Plomo/toxicidad , Ligusticum/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Cadmio/farmacocinética , Calcio/metabolismo , Cobre/metabolismo , Interacciones Farmacológicas , Plomo/farmacocinética , Ligusticum/metabolismo , Magnesio/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/metabolismo , Plantas Medicinales/efectos de los fármacos , Plantas Medicinales/metabolismo , Metabolismo Secundario/efectos de los fármacos , Contaminantes del Suelo/farmacocinética
9.
Chemosphere ; 247: 125965, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32069730

RESUMEN

Phosphorous (P) fertilization is an important agronomic practice, but its role in enhancing phytoremediation efficacy and mediating detoxification has rarely been reported in environmental remediation studies. In this study, a pot experiment was undertaken to assess: firstly, the effect of P on phytoextraction of Cu by Ricinus communis L.; secondly, the potential mechanisms by differentiating the effects of the plant from that of P fertilizer (Ca(H2PO4)2); and thirdly, the role of P in physiological detoxification. Results showed that the application of P fertilizer significantly (p ≤ 0.05) increased the plant biomass as well as the Cu concentrations in plant tissues. This enhanced the phytoremediation efficiency represented by the total Cu extraction (up to 121.3 µg Cu plant-1). Phosphorous (P) fertilizer led to a negligible decline in soil pH (0.2 units) but significantly (p ≤ 0.05) reduced the concentrations of soil available in Cu and Fe, due to the formation of insoluble Cu/Fe-phosphate precipitates. Nevertheless, P fertilizer still improved the accumulation and extraction of Cu by R. communis, most likely attributable to the Fe-deficiency induced by applied P fertilizer. Moreover, the application of P fertilizer revealed a significant reduction in MDA, and a profound (p ≤ 0.05) elevation in the amount of photosynthetic pigments, GSH and AsA, along with the enhanced activities of antioxidative enzymes (SOD, POD, and CAT). In this way, Cu toxicity was alleviated. P fertilizers not only enhance the phytoremediation efficiency of Cu-contaminated soils by R. communis, but they also facilitate detoxification, which improves our understanding of the role of P in phytoremediation technologies.


Asunto(s)
Biodegradación Ambiental , Cobre/metabolismo , Fertilizantes , Fósforo/farmacología , Ricinus/efectos de los fármacos , Antioxidantes/análisis , Antioxidantes/farmacología , Biomasa , Cobre/farmacocinética , Restauración y Remediación Ambiental/métodos , Inactivación Metabólica , Fotosíntesis , Ricinus/metabolismo , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética
10.
Environ Geochem Health ; 42(8): 2345-2360, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31428945

RESUMEN

Phytostabilization is a green, cost-effective technique for mine rehabilitation and ecological restoration. In this study, the phytostabilization capacity of Erica australis L. and Nerium oleander L. was assessed in the climatic and geochemical context of the Riotinto mining district, southwestern Spain, where both plant species colonize harsh substrates of mine wastes and contaminated river banks. In addition to tolerating extreme acidic conditions (up to pH 3.36 for E. australis), both species were found to grow on substrates very poor in bioavailable nutrients (e.g., N and P) and highly enriched with potentially phytotoxic elements (e.g., Cu, Cd, Pb, S). The selective root absorption of essential elements and the sequestration of potentially toxic elements in the root cortex are the main adaptations that allow the studied species to cope in very limiting edaphic environments. Being capable of a tight elemental homeostatic control and tolerating extreme acidic conditions, E. australis is the best candidate for use in phytostabilization programs, ideally to promote early stages of colonization, improve physical and chemical conditions of substrates and favor the establishing of less tolerant species, such as N. oleander.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Ericaceae/fisiología , Nerium/fisiología , Contaminantes del Suelo/farmacocinética , Contaminantes del Suelo/toxicidad , Biodegradación Ambiental , Ericaceae/efectos de los fármacos , Concentración de Iones de Hidrógeno , Metales/análisis , Metales/farmacocinética , Metales/toxicidad , Minería , Nerium/efectos de los fármacos , Nitrógeno/análisis , Nitrógeno/farmacocinética , Fósforo/análisis , Fósforo/farmacocinética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Ríos , Suelo/química , Contaminantes del Suelo/análisis , España , Especificidad de la Especie , Distribución Tisular
11.
Chemosphere ; 241: 125106, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31683428

RESUMEN

A pot experiment was conducted to investigate the possible mediatory effect of organic amendments (vermicompost and biochar) and selenium (Se) on Cd bioaccumulation in both rice cultivars (high-Cd accumulation rice: Yuzhenxiang (YZX) and low-Cd accumulation rice: Changliangyou772 (CLY)) in high-Cd-contaminated soils. The results showed that Cd sensitivity and tolerance were cultivar-dependent, and grain Cd contents for CLY accorded with the Chinese national food safety standards (0.2 mg kg-1), whereas grain Cd levels for YZX were 1.4-5.8 times higher than those for CLY. Soil applications of amendments decreased grain Cd levels by 3.5%-36.9% for YZX and 36.1%-74.4% for CLY. Moreover, vermicompost (VC) was more effective in reducing Cd bioaccumulation than biochar (BC). A combination of Se and organic amendments could significantly increase grain Se contents and help further reduce grain Cd levels by 5.8%-20.8%, compared to the single organic amendments. This mitigation progress could be attributed to the changes of Cd translocation and distribution among rice tissues and the inhibition of Cd bioavailability in soil through the alteration in soil properties. Organic amendments, especially high dose (5%), increased soil pH and organic matter contents, and correspondingly decreased soil Cd bioavailability. A sequential extraction analysis suggested that organic amendments and Se facilitated the transformation of soil Cd from the bioavailable form to the immobilized Cd form, and thus decreased grain Cd levels. Hence, co-applications of organic amendments and Se in combination with low-Cd accumulation cultivar could be an effective strategy for both Se needs of humans and safe utilization of Cd polluted soil.


Asunto(s)
Cadmio/farmacocinética , Carbón Orgánico/farmacología , Compostaje , Oryza/metabolismo , Selenio/farmacología , Disponibilidad Biológica , Cadmio/análisis , Grano Comestible/química , Exposición a Riesgos Ambientales/normas , Humanos , Oryza/química , Selenio/análisis , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética , Especificidad de la Especie
12.
Chemosphere ; 241: 125095, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31683432

RESUMEN

Cultivating cadmium (Cd)-safe rice lines, which show low Cd accumulation in brown rice, is generally beneficial to ensure food safety. The Cd retention in root of Cd-safe rice line D62B plays an important role in its low Cd translocation from root to shoot. To understand the mechanism of Cd retention in root, a hydroponic experiment was conducted to investigate the subcellular distribution of Cd and the contribution of polysaccharides to Cd binding to the root cell wall of a Cd-safe rice line D62B with a common rice line Luhui17 as a control material. D62B retained more Cd in the root by sequestrated a higher proportion of Cd in the cell wall, further it transferred less Cd to shoot. Close to half of the Cd in the root cell wall of D62B was accumulated in the hemicellulose 1 (HC1), and the proportions of HC1 in it were 1.2-1.7 times higher than these of Luhui17. The proportion of Cd in the pectin showed a dose-dependent increase in two rice lines. D62B contained significantly higher uronic acid concentrations of the pectin and greater pectin methyl esterase (PME) activities than Luhui17 in the root cell wall. These results indicated that a superior Cd binding capacity of the cell wall polysaccharides in D62B played an important role in its Cd retention in root.


Asunto(s)
Cadmio/farmacocinética , Pared Celular/metabolismo , Oryza/efectos de los fármacos , Raíces de Plantas/metabolismo , Cadmio/metabolismo , Pared Celular/química , Pared Celular/efectos de los fármacos , Hidroponía , Oryza/citología , Oryza/metabolismo , Pectinas/química , Pectinas/metabolismo , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Polisacáridos/química , Polisacáridos/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/farmacocinética
13.
Environ Geochem Health ; 42(8): 2535-2545, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31583504

RESUMEN

The objective of this research was to determine the combined effects of ethylenediaminetetraacetic acid (EDTA) and plant growth-promoting rhizobacteria (PGPR) on the phytostabilization of Cd, Pb, and Zn by corn and chemical fractionation of these elements in soil. Three heavy metal-resistant bacteria (P18, P15, and P19) were selected. All strains, belonging to the fluorescent pseudomonads, exhibited plant growth-promoting properties, including phosphorus solubilization and production of siderophore, indole acetic acid, and 1-aminocyclopropane-1-carboxylic acid deaminase. Applying EDTA individually or in combination with bacterial strains (P18 and P15) significantly increased shoot biomass. The highest dry shoot biomass was recorded in the combined treatment of EDTA and P15-inoculated pots. Application of EDTA in PGPR-inoculated pots increased concentrations of heavy metals in corn shoots and roots compared to the control. The highest concentration of Zn in corn root and shoot was observed in P15 + EDTA treatment, which were 2.0-fold and 1.3-fold higher than those in the untreated soil. Results of chemical speciation showed that the co-application of EDTA and fluorescent pseudomonads strains increased the bioavailability of Zn, Pb, and Cd by their redistribution from less soluble fractions to water-soluble forms. It was concluded that bacterial inoculation could improve the efficiency of EDTA in phytostabilization of heavy metals from multi-metal contaminated soils.


Asunto(s)
Inoculantes Agrícolas , Ácido Edético/química , Metales Pesados/química , Contaminantes del Suelo/química , Zea mays/crecimiento & desarrollo , Biodegradación Ambiental , Disponibilidad Biológica , Biomasa , Ácidos Indolacéticos/metabolismo , Irán , Metales Pesados/metabolismo , Metales Pesados/farmacocinética , Fósforo/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Pseudomonas/fisiología , Rhizobiaceae , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/farmacocinética , Zea mays/metabolismo
14.
Environ Sci Pollut Res Int ; 26(30): 30794-30807, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31444728

RESUMEN

Soil pollution with heavy metals is a major problem in industrial areas. Here, we explored whether zeolite addition to soil and indigenous arbuscular mycorrhizal fungi (AMF) can reduce cadmium (Cd) uptake from soil by bread wheat. We conducted a pot experiment, in which the effects of indigenous soil AMF, zeolite addition, and Cd spiking to soil [0, 5, 10, and 15 mg (kg soil)-1] were tested. Zeolite addition to soil spiked with 15 mg Cd kg-1 decreased the Cd uptake to grains from 11.8 to 8.3 mg kg-1 and 8.9 to 3.3 mg kg-1 in the absence and presence of indigenous AMF, respectively. Positive growth, nitrogen (N), and phosphorous (P) uptake responses to mycorrhization in Cd-spiked soils were consistently magnified by zeolite addition. Zeolite addition to soil stimulated AMF root colonization. The abundance of AMF taxa changed in response to zeolite addition to soil and soil Cd spiking as measured by quantitative polymerase chain reaction. With increasing Cd spiking, the abundance of Funneliformis increased. However, when less Cd was spiked to soil and/or when zeolite was added, the abundance of Claroideoglomus and Rhizophagus increased. This study showed that soil-indigenous AMF and addition of zeolite to soil can lower Cd uptake to the grains of bread wheat and thereby reduce Cd contamination of the globally most important staple food.


Asunto(s)
Cadmio/farmacocinética , Micorrizas/fisiología , Contaminantes del Suelo/farmacocinética , Triticum/crecimiento & desarrollo , Zeolitas , Inoculantes Agrícolas , Cadmio/análisis , Glomeromycota , Nitrógeno/farmacocinética , Fósforo/farmacocinética , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Triticum/efectos de los fármacos , Triticum/metabolismo
15.
Environ Sci Pollut Res Int ; 26(23): 24132-24142, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31228062

RESUMEN

Mining tailing areas may contain metal minerals such as Cu, Pb, Zn, Cr, and Cd at high concentrations and low nutrients for the growth of plants. This kind of conditions of the area, as well as lack of tailing structure, may limit the development of plants on these areas. Thus, the present study determined the metal, macronutrient, and micronutrient concentrations in the tissues of the roots and shoots of the Solanum viarum Dunal species as well as it evaluated the potential use of the plant for phytoremediation of mining tailing areas contaminated with heavy metals. The macronutrients, micronutrients, and heavy metals in the roots and shoots were determined by the digestion method with nitric and perchloric acid (HNO3-HClO4) and quantified by the ICP-OES. In S. viarum, the average concentrations of the metals presented in the dry biomass varied between the shoots and roots, being higher in the roots for metals such as Cu (229 mg kg-1), Zn (232 mg kg-1), Mn (251 mg kg-1), Cr (382 mg kg-1), Ni (178 mg kg-1), Pb (33 mg kg-1), and Ba (1123 mg kg-1). S. viarum indicates the possibility of a potential application in phytoremediation and treatment of areas contaminated with heavy metals.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Metales Pesados/análisis , Minería , Contaminantes del Suelo/análisis , Solanum/química , Biodegradación Ambiental , Biomasa , Brasil , Metales Pesados/farmacocinética , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/química , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Contaminantes del Suelo/farmacocinética , Solanum/efectos de los fármacos , Solanum/metabolismo , Distribución Tisular
16.
Environ Sci Pollut Res Int ; 26(20): 20866-20878, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31111391

RESUMEN

The establishment of phytoextraction crops on highly contaminated soils can be limited by metal toxicity. A recent proposal has suggested establishing support crops during the critical initial phase by metal immobilization through soil amendments followed by subsequent mobilization using elemental sulphur to enhance phytoextraction efficiency. This 'combined phytoremediation' approach is tested for the first time in a pot experiment with a highly contaminated soil. During a 14-week period, relatively metal-tolerant maize was grown in a greenhouse under immobilization (before sulphur (S) application) and mobilization (after S application) conditions with soil containing Cd, Pb and Zn contaminants. Apart from the control (C) sample, the soil was amended with activated carbon (AC), lignite (Lig) or vermicompost (VC) all in two different doses (dose 1~45 g additive kg-1 soil and dose 2~90 g additive kg-1 soil). Elemental S was added as a mobilization agent in these samples after 9 weeks. Biomass production, nutrient and metal bioavailability in the soil were determined, along with their uptake by plants and the resulting remediation factors. Before S application, Cd and Zn mobility was reduced in all the AC, Lig and VC treatments, while Pb mobility was increased only in the Lig1 and VC1 treatments. Upon sulphur application, Fe, Mn, Cd, Pb and Zn mobility was not significantly affected in the C, AC and VC treatments, nor total Cd, Pb and Zn contents in maize shoots. Increased sulphate, Mn, Cd, Pb and Zn mobilities in soil together with related higher total S, Mn, Pb and Zn contents in shoots were observed in investigated treatments in the last sampling period. The highest biomass production and the lowest metal toxicity were seen in the VC treatments. These results were associated with effective metal immobilization and showed the trend of steady release of some nutrients. The highest remediation factors and total elemental content in maize shoots were recorded in the VC treatments. This increased phytoremediation efficiency by 400% for Cd and by 100% for Zn compared to the control. Considering the extreme metal load of the soil, it might be interesting to use highly metal-tolerant plants in future research. Future investigations could also explore the effect of carbonaceous additives on S oxidation, focusing on the specific microorganisms and redox reactions in the soil. In addition, the homogeneous distribution of the S rate in the soil should be considered, as well as longer observation times.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Metales Pesados/farmacocinética , Contaminantes del Suelo/farmacocinética , Azufre , Zea mays/metabolismo , Biodegradación Ambiental , Disponibilidad Biológica , Biomasa , Carbón Orgánico/química , Compostaje , Metales Pesados/análisis , Fósforo/farmacocinética , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Suelo/química , Contaminantes del Suelo/análisis , Azufre/farmacocinética , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
17.
Environ Pollut ; 251: 651-658, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31108298

RESUMEN

Dietary arsenic (As) intake from food is of great concern, and developing a reliable model capable of predicting As concentrations in plant edible parts is desirable. In this study, pot experiments were performed with 16 Chinese upland soils spiked with arsenate [As(V)] to develop a predictive model for As concentrations in pepper fruits (Capsicum annum L.). Our results showed that after three months' aging, concentrations of bioavailable As (extracted by 0.05 M NH4H2PO4) in various soils varied widely, depending on soil total As concentrations and soil properties such as soil pH and amorphous iron (Fe) contents. Furthermore, both the bioconcentration factor (BCF, denoted as the ratio of fruit As to soil As) and total As concentrations in pepper fruits were largely determined by concentrations of bioavailable As, which explained 27% and 69% variations in the BCF and fruit As concentrations, respectively. Apart from bioavailable As, soil pH and Fe contents were another two important factors influencing As accumulation in pepper fruits. Taking the three factors into account, concentrations of fruit As can be well predicted using a stepwise multiple linear regression (SMLR) analysis (R2 = 0.80, RMSE = 0.17). Arsenic species in soils and edible parts were also analyzed. Although As(V) predominated in soils (>96%), As in pepper fruits presented as As(V) (46%) and arsenite [As(III)] (39%) with small amount of methylated As (<15%). Aggregated boosted tree (ABT) analysis revealed that inorganic As concentrations in pepper fruits were determined by concentrations of bioavailable As, phosphorus (P) and Fe in soils. In contrast to inorganic As, methylated As concentrations were not correlated with those factors in soils. Taken together, this study established an empirical model for predicting As concentrations in pepper fruits. The predictive model can be used for establishing the As threshold in fruit vegetable farming soils.


Asunto(s)
Arsenicales/farmacocinética , Capsicum/metabolismo , Contaminantes del Suelo/farmacocinética , Arsenicales/análisis , Arsenicales/química , Arsenicales/metabolismo , Disponibilidad Biológica , Contaminación de Alimentos/análisis , Frutas/metabolismo , Concentración de Iones de Hidrógeno , Hierro/análisis , Fósforo/análisis , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo
18.
Environ Geochem Health ; 41(6): 2413-2423, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30972517

RESUMEN

Plants that have grown for many years in the special environmental conditions prevailing in mining areas are naturally screened and show strong capacity to adapt to their environment. The present study investigated the enrichment characteristics of U and other heavy metals (As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni) in the soil-plant system in Xiazhuang uranium mine. Four dominant plants (Castanopsis carlesii, Rhus chinensis, Liriodendron chinense, and Sapium discolor) and soil samples were collected from the mined areas, unmined areas, and background areas away from the ore field. U, As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni concentrations were analyzed by ICP-MS. The results demonstrate that (1) The highest concentrations of U (4.1-206.9 mg/kg) and Pb (43.3-126.0 mg/kg) with the geoaccumulation index (Igeo) greater than 1 show that they are the main soil pollutants in the research area. (2) The biological accumulation coefficient (LBAC) values for Cd, Mn, and Cu are greater than zero in S. discolor, L. chinense, and C. carlesii and these three plants indicate that they can be used for remediation of the soil in the ore field. (3) R. chinensis inhibits the accumulation of heavy metals and shows sensitive pigment responses to the accumulation of U in the leaves. L. chinense has the strongest enrichment effect on heavy metals but exhibits weak biochemical responses under U stress. C. carlesii demonstrates strong adaptation to U and can maintain healthy pigment characteristics in case of high U enrichment. (4) S. discolor, L. chinense, C. carlesii and R. chinensis have strong tolerance to U toxicity and different biochemical responses.


Asunto(s)
Metales Pesados/análisis , Minería , Contaminantes del Suelo/análisis , Tracheophyta/metabolismo , Uranio/análisis , Biodegradación Ambiental , China , Monitoreo del Ambiente , Metales Pesados/farmacocinética , Hojas de la Planta/química , Rhus/efectos de los fármacos , Rhus/metabolismo , Sapium/efectos de los fármacos , Sapium/metabolismo , Suelo , Contaminantes del Suelo/farmacocinética , Tracheophyta/efectos de los fármacos , Uranio/farmacocinética
19.
Sci Total Environ ; 657: 871-881, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30677952

RESUMEN

Soil dissolved organic matter (DOM) alters heavy metal availability, but whether straw amendment can manipulate soil selenium (Se) speciation and availability through DOM mineralization remains unclear. In this study, allochthonous maize straw and selenate were incubated together in four different soils for 1 y. The transformation and availability of DOM associated Se (DOM-Se) was investigated during aging. Results indicated that soil solution and soil particle surfaces were dominated by hexavalent hydrophilic acid-bound Se (Hy-Se). The amount of fulvic acid bound Se in soil solution (SOL-FA-Se) was higher than humic acid bound Se in soil solution (SOL-HA-Se), except in krasnozems, and mainly existed as hexavalent Se (Se(VI)). Tetravalent Se (Se(IV)) was the main valence state of FA-Se adsorbed on soil particle surfaces (EX-FA-Se) after 5 w of aging. The proportion of soil-available Se (SOL + EX-Se) decreased with increasing straw rate. However, under an application rate of 7500 kg·hm-2, soluble Se fraction (SOL-Se) reduction was minimal in acidic soils (18.7%-34.7%), and the organic bound Se fraction (OM-Se) was maximally promoted in alkaline soils (18.2%-39.1%). FA and HON could enhance the availability of Se in the soil solution and on particle surfaces of acidic soil with high organic matter content. While Se incorporation with HA could accelerate the fixation of Se into the solid phase of soil. Three mechanisms were involved in DOM-Se aging: (1) Reduction, ligand adsorption, and inner/outer-sphere complexation associated with the functional groups of straw-derived DOM, including hydroxyls, carboxyl, methyl, and aromatic phenolic compounds; (2) interconnection of EX-FA-Se between non-residual and residual Se pools; and (3) promotion by soil electrical conductivity (EC), clay, OM, and straw application. The dual effect of DOM on Se aging was highly reliant on the characteristics of the materials and soil properties. In conclusion, straw amendment could return selenium in soil and reduce soluble Se loss.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Selenio/análisis , Suelo/química , Agricultura , Benzopiranos/química , China , Interacciones Hidrofóbicas e Hidrofílicas , Tallos de la Planta/química , Ácido Selénico/química , Selenio/química , Selenio/farmacocinética , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo
20.
Chemosphere ; 221: 342-348, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30641375

RESUMEN

There have been no studies demonstrating the correlation between soil nutrient heterogeneity and cadmium (Cd) absorption of Bermudagrass. In this study, a pot experiment was carried out to study the correlation between them. The purpose is to find soil nutrient factors which are conducive to improving the Cd absorption and translocation. The eighth group had the largest total number of surviving plants, the highest Fv/Fo value (3.24) and the best growth characteristics. The fifth group had the lowest total number of surviving plants, Fv/Fo (2.47) and the worst growth. The Cd content of the fifth group (36.11 mg kg-1) was close to the eighth group (35.72 mg kg-1), but the two groups had significant differences in plant height, stem node length and stem node number (P < 0.05). The eighth group showed the highest contents of nitrate nitrogen (NO3--N), available potassium and urease activity. The fifth group showed the lowest NO3--N content, but the highest ammonium nitrogen (NH4+-N) and available phosphorus content. There was significant difference of the Cd bioconcentration factors (BCF) and translocation factor (TCF) between the fifth and the eighth group although they had the similar total soil Cd content (P < 0.05). The fifth group had the highest BCF and TCF. RDA analysis indicated the BCF and TCF were positively correlated with soil NH4+-N and available phosphorus and negatively correlated with soil NO3--N. The results demonstrated that soil NH4+-N and available phosphorus were important soil ecological factors to enhance Cd absorption and translocation of bermudagrass.


Asunto(s)
Cadmio/metabolismo , Cynodon/metabolismo , Nutrientes , Suelo/química , Compuestos de Amonio/análisis , Cadmio/farmacocinética , Cynodon/crecimiento & desarrollo , Nitratos/análisis , Nitrógeno/análisis , Fósforo/análisis , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA