Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 664
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
J Hazard Mater ; 470: 134232, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593666

RESUMEN

In a 120-day microcosm incubation experiment, we investigated the impact of arsenic contamination on soil microbial nutrient metabolism, focusing on carbon cycling processes. Our study encompassed soil basal respiration, key enzyme activities (particularly, ß-1,4-N-acetylglucosaminidase and phosphatases), microbial biomass, and community structure. Results revealed a substantial increase (1.21-2.81 times) in ß-1,4-N-acetylglucosaminidase activities under arsenic stress, accompanied by a significant decrease (9.86%-45.20%) in phosphatase activities (sum of acid and alkaline phosphatases). Enzymatic stoichiometry analysis demonstrated the mitigation of microbial C and P requirements in response to arsenic stress. The addition of C-sources alleviated microbial C requirements but exacerbated P requirements, with the interference amplitude increasing with the complexity of the C-source. Network analysis unveiled altered microbial nutrient requirements and an increased resistance process of microbes under arsenic stress. Microbial carbon use efficiency (CUE) and basal respiration significantly increased (1.17-1.59 and 1.18-3.56 times, respectively) under heavy arsenic stress (500 mg kg-1). Arsenic stress influenced the relative abundances of microbial taxa, with Gemmatimonadota increasing (5.5-50.5%) and Bacteroidota/ Nitrospirota decreasing (31.4-47.9% and 31.2-63.7%). Application of C-sources enhanced microbial resistance to arsenic, promoting cohesion among microorganisms. These findings deepen our understanding of microbial nutrient dynamics in arsenic-contaminated areas, which is crucial for developing enzyme-based toxicity assessment systems for soil arsenic contamination.


Asunto(s)
Arsénico , Carbono , Microbiología del Suelo , Contaminantes del Suelo , Arsénico/metabolismo , Arsénico/toxicidad , Carbono/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Fósforo/metabolismo , Suelo/química
2.
Plant Physiol Biochem ; 210: 108624, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636254

RESUMEN

Heavy metals are one of the most damaging environmental toxins that hamper growth of plants. These noxious chemicals include lead (Pb), arsenic (As), nickel (Ni), cadmium (Cd) and chromium (Cr). Chromium is one of the toxic metal which induces various oxidative processes in plants. The emerging role of nanoparticles as pesticides, fertilizers and growth regulators have attracted the attention of various scientists. Current study was conducted to explore the potential of zinc oxide nanoparticles (ZnONPs) alone and in combination with plant growth promoting rhizobacteria (PGPR) Klebsiella sp. SBP-8 in Cr stress alleviation in Brassica juncea (L.). Chromium stress reduced shoot fresh weight (40%), root fresh weight (28%), shoot dry weight (28%) and root dry weight (34%) in B. juncea seedlings. Chromium stressed B. juncea plants showed enhanced levels of malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide ion (O2• -). However, co-supplementation of ZnONPs and Klebsiella sp. SBP-8 escalated the activity of antioxidant enzymes i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) in B. juncea grown in normal and Cr-toxic soil. It is further proposed that combined treatment of ZnONPs and Klebsiella sp. SBP-8 may be useful for alleviation of other abiotic stresses in plants.


Asunto(s)
Antioxidantes , Cromo , Klebsiella , Planta de la Mostaza , Óxido de Zinc , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/microbiología , Planta de la Mostaza/metabolismo , Cromo/toxicidad , Cromo/metabolismo , Antioxidantes/metabolismo , Klebsiella/metabolismo , Klebsiella/efectos de los fármacos , Óxido de Zinc/farmacología , Adsorción , Nanopartículas del Metal/química , Nanopartículas/química , Contaminantes del Suelo/toxicidad
3.
Sci Total Environ ; 929: 172560, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38641102

RESUMEN

Lanthanum (La), the second most abundant rare earth element (REE) is emerging as an environmental issue, with the potential to impact ecosystems and human health. Major sources of soil contamination by La include agricultural, and industrial activities. Lanthanum is non-essential for plant growth but accumulates in various plant parts. The uptake of La by plants is intricately influenced by various factors such as soil pH, redox potential, cation exchange capacity, presence of organic acids and rhizosphere composition. These factors significantly impact the availability and absorption of La ions. Lanthanum impact on plants depends on soil characteristics, cultivated species, developmental stage, La concentration, treatment period, and growth conditions. Excessive La concentrations affect cell division, DNA structure, nutrient uptake, and photosynthesis and induce toxicity symptoms. Plants employ detoxification mechanisms like vacuolar sequestration, osmolyte synthesis, and antioxidant defense system. However, higher concentrations of La can overwhelm these defense mechanisms, leading to adverse effects on plant growth and development. Further, accumulation of La in plants increases the risk for human exposure. Strategies to mitigate La toxicity are, therefore, vital for ecosystem protection. The application of phytoremediation, supplementation, chelation, amendments, and biosorption techniques contributes to the mitigation of La toxicity. This review provides insights into La sources, uptake, toxicity, and alleviation strategies in plants. Identifying research gaps and discussing advancements aims to foster a holistic understanding and develop effective strategies for protecting plant health and ecosystem resilience against La contamination.


Asunto(s)
Biodegradación Ambiental , Lantano , Plantas , Contaminantes del Suelo , Lantano/toxicidad , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Plantas/efectos de los fármacos , Plantas/metabolismo , Suelo/química
4.
Environ Geochem Health ; 46(4): 131, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483704

RESUMEN

Potato is one of the essential food products whose health quality is greatly influenced by soil contamination and properties. In the current study, we have investigated the physicochemical characteristics of agricultural areas and the accumulation of nitrite/nitrate and metals in potato products in Hamedan, Iran. After determining the physicochemical characteristics of soil samples from four agricultural regions of Hamedan, 48 potato samples were collected from these regions. The heavy metals and nitrate/nitrite content were determined by ICP-OES and calorimetric methods, respectively. A negative correlation was observed between soil pH changes with nitrite/nitrate content and the accumulation of some heavy elements in potatoes. Furthermore, a positive correlation was found between soil phosphorus content and lead accumulation in potato. In present study, the amounts of lead, nitrate, and nitrite in 83.3%, 56%, and 12% of the collected samples were higher than the permissible limit reported by the World Health Organization (WHO), respectively. The EDI range for nitrate and nitrite was determined to be 130-260 and 1.4-2.7 µg/kg/day, respectively, which is much lower than the RfD set by the US Environmental Protection Agency (USEPA) for nitrite and nitrate. Among metal pollutants, the toxic risk caused by lead in potato consumers was higher than the threshold limit. In conclusion, our findings showed that the physicochemical characteristics of the soil could effectively increase the availability of metal pollutants and nitrite/nitrate to the potato product and significantly reduce its health quality. Therefore, monitoring these pollutants in the soil-potato system, preventing the entry of industrial wastewater, and managing the use of agricultural fertilizers can effectively improve the health of this product for consumers.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Contaminantes del Suelo , Solanum tuberosum , Suelo , Nitratos , Nitritos , Irán , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Medición de Riesgo , Monitoreo del Ambiente
5.
Plant Physiol Biochem ; 207: 108433, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38364631

RESUMEN

Rapid industrialization and extensive agricultural practices are the major causes of soil heavy metal contamination, which needs urgent attention to safeguard the soils from contamination. However, the phytotoxic effects of excessive metals in plants are the primary obstacle to efficient phytoextraction. The present study evaluated the effects of hesperidin (HSP) on metals (Cu, Cd, Cr, Zn) phytoextraction by hyperaccumulator (Celosia argentea L.) plants. For this purpose, HSP, a flavonoid compound with strong antioxidant potential to assist metal phytoextraction was used under metal stress in plants. Celosia argentea plants suffered significant (P ≤ 0.001) oxidative damage due to the colossal accumulation of metals (Cu, Cd, Cr, Zn). However, HSP supplementation notably (P ≤ 0.001) abated ROS generation (O2•‒, •OH, H2O2), lipoxygenase activity, methylglyoxal production, and relative membrane permeability that clearly indicated HSP-mediated decline in oxidative injury in plants. Exogenous HSP improved (P ≤ 0.001) the production of non-protein thiol, phytochelatins, osmolytes, and antioxidant compounds. Further, HSP enhanced (P ≤ 0.001) H2S and NO endogenous production, which might have improved the GSH: GSSG ratio. Consequently, HSP-treated C. argentea plants had higher biomass alongside elevated metal accumulation mirrored as profound modifications in translocation factor (TF), bioaccumulation coefficient (BAC), and bioconcentration factor (BCF). In this context, HSP significantly enhanced TF of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.01), while BAC of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.001). Further, BCF was significant (P ≤ 0.05) only in plants grown under Cr-spiked soil. Overall, HSP has the potential for phytoremediation of metals by C. argentea, which might be a suitable strategy for metal-polluted soils.


Asunto(s)
Celosia , Hesperidina , Metales Pesados , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Zinc , Cobre , Antioxidantes , Cromo/toxicidad , Peróxido de Hidrógeno , Biodegradación Ambiental , Suelo , Fotosíntesis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
6.
Ecotoxicol Environ Saf ; 272: 116012, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38290308

RESUMEN

Heavy metal pollution of agricultural soils, especially from cadmium (Cd) contaminationcaused serious problems in both food security and economy. Sorghum bicolor (L.) showed a great potential in phytoremediation of Cd contamination due to its fast growth, high yield and easy harvesting. However, the growth of S. bicolor plants tends to be inhibited under Cd exposure, which limited its application for Cd remediation. Plant growth-promoting rhizobacteria may enhance the Cd resistance of S. bicolor and thus improve its Cd removal efficiency. In this study, three Cd-resistant bacteria were screened based on Cd and acid tolerance and identified as Bacillus velezensis QZG6, Enterobacter cloacae QZS3 and Bacillus cereus QZS8, by 16S rRNA sequencing. Inoculation of hydroponic plants with strains QZG6, QZS3 or QZS8 significantly promoted the biomass of sorghum plants by 31.52%, 50.20% and 26.93%, respectively, compared with those of uninoculated plants under Cd exposure. The activity of SOD, POD and MDA content in Cd-stressed S. bicolor plants were reduced of 65.74%, 31.52%, and 80.91%, respectively, when inoculated with the strains QZS3. For pot experiment, strains QZG6, QZS3 and QZS8 significantly promoted the biomass of sorghum plants by 47.30%, 19.27% and 58.47%, compared with those of uninoculated plants under Cd exposure. The activity of SOD, POD and MDA content in Cd-stressed S. bicolor plants were reduced of 67.20%, 22.40%, and 40.65%, respectively, when inoculated with the strains QZS3. All these three strains significantly increased the Cd removal efficiency of the plants by 42.16% (QZG6), 18.76% (QZS3) and 21.06% (QZS8). To investigate the bacterial characteristics associated with growth promotion of S. bicolor plants, the ability on nitrogen fixation, phosphorus solubilization, siderophores production, and phytohormones production were determined. All the strains were able to fix nitrogen. Phosphorus release was observed for strains QZG6 (inorganic or organic phosphorus) and QZS3 (inorganic phosphorus). Both QZG6 and QZS8 were able to produce siderophores, while only QZG6 was positive for ACC deaminase. All the strains produced IAA, SA and GA. These results indicated that the three strains promoted the plant growth under Cd stress, probably through Cd detoxification by siderophores, as well as through growth regulation by N/P nutrient supply and phytohormone. The present study showed a great potential of the three Cd-resistant strains combined with S. bicolor plants in the remediation of Cd-polluted soils, which may provide a new insight into combining the advantages of microbes and plants to improve the remediation of Cd-contaminated soils.


Asunto(s)
Contaminantes del Suelo , Sorghum , Cadmio/toxicidad , Cadmio/análisis , Sorghum/genética , ARN Ribosómico 16S/genética , Reguladores del Crecimiento de las Plantas , Biodegradación Ambiental , Suelo , Bacillus cereus , Sideróforos , Fósforo , Superóxido Dismutasa , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
7.
Sci Rep ; 14(1): 2273, 2024 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280937

RESUMEN

The study specifically focused on the Hongliulin mining area, where a total of 40 soil samples were meticulously collected and analyzed from within a 1000 m radius extending from the tailings dam. The findings revealed that soil pH within the 0-1000 m range generally leaned towards the alkaline side. In terms of soil nutrient content, encompassing factors such as soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali nitrogen (AK), available phosphorus (AP), and quick-acting potassium (AK), the variations fell within the following ranges: 2.23-13.58 g/kg, 0.12-0.73 g/kg, 0.18-1.15 g/kg, 9.54-35.82 g/kg, 2.89-6.76 mg/kg, 3.45-11.25 mg/kg, and 5.86-130.9 mg/kg. Collectively, these values indicate relatively low levels of soil nutrients. Within the 0-500 m range of soil samples, the average concentrations of Cd, Hg, Pb, and As were 0.778, 0.198, 24.87, and 17.92 mg/kg, respectively. These concentrations exceeded the established soil background values of Shaanxi Province and emerged as the primary pollutants in the study area. Within this same range, the mean values of eight toxic metals (Pi) were ranked in the following descending order: 1.726 (Hg), 1.400 (As), 1.129 (Cr), 1.109 (Pb), 0.623 (Zn), 0.536 (Cd), 0.309 (Cu), and 0.289 (Ni). With the exception of Hg, As, Cr, and Pb, which exhibited slight pollution, the other toxic metals were found to be within acceptable pollution limits for this sampling range, in line with the results obtained using the geo-accumulation index method. The average potential ecological risk index for the eight toxic metals in the study area stood at 185.0, indicating a moderate overall pollution level. When assessing individual elements, the proportions of ecological risk attributed to Hg, As, Pb, and Cd were 34.57%, 27.44%, 25.11%, and 23.11%, respectively. This suggests that the primary potential ecological risk elements in the study area are Hg and As, followed by Cd and Pb. Notably, toxic metals Hg and Pb, as well as As and Pb, exhibited significant positive correlations within the sampling area, suggesting a common source. An analysis of the relationship between soil physicochemical properties and toxic metals indicated that soil pH, SOM, TN, and TP were closely linked to toxic metal concentrations. The toxic metal elements in the research area's soil exhibit moderate variability (0.16 < CV < 0.36) to high variability (CV > 0.36). Within the range of 0-200 m, the CV values for Cd and Hg exceed 1, indicating a high level of variability. The coefficient of variation for SOM, TP, AP, AK and TK is relatively high with the of 2.93, 2.36, 2.36, 21.01, 7.54. The soil in the sampling area has undergone significant disturbances due to human activities, resulting in toxic metal pollution and nutrient deficiencies.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Humanos , Suelo/química , Metales Pesados/toxicidad , Metales Pesados/análisis , Cadmio/análisis , Plomo/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Medición de Riesgo , Minería , Mercurio/análisis , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis , China
8.
Chemosphere ; 344: 140320, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37775052

RESUMEN

Agricultural heavy metal contamination can cause significant crop damage, highlighting the urgent need to mitigate its negative effects. Under Cd2+ stress, selenium nanomaterials (Se NMs, 2 mg kg-1) can significantly improve Brassica chinensis L. root growth and vigor, enhance photosynthesis (31.4%), and increase biomass. Se NMs treatment also reduces Brassica chinensis L root and shoot Cd concentration by 67.2 and 72.9%, respectively. This reduction is mainly due to the gene expression of Cd2+ absorption (BcITR1 and BcHMA2) which was down-regulated 51.9 and 67.0% by Se NMs, respectively. Meanwhile, Se NMs can increase the abundance of Cd-resistant microorganisms (Gemmatimonas, RB41, Haliangium, Gaiella, and Steroidobacter) in rhizosphere soil while also reducing Cd migration from soil to plants. Additionally, Se NMs also contribute to reducing ROS accumulation by improving the oxidation-reduction process between GSH and GSSG through enhancing γ-ECS (15.6%), GPx (50.2%) and GR (97.3%) activity. Remarkably, crop Se content can reach 50.8 µg/100 g, which fully meets the standards of Se-rich vegetables. These findings demonstrate the potential of Se NMs in relieving heavy metal stress, while simultaneously increasing crop Se content, making it a promising technology for sustainable agricultural production.


Asunto(s)
Brassica , Selenio , Contaminantes del Suelo , Selenio/farmacología , Selenio/metabolismo , Antioxidantes/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Suelo , Contaminantes del Suelo/toxicidad
9.
Environ Pollut ; 337: 122555, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714402

RESUMEN

Revealing the spatial features and source of associated potentially toxic elements (PTEs) is crucial for the safe use of selenium (Se)-rich soils. An integrative risk assessment (GRRRA) approach based on geostatistical analysis (GA), random forest (RF), and receptor models (RMs) was first established to investigate the spatial distribution, sources, and potential ecological risks (PER) of PTEs in 982 soils from Ziyang City, a typical natural Se-rich area in China. RF combined with multiple RMs supported the source apportionment derived from the RMs and provided accurate results for source identification. Then, quantified source contributions were introduced into the risk assessment. Eighty-three percent of the samples contain Cd at a high PER level in local Se-rich soils. GA based on spatial interpolation and spatial autocorrelation showed that soil PTEs have distinct spatial characteristics, and high values are primarily distributed in this research areas. Absolute principal component score/multiple line regression (APCS/MLR) is more suitable than positive matrix factorization (PMF) for source apportionment in this study. RF combined with RMs more accurately and scientifically extracted four sources of soil PTEs: parent material (48.91%), mining (17.93%), agriculture (8.54%), and atmospheric deposition (24.63%). Monte Carlo simulation (MCS) demonstrates a 47.73% probability of a non-negligible risk (RI > 150) caused by parent material and 3.6% from industrial sources, respectively. Parent material (64.20%, RI = 229.56) and mining (16.49%, RI = 58.96) sources contribute to the highest PER of PTEs. In conclusion, the GRRRA method can comprehensively analyze the distribution and sources of soil PTEs and effectively quantify the source contribution to PER, thus providing the theoretical foundation for the secure utilization of Se-rich soils and environmental management and decision making.


Asunto(s)
Metales Pesados , Selenio , Contaminantes del Suelo , Suelo , Selenio/toxicidad , Selenio/análisis , Metales Pesados/análisis , Monitoreo del Ambiente/métodos , Bosques Aleatorios , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Medición de Riesgo/métodos , China
10.
Braz J Biol ; 83: e269419, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37585925

RESUMEN

At the present time one of the tasks of modern agricultural industry consists in obtaining the ecologically safe and clean products. Contamination of soils with heavy metals due to an anthropogenic impact drives up their content in the composition of plant products. This shapes not only a reduction in crop yields, but also a deterioration in products quality. Within the terms of vegetation research in soil culture, there has been studied the protective and stimulating effect of sodium selenite upon the adaptive capacity of spring wheat plants of the variety Zlata under conditions of oxidative stress due to the soil contamination with cadmium. There has been studied the effect of different methods of sodium selenite application on the yield of spring wheat and the plants photosynthetic activity, depending on the level of soil contamination with cadmium. The object of research was a spring wheat variety Zlata. Plants have been cultivated in a greenhouse trial under soil culture conditions in Mitscherlich-vessels with a capacity of 6 kg of soil. Sod-podzolic soil has been used for research. Sodium selenite was introduced in three ways: pre-sowing seed treatment, foliar treatment of vegetative plants at the beginning of stage VI of organogenesis - the end of the tillering phase - the beginning of the stem-extension phase and the application of a salt solution into the soil when packing the vessels. The control samples represented variants without sodium selenite. To assess the plants photosynthetic productivity, there has been determined the chlorophyll content in plant leaves. The research results made it possible to determine the protective effect of sodium selenite on the adaptive capacity of plants under conditions of oxidative stress due to the soil contamination with cadmium. The increase in the adaptive capacity of plants manifested itself through the decrease in yield diminishing due to the improvement of conditions for fertile florets and ear initiations on the vegetative apex, as well as the development of flowers into grains, which contributed to increase in the grain content of the spike. The stimulating effect of selenium on the intensity of photosynthetic processes has been revealed, which showed not only the increase of chlorophylls content, but also the ratio changes of chlorophylls a and b.


Asunto(s)
Selenio , Contaminantes del Suelo , Suelo , Selenio/farmacología , Cadmio/toxicidad , Selenito de Sodio , Agricultura , Clorofila , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
11.
Environ Geochem Health ; 45(11): 7679-7692, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37410198

RESUMEN

Surveys and assessments of contaminated sites primarily focus on hazardous pollutants in the soil with less attention paid to odorants. This makes the management of contaminated sites difficult. In this study, hazardous and odorous pollutants in the soil were assessed for a large site that was previously used for production of pharmaceuticals to determine the degree and characteristics of soil contamination at pharmaceutical production sites, for undertaking rational remediation measures. The main hazardous pollutants at the study site were triethylamine, n-butyric acid, benzo(a)pyrene (BaP), N-nitrosodimethylamine (NDMA), dibenzo(a,h)anthracene (DBA), total petroleum hydrocarbons (C10-C40) (TPH), and 1,2-dichloroethane; TEA, BA, and isovaleric acid (IC) were the main odorants. As the type and distribution of hazardous and odorous pollutants differ, it is necessary to separately assess the impact of these pollutants at a contaminated site. Soils in the surface layer pose significant non-carcinogenic (HI = 68.30) and carcinogenic risks (RT = 3.56E-5), whereas those in the lower layer only pose non-carcinogenic risks (HI > 7.43). Odorants were found at considerable concentrations both in the surface and lower layers, with the maximum concentrations being 29,309.91 and 41.27, respectively. The findings of this study should improve our understanding of soil contamination at former pharmaceutical production sites and should inform the assessment of the risks posed by contaminated sites, with problems associated with odour, and possible remediation strategies.


Asunto(s)
Contaminantes Ambientales , Petróleo , Contaminantes del Suelo , Odorantes , Monitoreo del Ambiente , Suelo , Medición de Riesgo , China , Hidrocarburos/análisis , Petróleo/análisis , Preparaciones Farmacéuticas , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
12.
Environ Res ; 234: 116491, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37394168

RESUMEN

The soil microbial diversity in the gangue accumulation area is severely stressed by a variety of heavy metals, while the influence of long-term recovery of herbaceous plants on the ecological structure of gangue-contaminated soil is to be explored. Therefore, we analysed the differences in physicochemical properties, elemental changes, microbial community structure, metabolites and expression of related pathways in soils in the 10- and 20-year herbaceous remediation areas of coal gangue. Our results showed that phosphatase, soil urease, and sucrase activities of gangue soils significantly increased in the shallow layer after herbaceous remediation. However, in zone T1 (10-year remediation zone), the contents of harmful elements, such as Thorium (Th; 1.08-fold), Arsenic (As; 0.78-fold), lead (Pb; 0.99-fold), and uranium (U; 0.77-fold), increased significantly, whereas the soil microbial abundance and diversity also showed a significant decreasing trend. Conversely, in zone T2 (20-year restoration zone), the soil pH significantly increased by 1.03- to 1.06-fold and soil acidity significantly improved. Moreover, the abundance and diversity of soil microorganisms increased significantly, the expression of carbohydrates in soil was significantly downregulated, and sucrose content was significantly negatively correlated with the abundance of microorganisms, such as Streptomyces. A significant decrease in heavy metals was observed in the soil, such as U (1.01- to 1.09-fold) and Pb (1.13- to 1.25-fold). Additionally, the thiamin synthesis pathway was inhibited in the soil of the T1 zone; the expression level of sulfur (S)-containing histidine derivatives (Ergothioneine) was significantly up-regulated by 0.56-fold in the shallow soil of the T2 zone; and the S content in the soil significantly reduced. Aromatic compounds were significantly up-regulated in the soil after 20 years of herbaceous plant remediation in coal gangue soil, and microorganisms (Sphingomonas) with significant positive correlations with benzene ring-containing metabolites, such as Sulfaphenazole, were identified.


Asunto(s)
Metales Pesados , Microbiota , Contaminantes del Suelo , Uranio , Carbón Mineral , Plomo/toxicidad , Plomo/análisis , Metales Pesados/análisis , Plantas , Suelo/química , Metaboloma , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
13.
Sci Total Environ ; 897: 165334, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37419362

RESUMEN

The widespread agricultural and industrial emissions of copper-based chemicals have increased copper levels in soils worldwide. Copper contamination can cause a range of toxic effects on soil animals and influence thermal tolerance. However, toxic effects are commonly investigated using simple endpoints (e.g., mortality) and acute tests. Thus, how organisms respond to ecological realistic sub-lethal and chronic exposures across the entire thermal scope of an organism is not known. In this study, we investigated the effects of copper exposure on the thermal performance of a springtail (Folsomia candida), regarding its survival, individual growth, population growth, and the composition of membrane phospholipid fatty acids. Folsomia candida (Collembola) is a typical representative of soil arthropods and a model organism that has been widely used for ecotoxicological studies. In a full-factorial soil microcosm experiment, springtails were exposed to three levels of copper (ca. 17 (control), 436, and 1629 mg/kg dry soil) and ten temperatures from 0 to 30 °C. Results showed that three-week copper exposure at temperatures below 15 °C and above 26 °C negatively influenced the springtail survival. The body growth was significantly lower for the springtails in high-dose copper soils at temperatures above 24 °C. A high copper level reduced the number of juveniles by 50 %, thereby impairing population growth. Both temperature and copper exposure significantly impacted membrane properties. Our results indicated that high-dose copper exposure compromised the tolerance to suboptimal temperatures and decreased maximal performance, whereas medium copper exposure partially reduced the performance at suboptimal temperatures. Overall, copper contamination reduced the thermal tolerance of springtails at suboptimal temperatures, probably by interfering with membrane homeoviscous adaptation. Our results show that soil organisms living in copper-contaminated areas might be more sensitive to thermally stressful periods.


Asunto(s)
Artrópodos , Contaminantes del Suelo , Animales , Cobre/toxicidad , Contaminantes del Suelo/toxicidad , Contaminación Ambiental , Suelo/química , Reproducción
14.
Sci Total Environ ; 892: 164433, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37245815

RESUMEN

Although the issue has been of much concern and has subsequently been controlled for years, the environmental risk of excess selenium (Se) in farmlands still has not been eliminated in Se-toxicity areas. Different types of farmland utilization can change Se behavior in soil. Thus, located field monitoring and surveys of various farmland soils in and around typical Se-toxicity areas spanning eight years were conducted in the tillage layer and deeper soils. The source of new Se contamination in farmlands was traced along the irrigation and natural waterway. This research indicated that 22 % of paddy fields increased to Se-toxicity in surface soil led by irrigation with high-Se river water. Selenate is the dominant Se species in rivers (90 %) originating from geological background areas with high Se. Both soil organic matter (SOM) and amorphous iron content played important roles in the fixation of input Se. Thus, available Se was increased by more than twofold in paddy fields. The release of residual Se and eventual bounding by organic matter is commonly observed, thus suggesting that stable soil Se availability seems sustainable for a long time. This study is the first report in China that shows how new soil Se-toxicity farmland is caused by high-Se water irrigation. This research warns that external attention should be paid to the selection of irrigation water in high-Se geological background areas to avoid new Se contamination.


Asunto(s)
Oryza , Selenio , Contaminantes del Suelo , Selenio/toxicidad , Selenio/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Suelo , Hierro , China , Agua
15.
Environ Geochem Health ; 45(7): 5323-5341, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37131113

RESUMEN

Dashan Village area is one of the representative areas in China with high selenium concentration in the natural environment. A total of 133 topsoil samples have been collected in the Dashan Village area to explore the potential toxic elements (PTEs) background concentrations in soils under different land-use types for a comprehensive PTEs risk assessment (arsenic, cadmium, chromium, copper, mercury, nickel, lead, selenium and zinc). The results show that the geometric mean concentrations of As, Cr, Cu, Hg, Ni, Pb, Se and Zn found in the soil of the Dashan Village area were lower than the control standard for soil contamination risk in agricultural land. However, the geometric mean concentrations of Cd exceeded their corresponding standard values. For different land-use types, geometric mean concentrations of As, Cd, Cu, Hg, Ni and Pb in the arable soils were higher than in woodland soils and tea garden soils. Based on the potential ecological risk assessment, the woodland, arable and tea garden were at low-risk levels. Cadmium posed the highest ecological risk, while the other PTEs were of low risk in soils. Multiple statistical analyses and geostatistical analysis indicated that the concentrations of Cr, Ni, Pb, Cu, Zn and Se originated mainly from natural sources, while the concentrations of Cd, As and Hg could be influenced by anthropogenic activities. These results provide scientific support for the safe utilization and ecological sustainability of selenium-rich land resources.


Asunto(s)
Mercurio , Metales Pesados , Selenio , Contaminantes del Suelo , Suelo , Metales Pesados/toxicidad , Metales Pesados/análisis , Cadmio/análisis , Selenio/análisis , Cobre/análisis , Plomo/análisis , Mercurio/análisis , Medición de Riesgo , China , , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos
16.
Environ Geochem Health ; 45(12): 9411-9432, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37246205

RESUMEN

In the present study, in order to improve the growth performance of hairy vetch (Vicia villosa Roth., Local landrace from Ardabil, Iran) seedlings grown in the soil contaminated with heavy metals Pb and Zn, our attention was directed toward the application of biochar, inoculation with conidial suspension of Trichoderma harzianum Rifai-T22 and management of phosphorus (P) nutrition. Heavy metal toxicity reduced leaf greenness, membrane stability index, maximum quantum yield of PSΙΙ (Fv/Fm), P concentration and uptake in plant tissues and root and shoot biomass, but increased Pb and Zn concentration and uptake in root and leaf, H2O2 and malondialdehyde content and CAT and POX activity in the leaves. The application of biochar, inoculation with Trichoderma fungus and P supplementation increased the shoot P content, which might contribute to the alleviation of P insufficiency and a subsequent elevation in P transfer to aboveground biomass, and eliminated the toxicity of heavy metal on hairy vetch plants, which was revealed in reducing oxidative stress and enhancing plant growth performance. The biochar considerably increased Zn immobilization, while being able to slightly stabilize Pb. Co-application of Trichoderma and 22 mg P/kg soil (22P) increased the concentration and uptake of Zn in the roots and decreased the translocation of this element to the shoots, especially when biochar was not amended. Although the biochar and P inputs could compensate the negative Trichoderma effects, the results suggested that biochar application in combination with fungal inoculation and 22-P supplementation could not only increase hairy vetch growth performance but also decline heavy metal uptake to ensure the production of a forage crop in soils polluted with heavy metals based on the nutritional standards of livestock.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Vicia , Arachis , Plomo , Fósforo , Peróxido de Hidrógeno , Metales Pesados/toxicidad , Metales Pesados/análisis , Carbón Orgánico , Zinc/análisis , Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
17.
Environ Geochem Health ; 45(7): 5067-5091, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37071266

RESUMEN

Gold mining activities are undertaken both at large and artisanal scale, often resulting in serious 'collateral' environmental issues, including environmental pollution and hazard to human and ecosystem health. Furthermore, some of these activities are poorly regulated, which can produce long-lasting damage to the environment and local livelihoods. The aim of this study was to identify a new workflow model to discriminate anthropogenic versus geogenic enrichment in soils of gold mining regions. The Kedougou region (Senegal, West Africa) was used as a case study. Ninety-four soil samples (76 topsoils and 18 bottom soils) were collected over an area of 6,742 km2 and analysed for 53 chemical elements. Robust spatial mapping, compositional and geostatistical models were employed to evaluate sources and elemental footprint associated with geology and mining activities. Multivariate approaches highlighted anomalies in arsenic (As) and mercury (Hg) distribution in several areas. However, further interpretation with enrichment factor (EFs) and index of geoaccumulation (IGeo) emphasised high contamination levels in areas approximately coinciding with the ones where artisanal and small scale mining (ASGM) activities occur, and robust compositional contamination index (RCCI) isolated potentially harmful elements (PHE) contamination levels in very specific areas of the Kedougou mining region. The study underlined the importance of complementary approaches to identify anomalies and, more significantly, contamination by hazardous material. In particular, the analyses helped to identify discrete areas that would require to be surveyed in more detail to allow a comprehensive and thorough risk assessment, to investigate potential impacts to both human and ecosystem health.


Asunto(s)
Mercurio , Contaminantes del Suelo , Humanos , Oro/análisis , Monitoreo del Ambiente/métodos , Ecosistema , Suelo , Flujo de Trabajo , Mercurio/análisis , Minería , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
18.
Ecotoxicol Environ Saf ; 256: 114866, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37023649

RESUMEN

The multifarious problems created by arsenic (As), for collective environment and human health, serve a cogent case for searching integrative agricultural approaches to attain food security. Rice (Oryza sativa L.) acts as a sponge for heavy metal(loid)s accretion, specifically As, due to anaerobic flooded growth conditions facilitating its uptake. Acclaimed for their positive impact on plant growth, development and phosphorus (P) nutrition, 'mycorrhizas' are able to promote stress tolerance. Albeit, the metabolic alterations underlying Serendipita indica (S. indica; S.i) symbiosis-mediated amelioration of As stress along with nutritional management of P are still understudied. By using biochemical, RT-qPCR and LC-MS/MS based untargeted metabolomics approach, rice roots of ZZY-1 and GD-6 colonized by S. indica, which were later treated with As (10 µM) and P (50 µM), were compared with non-colonized roots under the same treatments with a set of control plants. The responses of secondary metabolism related enzymes, especially polyphenol oxidase (PPO) activities in the foliage of ZZY-1 and GD-6 were enhanced 8.5 and 12-fold, respectively, compared to their respective control counterparts. The current study identified 360 cationic and 287 anionic metabolites in rice roots, and the commonly enriched pathway annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was biosynthesis of phenylalanine, tyrosine and tryptophan, which validated the results of biochemical and gene expression analyses associated with secondary metabolic enzymes. Particularly under As+S.i+P comparison, both genotypes exhibited an upregulation of key detoxification and defense related metabolites, including fumaric acid, L-malic acid, choline, 3,4-dihydroxybenzoic acid, to name a few. The results of this study provided the novel insights into the promising role of exogenous P and S. indica in alleviating As stress.


Asunto(s)
Arsénico , Oryza , Fósforo , Contaminantes del Suelo , Humanos , Arsénico/toxicidad , Cromatografía Liquida , Oryza/metabolismo , Oryza/microbiología , Fósforo/análisis , Raíces de Plantas/metabolismo , Metabolismo Secundario , Espectrometría de Masas en Tándem , Contaminantes del Suelo/toxicidad
19.
Ecotoxicol Environ Saf ; 257: 114925, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37080127

RESUMEN

Large areas of soil in southern China are contaminated with cadmium (Cd) and are deficient in boron (B). Previously, we suggested that B supplementation could reduce Cd accumulation in hot peppers (Capsicum annuum L.); however, the physiological mechanisms underlying this reduction remain unclear. In this study, the uptake and translocation of Cd in hot pepper plants were investigated using hydroponic experiments with different B and Cd treatments. A pot experiment was performed to verify whether B decreased the Cd concentration in hot peppers by minimizing the Cd translocation rate. The results of the dose- and time-dependent experiments showed that B supplementation reduced root Cd uptake and root-to-shoot Cd translocation. Additionally, B supplementation increased the root length, diameter, volume, surface area, and number of root forks and tips, as well as improving the relative absorbance of carboxyl groups under Cd exposure, leading to enhanced Cd fixation in the cell walls of the roots. As a result, the fruit Cd concentration decreased because B inhibited Cd translocation from the roots. Overall, the results demonstrate that B supplementation can reduce Cd accumulation in hot peppers by promoting normal root growth and development and by limiting the uptake and translocation of Cd.


Asunto(s)
Capsicum , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Boro/farmacología , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Transporte Biológico , Raíces de Plantas
20.
Environ Sci Pollut Res Int ; 30(20): 57850-57861, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36971943

RESUMEN

Methylparaben, chloro-methylparaben, and dichloro-methylparaben were evaluated in Allium cepa at 5, 10, 50, and 100 µg/L and in Eisenia fetida at 10 and 100 µg/L. In A. cepa roots, 100 µg/L methylparaben and 50 and 100 µg/L chlorinated methylparabens reduced cell proliferation, caused cellular changes, and reduced cell viability in meristems, which caused a reduction in root growth. Furthermore, they caused drastic inhibition of catalase, ascorbate peroxidase, and superoxide dismutase; activated guaiacol peroxidase and promoted lipid peroxidation in meristematic root cells. In earthworms, after 14 days exposure to the three compounds, there were no deaths, and catalase, ascorbate peroxidase, and superoxide dismutase were not inhibited. However, guaiacol peroxidase activity and lipid peroxidation were observed in animals exposed to dichloro-methylparaben. Soils with dichloro-methylparaben also caused the escape of earthworms. It is inferred that the recurrent contamination of soils with these methylparabens, with emphasis on chlorinated derivatives, can negatively impact different species that depend directly or indirectly on soil to survive.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Catalasa/metabolismo , Cebollas/fisiología , Oligoquetos/metabolismo , Ascorbato Peroxidasas/metabolismo , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo , Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Estrés Oxidativo , Malondialdehído/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA