RESUMEN
Feline infectious peritonitis (FIP) which is caused by feline infectious peritonitis virus (FIPV), a variant of feline coronavirus (FCoV), is a member of family Coronaviridae, together with severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. So far, neither effective vaccines nor approved antiviral therapeutics are currently available for the treatment of FIPV infection. Both human and animal CoVs shares similar functional proteins, particularly the 3CL protease (3CLpro), which plays the pivotal role on viral replication. We investigated the potential drug-liked compounds and their inhibitory interaction on the 3CLpro active sites of CoVs by the structural-bases virtual screening. Fluorescence resonance energy transfer (FRET) assay revealed that three out of twenty-eight compounds could hamper FIPV 3CLpro activities with IC50 of 3.57 ± 0.36 µM to 25.90 ± 1.40 µM, and Ki values of 2.04 ± 0.08 to 15.21 ± 1.76 µM, respectively. Evaluation of antiviral activity using cell-based assay showed that NSC629301 and NSC71097 could strongly inhibit the cytopathic effect and also reduced replication of FIPV in CRFK cells in all examined conditions with the low range of EC50 (6.11 ± 1.90 to 7.75 ± 0.48 µM and 1.99 ± 0.30 to 4.03 ± 0.60 µM, respectively), less than those of ribavirin and lopinavir. Analysis of FIPV 3CLpro-ligand interaction demonstrated that the selected compounds reacted to the crucial residues (His41 and Cys144) of catalytic dyad. Our investigations provide a fundamental knowledge for the further development of antiviral agents and increase the number of anti-CoV agent pools for feline coronavirus and other related CoVs.
Asunto(s)
Antivirales/farmacología , Coronavirus Felino/efectos de los fármacos , Coronavirus Felino/enzimología , Inhibidores de Cisteína Proteinasa/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Betacoronavirus/efectos de los fármacos , Betacoronavirus/enzimología , COVID-19 , Dominio Catalítico , Gatos , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/química , Evaluación Preclínica de Medicamentos/métodos , Peritonitis Infecciosa Felina/tratamiento farmacológico , Peritonitis Infecciosa Felina/virología , Humanos , Concentración 50 Inhibidora , Cinética , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Modelos Moleculares , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , SARS-CoV-2 , Proteínas no Estructurales Virales/química , Replicación Viral/efectos de los fármacosRESUMEN
AIMS: In December 2019, the Coronavirus disease-2019 (COVID-19) virus has emerged in Wuhan, China. In this research, the first resolved COVID-19 crystal structure (main protease) was targeted in a virtual screening study by of FDA approved drugs dataset. In addition, a knowledge gap in relations of COVID-19 with the previously known fatal Coronaviruses (CoVs) epidemics, SARS and MERS CoVs, was covered by investigation of sequence statistics and phylogenetics. MATERIALS AND METHODS: Molecular modeling, virtual screening, docking, sequence comparison statistics and phylogenetics of the COVID-19 main protease were investigated. KEY FINDINGS: COVID-19 Mpro formed a phylogenetic group with SARS CoV that was distant from MERS CoV. The identity% was 96.061 and 51.61 for COVID-19/SARS and COVID-19/MERS CoV sequence comparisons, respectively. The top 20 drugs in the virtual screening studies comprised a broad-spectrum antiviral (ribavirin), anti-hepatitis B virus (telbivudine), two vitamins (vitamin B12 and nicotinamide) and other miscellaneous systemically acting drugs. Of special interest, ribavirin had been used in treating cases of SARS CoV. SIGNIFICANCE: The present study provided a comprehensive targeting of the first resolved COVID+19 structure of Mpro and found a suitable save drugs for repurposing against the viral Mpro. Ribavirin, telbivudine, vitamin B12 and nicotinamide can be combined and used for COVID treatment. This initiative relocates already marketed and approved safe drugs for potential use in COVID-treatment.
Asunto(s)
Antivirales/química , Betacoronavirus/enzimología , Cisteína Endopeptidasas/química , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales/química , Secuencia de Aminoácidos , Antivirales/farmacología , Sitios de Unión , Proteasas 3C de Coronavirus , Curcumina/química , Curcumina/farmacología , Aprobación de Drogas , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Modelos Moleculares , Inhibidores de Proteasas/farmacología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , SARS-CoV-2 , Alineación de Secuencia , Estados Unidos , United States Food and Drug AdministrationRESUMEN
An outbreak of coronavirus disease 2019 (COVID-19) occurred in Wuhan and it has rapidly spread to almost all parts of the world. For coronaviruses, RNA-dependent RNA polymerase (RdRp) is an important polymerase that catalyzes the replication of RNA from RNA template and is an attractive therapeutic target. In this study, we screened these chemical structures from traditional Chinese medicinal compounds proven to show antiviral activity in severe acute respiratory syndrome coronavirus (SARS-CoV) and the similar chemical structures through a molecular docking study to target RdRp of SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV). We found that theaflavin has a lower idock score in the catalytic pocket of RdRp in SARS-CoV-2 (-9.11 kcal/mol), SARS-CoV (-8.03 kcal/mol), and MERS-CoV (-8.26 kcal/mol) from idock. To confirm the result, we discovered that theaflavin has lower binding energy of -8.8 kcal/mol when it docks in the catalytic pocket of SARS-CoV-2 RdRp by using the Blind Docking server. Regarding contact modes, hydrophobic interactions contribute significantly in binding and additional hydrogen bonds were found between theaflavin and RdRp. Moreover, one π-cation interaction was formed between theaflavin and Arg553 from the Blind Docking server. Our results suggest that theaflavin could be a potential SARS-CoV-2 RdRp inhibitor for further study.
Asunto(s)
Antivirales/química , Betacoronavirus/efectos de los fármacos , Biflavonoides/química , Catequina/química , Medicamentos Herbarios Chinos/química , ARN Polimerasa Dependiente del ARN/química , Proteínas Virales/química , Secuencia de Aminoácidos , Antivirales/farmacología , Betacoronavirus/enzimología , Betacoronavirus/genética , Biflavonoides/farmacología , Dominio Catalítico , Catequina/farmacología , Biología Computacional/métodos , Medicamentos Herbarios Chinos/farmacología , Expresión Génica , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Simulación del Acoplamiento Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2 , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Proteínas Virales/metabolismoRESUMEN
The recent Middle East respiratory syndrome coronavirus (MERS-CoV), Ebola and Zika virus outbreaks exemplify the continued threat of (re-)emerging viruses to human health, and our inability to rapidly develop effective therapeutic countermeasures. Many viruses, including MERS-CoV and the Crimean-Congo hemorrhagic fever virus (CCHFV) encode deubiquitinating (DUB) enzymes that are critical for viral replication and pathogenicity. They bind and remove ubiquitin (Ub) and interferon stimulated gene 15 (ISG15) from cellular proteins to suppress host antiviral innate immune responses. A variety of viral DUBs (vDUBs), including the MERS-CoV papain-like protease, are responsible for cleaving the viral replicase polyproteins during replication, and are thereby critical components of the viral replication cycle. Together, this makes vDUBs highly attractive antiviral drug targets. However, structural similarity between the catalytic cores of vDUBs and human DUBs complicates the development of selective small molecule vDUB inhibitors. We have thus developed an alternative strategy to target the vDUB activity through a rational protein design approach. Here, we report the use of phage-displayed ubiquitin variant (UbV) libraries to rapidly identify potent and highly selective protein-based inhibitors targeting the DUB domains of MERS-CoV and CCHFV. UbVs bound the vDUBs with high affinity and specificity to inhibit deubiquitination, deISGylation and in the case of MERS-CoV also viral replicative polyprotein processing. Co-crystallization studies further revealed critical molecular interactions between UbVs and MERS-CoV or CCHFV vDUBs, accounting for the observed binding specificity and high affinity. Finally, expression of UbVs during MERS-CoV infection reduced infectious progeny titers by more than four orders of magnitude, demonstrating the remarkable potency of UbVs as antiviral agents. Our results thereby establish a strategy to produce protein-based inhibitors that could protect against a diverse range of viruses by providing UbVs via mRNA or protein delivery technologies or through transgenic techniques.