Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.831
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
BMC Cancer ; 24(1): 493, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637770

RESUMEN

BACKGROUND: Muscle mass is important for metastatic prostate cancer survival and quality of life (QoL). The backbone of treatment for men with metastatic castration sensitive prostate cancer (mCSPC) is androgen deprivation therapy (ADT) with an androgen signaling inhibitor. ADT is an effective cancer treatment, but it facilitates significant declines in muscle mass and adverse health outcomes important to mCSPC survivors, such as fatigue, and reductions in physical function, independence, insulin sensitivity, and QoL. In non-metastatic CSPC survivors, resistance training (RT) preserves muscle mass and improves these related health outcomes, but the biggest barrier to RT in CSPC survivors of all stages is fatigue. Creatine monohydrate supplementation coupled with RT (Cr + RT) may address this barrier since creatine plays a critical role in energy metabolism. Cr + RT in cancer-free older adults and other clinical populations improves muscle mass and related health outcomes. Evidence also suggests that creatine supplementation can complement cancer treatment. Thus, Cr + RT is a strategy that addresses gaps in survivorship needs of people with mCSPC. The purpose of this parallel, double-blind randomized controlled trial is to test the effects of 52-weeks of Cr + RT compared with placebo (PLA) and RT (PLA + RT) on muscle mass, other related health outcomes, and markers of cancer progression. METHODS: We will carry out this trial with our team's established, effective, home-based, telehealth RT program in 200 mCSPC survivors receiving ADT, and evaluate outcomes at baseline, 24-, and 52-weeks. RT will occur twice weekly with elastic resistance bands, and an established creatine supplementation protocol will be used for supplementation delivery. Our approach addresses a major facilitator to RT in mCSPC survivors, a home-based RT program, while utilizing a supervised model for safety. DISCUSSION: Findings will improve delivery of comprehensive survivorship care by providing a multicomponent, patient-centered lifestyle strategy to preserve muscle mass, improve health outcomes, and complement cancer treatment (NCT06112990).


Asunto(s)
Neoplasias de la Próstata , Entrenamiento de Fuerza , Masculino , Humanos , Anciano , Creatina/uso terapéutico , Creatina/farmacología , Calidad de Vida , Antagonistas de Andrógenos/uso terapéutico , Neoplasias de la Próstata/patología , Andrógenos , Fuerza Muscular , Composición Corporal , Procesos Neoplásicos , Método Doble Ciego , Suplementos Dietéticos/efectos adversos , Músculos/patología , Poliésteres/farmacología , Poliésteres/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Nutrients ; 16(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38613014

RESUMEN

Breast cancer (BC) is one of the most common cancers in the United States. Advances in detection and treatment have resulted in an increased survival rate, meaning an increasing population experiencing declines in muscle mass and strength. Creatine supplementation has consistently demonstrated improvements in strength and muscle performance in older adults, though these findings have not been extended to cancer populations. PURPOSE: The purpose of this study was to investigate the effects of short-term creatine supplementation on muscular performance in BC survivors. METHODS: Using a double-blind, placebo-controlled, randomized design, 19 female BC survivors (mean ± SD age = 57.63 ± 10.77 years) were assigned to creatine (SUPP) (n = 9) or dextrose placebo (PLA) (n = 10) groups. The participants completed two familiarization sessions, then two test sessions, each separated by 7 days, where the participants supplemented with 5 g of SUPP or PLA 4 times/day between sessions. The testing sessions included sit-to-stand power, isometric/isokinetic peak torque, and upper/lower body strength via 10 repetition maximum (10RM) tests. The interaction between supplement (SUPP vs. PLA) and time (Pre vs. Post) was examined using a group × time ANOVA and effect sizes. RESULTS: No significant effects were observed for sit-to-stand power (p = 0.471; ηp2 = 0.031), peak torque at 60°/second (p = 0.533; ηp2 = 0.023), peak torque at 120°/second (p = 0.944; ηp2 < 0.001), isometric peak torque (p = 0.905; ηp2 < 0.001), 10RM chest press (p = 0.407; ηp2 = 0.041), and 10RM leg extension (p = 0.932; ηp2 < 0.001). However, a large effect size for time occurred for the 10RM chest press (ηp2 = 0.531) and leg extension (ηp2 = 0.422). CONCLUSION: Seven days of creatine supplementation does not influence muscular performance among BC survivors.


Asunto(s)
Neoplasias de la Mama , Supervivientes de Cáncer , Femenino , Humanos , Anciano , Persona de Mediana Edad , Neoplasias de la Mama/tratamiento farmacológico , Creatina/farmacología , Sobrevivientes , Suplementos Dietéticos , Poliésteres
3.
J Int Soc Sports Nutr ; 21(1): 2340574, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38606895

RESUMEN

BACKGROUND: Growing evidence supports the ergogenic effects of creatine supplementation on muscle power/strength, but its effects on endurance performance remain unclear. We assessed the effects of high-dose short-term creatine supplementation in professional cyclists during a training camp. METHODS: The study followed a double-blind, randomized parallel design. Twenty-three professional U23 cyclists (19 ± 1 years, maximum oxygen uptake: 73.0 ± 4.6 mL/kg/min) participated in a 6-day training camp. Participants were randomized to consume daily either a recovery drink (containing carbohydrates and protein) with a 20-g creatine supplement (creatine group, n = 11) or just the recovery drink (placebo group, n = 12). Training loads and dietary intake were monitored, and indicators of fatigue/recovery (Hooper index, countermovement jump height), body composition, and performance (10-second sprint, 3-, 6-, and 12-minute time trials, respectively, as well as critical power and W') were assessed as study outcomes. RESULTS: The training camp resulted in a significant (p < 0.001) increase of training loads (+50% for total training time and + 61% for training stress score, compared with the preceding month) that in turn induced an increase in fatigue indicators (significant time effect [p < 0.001] for delayed-onset muscle soreness, fatigue, and total Hooper index) and a decrease in performance (significant time effect [p = 0.020] for critical power, which decreased by -3.8%). However, no significant group-by-time interaction effect was found for any of the study outcomes (all p > 0.05). CONCLUSIONS: High-dose short-term creatine supplementation seems to exert no consistent beneficial effects on recovery, body composition or performance indicators during a strenuous training period in professional cyclists.


Asunto(s)
Rendimiento Atlético , Humanos , Rendimiento Atlético/fisiología , Creatina , Suplementos Dietéticos , Método Doble Ciego , Fatiga , Músculo Esquelético , Oxígeno/metabolismo , Consumo de Oxígeno , Adolescente , Adulto Joven
4.
Nutrients ; 16(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474743

RESUMEN

Hemodialysis has a detrimental effect on fat-free mass (FFM) and muscle strength over time. Thus, we aimed to evaluate the effect of creatine supplementation on the body composition and Malnutrition-Inflammation Score (MIS) in patients with chronic kidney disease (CKD) undergoing hemodialysis. An exploratory 1-year balanced, placebo-controlled, and double-blind design was conducted with hemodialysis patients (≥18 years). The creatine group (CG) received 5 g of creatine monohydrate and 5 g of maltodextrin per day and the placebo group (PG) received 10 g of maltodextrin per day. MIS and body composition were analyzed at three time points: pre, intermediate (after 6 months), and post (after 12 months). After 6 months, 60% of patients on creatine experienced an increase in FFM compared to a 36.8% increase for those on placebo. Moreover, 65% of patients on creatine increased their skeletal muscle mass index (SMMI) compared to only 15.8% for those on placebo. Creatine increased intracellular water (ICW) in 60% of patients. MIS did not change after the intervention. In the CG, there was an increase in body weight (p = 0.018), FFM (p = 0.010), SMMI (p = 0.022). CG also increased total body water (pre 35.4 L, post 36.1 L; p = 0.008), mainly due to ICW (pre 20.2 L, intermediate 20.7 L, post 21.0 L; p = 0.016). Long-term creatine supplementation in hemodialysis patients did not attenuate the MIS, but enhanced FFM and SMMI, which was likely triggered by an increase in ICW.


Asunto(s)
Creatina , Desnutrición , Humanos , Composición Corporal , Suplementos Dietéticos , Método Doble Ciego , Inflamación/metabolismo , Desnutrición/metabolismo , Músculo Esquelético/metabolismo , Agua/metabolismo , Adolescente , Adulto
5.
Nutrients ; 16(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542807

RESUMEN

Despite the known beneficial effects of creatine in treating exercise-induced muscle damage (EIMD), its effectiveness remains unclear. This study investigates the recovery effect of creatine monohydrate (CrM) on EIMD. Twenty healthy men (21-36 years) were subjected to stratified, randomized, double-blind assignments. The creatine (CRE) and placebo (PLA) groups ingested creatine and crystalline cellulose, respectively, for 28 days. They subsequently performed dumbbell exercises while emphasizing eccentric contraction of the elbow flexors. The EIMD was evaluated before and after exercise. The range of motion was significantly higher in the CRE group than in the PLA group 24 h (h) post exercise. A similar difference was detected in maximum voluntary contraction at 0, 48, 96, and 168 h post exercise (p = 0.017-0.047). The upper arm circumference was significantly lower in the CRE group than in the PLA group at 48, 72, 96, and 168 h post exercise (p = 0.002-0.030). Similar variation was observed in the shear modulus of the biceps brachii muscle at 96 and 168 h post exercise (p = 0.003-0.021) and in muscle fatigue at 0 and 168 h post exercise (p = 0.012-0.032). These findings demonstrate CrM-mediated accelerated recovery from EIMD, suggesting that CrM is an effective supplement for EIMD recovery.


Asunto(s)
Creatina , Mialgia , Masculino , Humanos , Creatina/farmacología , Recuperación Después del Ejercicio , Músculo Esquelético , Suplementos Dietéticos , Poliésteres
6.
Nutrients ; 16(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542677

RESUMEN

This study examined the effect of creatine nitrate and caffeine alone and combined on exercise performance and cognitive function in resistance-trained athletes. In a double-blind, randomized crossover trial, twelve resistance-trained male athletes were supplemented with 7 days of creatine nitrate (5 g/day), caffeine (400 mg/day), and a combination of creatine nitrate and caffeine. The study involved twelve resistance-trained male athletes who initially provided a blood sample for comprehensive safety analysis, including tests for key enzymes and a lipid profile, and then performed standardized resistance exercises-bench and leg press at 70% 1RM-and a Wingate anaerobic power test. Cognitive function and cardiovascular responses were also examined forty-five minutes after supplementation. Creatine nitrate and caffeine that were co-ingested significantly enhanced cognitive function, as indicated by improved scores in the Stroop Word-Color Interference test (p = 0.04; effect size = 0.163). Co-ingestion was more effective than caffeine alone in enhancing cognitive performance. In contrast, no significant enhancements in exercise performance were observed. The co-ingestion of creatine nitrate and caffeine improved cognitive function, particularly in cognitive interference tasks, without altering short-term exercise performance. Furthermore, no adverse events were reported. Overall, the co-ingestion of creatine nitrate and caffeine appears to enhance cognition without any reported side effects for up to seven days.


Asunto(s)
Cafeína , Nitratos , Humanos , Masculino , Cafeína/farmacología , Cognición , Creatina/farmacología , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Ejercicio Físico , Nitratos/farmacología
7.
Sci Rep ; 14(1): 4937, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418482

RESUMEN

The inverse effects of creatine supplementation and sleep deprivation on high energy phosphates, neural creatine, and cognitive performances suggest that creatine is a suitable candidate for reducing the negative effects of sleep deprivation. With this, the main obstacle is the limited exogenous uptake by the central nervous system (CNS), making creatine only effective over a long-term diet of weeks. Thus far, only repeated dosing of creatine over weeks has been studied, yielding detectable changes in CNS levels. Based on the hypothesis that a high extracellular creatine availability and increased intracellular energy consumption will temporarily increase the central creatine uptake, subjects were orally administered a high single dose of creatinemonohydrate (0.35 g/kg) while performing cognitive tests during sleep deprivation. Two consecutive 31P-MRS scans, 1H-MRS, and cognitive tests were performed each at evening baseline, 3, 5.5, and 7.5 h after single dose creatine (0.35 g/kg) or placebo during sub-total 21 h sleep deprivation (SD). Our results show that creatine induces changes in PCr/Pi, ATP, tCr/tNAA, prevents a drop in pH level, and improves cognitive performance and processing speed. These outcomes suggest that a high single dose of creatine can partially reverse metabolic alterations and fatigue-related cognitive deterioration.


Asunto(s)
Creatina , Privación de Sueño , Humanos , Creatina/farmacología , Creatina/metabolismo , Privación de Sueño/metabolismo , Sistema Nervioso Central/metabolismo , Cognición/fisiología , Fosfatos/farmacología
8.
Neuroimage Clin ; 41: 103557, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38219534

RESUMEN

OBJECTIVES: In vivo magnetic resonance spectroscopy (MRS) was used to investigate neurometabolic homeostasis in children with functional neurological disorder (FND) in three regions of interest: supplementary motor area (SMA), anterior default mode network (aDMN), and posterior default mode network (dDMN). Metabolites assessed included N-acetyl aspartate (NAA), a marker of neuron function; myo-inositol (mI), a glial-cell marker; choline (Cho), a membrane marker; glutamate plus glutamine (Glx), a marker of excitatory neurotransmission; γ-aminobutyric acid (GABA), a marker of inhibitor neurotransmission; and creatine (Cr), an energy marker. The relationship between excitatory (glutamate and glutamine) and inhibitory (GABA) neurotransmitter (E/I) balance was also examined. METHODS: MRS data were acquired for 32 children with mixed FND (25 girls, 7 boys, aged 10.00 to 16.08 years) and 41 healthy controls of similar age using both short echo point-resolved spectroscopy (PRESS) and Mescher-Garwood point-resolved spectroscopy (MEGAPRESS) sequences in the three regions of interest. RESULTS: In the SMA, children with FND had lower NAA/Cr, mI/Cr (trend level), and GABA/Cr ratios. In the aDMN, no group differences in metabolite ratios were found. In the pDMN, children with FND had lower NAA/Cr and mI/Cr (trend level) ratios. While no group differences in E/I balance were found (FND vs. controls), E/I balance in the aDMN was lower in children with functional seizures-a subgroup within the FND group. Pearson correlations found that increased arousal (indexed by higher heart rate) was associated with lower mI/Cr in the SMA and pDMN. CONCLUSIONS: Our findings of multiple differences in neurometabolites in children with FND suggest dysfunction on multiple levels of the biological system: the neuron (lower NAA), the glial cell (lower mI), and inhibitory neurotransmission (lower GABA), as well as dysfunction in energy regulation in the subgroup with functional seizures.


Asunto(s)
Trastornos de Conversión , Glutamina , Masculino , Niño , Femenino , Humanos , Adolescente , Glutamina/metabolismo , Ácido Glutámico/metabolismo , Convulsiones , Ácido Aspártico , Creatina/metabolismo , Colina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Inositol/metabolismo
9.
J Nutr Biochem ; 126: 109586, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38262563

RESUMEN

Parkinson's disease (PD) is an incurable neurological disorder that causes typical motor deficits. In this study, we investigated the effects of creatine supplementation and exercise in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We found that 2% creatine supplementation and/or exercise intervention for 4 weeks elicited neurobehavioral recovery and neuroprotective effects regarding dopaminergic cell loss in MPTP-treated mice; this effect implies functional preservation of dopaminergic cells in the substantia nigra, as reflected by tyrosine hydroxylase expression recovery. Creatine and exercise reduced necroptotic activity in dopaminergic cells by lowering mixed lineage kinase domain-like protein (MLKL) modification to active phenotypes (phosphorylation at Ser345 and oligomerization) and phosphorylated receptor-interacting protein kinase 1 (RIPK1) (Ser166-p) and RIPK3 (Ser232-p) levels. In addition, creatine and exercise reduced the MPTP-induced increase in pathogenic α-synuclein forms, such as Ser129 phosphorylation and oligomerization. Furthermore, creatine and exercise had anti-inflammatory and antioxidative effects in MPTP mice, as evidenced by a decrease in microglia activation, NF-κB-dependent pro-inflammatory molecule expression, and increase in antioxidant enzyme expression. These phenotypic changes were associated with the exercise/creatine-induced AMP-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor 2 (Nrf2) and sirtuin 3 (SIRT3)/forkhead box O3 (FoxO3a) signaling pathways. In all experiments, combining creatine with exercise resulted in considerable improvement over either treatment alone. Consequently, these findings suggest that creatine supplementation with exercise has anti-inflammatory, antioxidative, and anti-α-synucleinopathy effects, thereby reducing necroptotic cell death in a PD mouse model.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/metabolismo , Creatina/farmacología , Creatina/uso terapéutico , Necroptosis , Neuronas Dopaminérgicas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Antiinflamatorios/farmacología , Suplementos Dietéticos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo
10.
Pain ; 165(1): 126-134, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37578456

RESUMEN

ABSTRACT: Recently, we showed that patients with knee osteoarthritis (KOA) demonstrate alterations in the thalamic concentrations of several metabolites compared with healthy controls: higher myo-inositol (mIns), lower N-acetylaspartate (NAA), and lower choline (Cho). Here, we evaluated whether these metabolite alterations are specific to KOA or could also be observed in patients with a different musculoskeletal condition, such as chronic low back pain (cLBP). Thirty-six patients with cLBP and 20 healthy controls were scanned using 1 H-magnetic resonance spectroscopy (MRS) and a PRESS (Point RESolved Spectroscopy) sequence with voxel placement in the left thalamus. Compared with healthy controls, patients with cLBP demonstrated lower absolute concentrations of NAA ( P = 0.0005) and Cho ( P < 0.05) and higher absolute concentrations of mIns ( P = 0.01) when controlling for age, as predicted by our previous work in KOA. In contrast to our KOA study, mIns levels in this population did not significantly correlate with pain measures (eg, pain severity or duration). However, exploratory analyses revealed that NAA levels in patients were negatively correlated with the severity of sleep disturbance ( P < 0.01), which was higher in patients compared with healthy controls ( P < 0.001). Additionally, also in patients, both Cho and mIns levels were positively correlated with age ( P < 0.01 and P < 0.05, respectively). Altogether, these results suggest that thalamic metabolite changes may be common across etiologically different musculoskeletal chronic pain conditions, including cLBP and KOA, and may relate to symptoms often comorbid with chronic pain, such as sleep disturbance. The functional and clinical significance of these brain changes remains to be fully understood.


Asunto(s)
Dolor Crónico , Dolor de la Región Lumbar , Dolor Musculoesquelético , Enfermedades Reumáticas , Humanos , Dolor Crónico/metabolismo , Dolor de la Región Lumbar/complicaciones , Dolor de la Región Lumbar/diagnóstico por imagen , Dolor Musculoesquelético/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Tálamo/diagnóstico por imagen , Ácido Aspártico/metabolismo , Colina/metabolismo , Creatina/metabolismo
11.
Poult Sci ; 103(1): 103166, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939584

RESUMEN

The experiment was implemented to assess the influence of dietary supplementation of laying quails with creatine monohydrate (CrM), L-carnitine (CAR) and their mixture (CrMCAR) as antioxidants against oxidative stress (OS) induced by 2.5 ppm lead acetate (LA) in drinking water on productive, physiological and microbial aspects. In total, 400 laying quail females at 10 wk of age were divided into a randomized design with 5 groups and 4 replicates of 20 birds each. Birds were fed ad libitum with a balanced diet for 8 wk. The control group was kept under no-stress conditions and was given fresh water without any additives (G1). While birds in other groups were exposed to OS induced experimentally by 2.5 ppm LA in drinking water with no feed additive (G2) or supplemented with 500 mg/kg CrM (G3) or 500 mg/kg CAR (G4) or combination of 250 mg/kg each of CrM and CAR (CrMCAR, G5) to feed mixture. Compared to G2, G5 demonstrated the reduction (P ≤ 0.05) of feed conversion ratio, feed intake, mortality and ileal total coliform, as well as serum and egg malondialdehyde and serum lipid hydroperoxide, uric acid, glucose, cholesterol, enzymatic activities (alanine aminotransferase, aspartate transaminase, alkaline phosphatase, creatine phosphokinase, γ-glutamyl transferase), and heterophils/lymphocytes ratio. In the meanwhile, there was an increase (P ≤ 0.05) in egg production, egg mass, and weight with the improvement of egg quality, serum sex hormones level and ileal lactic acid bacteria for G5 followed by G4 and G3. Moreover, G5 enhanced (P ≤ 0.05), the total antioxidant capacity of egg and serum glutathione, superoxide dismutase, catalase, glutathione peroxidase, protein and calcium levels. Therefore, dietary CrMCAR, CAR and CrM have analogous influence to control by improving the antioxidant and physiological parameters which resulted in better productive performance and egg characteristics of stressed quails. These antioxidants, especially in their equal combination, are beneficial to alleviate oxidative stress incidence and can be recommended for poultry feeding under various aspects of environmental stresses.


Asunto(s)
Agua Potable , Microbiota , Femenino , Animales , Antioxidantes , Creatina , Carnitina , Codorniz , Pollos/fisiología , Dieta/veterinaria , Suplementos Dietéticos/análisis , Oxidación-Reducción , Alimentación Animal/análisis
12.
Neuroradiology ; 66(3): 389-398, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38114794

RESUMEN

PURPOSE: MELAS syndrome is a genetic disorder caused by mitochondrial DNA mutations. We previously described that MELAS patients had increased CSF glutamate and decreased CSF glutamine levels and that oral glutamine supplementation restores these values. Proton magnetic resonance spectroscopy (1H-MRS) allows the in vivo evaluation of brain metabolism. We aimed to compare 1H-MRS of MELAS patients with controls, the 1H-MRS after glutamine supplementation in the MELAS group, and investigate the association between 1H-MRS and CSF lactate, glutamate, and glutamine levels. METHODS: We conducted an observational case-control study and an open-label, single-cohort study with single-voxel MRS (TE 144/35 ms). We assessed the brain metabolism changes in the prefrontal (PFC) and parieto-occipital) cortex (POC) after oral glutamine supplementation in MELAS patients. MR spectra were analyzed with jMRUI software. RESULTS: Nine patients with MELAS syndrome (35.8 ± 3.2 years) and nine sex- and age-matched controls were recruited. Lactate/creatine levels were increased in MELAS patients in both PFC and POC (0.40 ± 0.05 vs. 0, p < 0.001; 0.32 ± 0.03 vs. 0, p < 0.001, respectively). No differences were observed between groups in glutamate and glutamine (Glx/creatine), either in PFC (p = 0.930) or POC (p = 0.310). No differences were observed after glutamine supplementation. A positive correlation was found between CSF lactate and lactate/creatine only in POC (0.85, p = 0.003). CONCLUSION: No significant metabolite changes were observed in the brains of MELAS patients after glutamine supplementation. While we found a positive correlation between lactate levels in CSF and 1H-MRS in MELAS patients, we could not monitor treatment response over short periods with this tool. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04948138; initial release 24/06/2021; first patient enrolled on 1/07/2021. https://clinicaltrials.gov/ct2/show/NCT04948138.


Asunto(s)
Glutamina , Síndrome MELAS , Humanos , Glutamina/metabolismo , Síndrome MELAS/diagnóstico por imagen , Síndrome MELAS/tratamiento farmacológico , Síndrome MELAS/metabolismo , Creatina/metabolismo , Estudios de Casos y Controles , Estudios de Cohortes , Espectroscopía de Resonancia Magnética/métodos , Ácido Glutámico/metabolismo , Espectroscopía de Protones por Resonancia Magnética/métodos , Lactatos , Suplementos Dietéticos
13.
Nutrients ; 15(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38140393

RESUMEN

BACKGROUND: The purpose of this study was to assess the effects of protein and carbohydrate supplementation, with and without creatine, on occupational performance in firefighters. METHODS: Using a randomized, double-blind approach, thirty male firefighters (age: 34.4 ± 8.4 yrs., height: 1.82 ± 0.07 m; weight: 88.6 ± 12.5 kg; BF%: 17.2 ± 5.8%) were randomized to receive either (A.) 25 g of whey protein isolate + 25 g of carbohydrate powder (ProCarb group); or (B.) ProCarb + 5 g of creatine (Creatine group) in a double-blind fashion over a period of 21-26 days (depending on shift rotations) to evaluate the impact of supplementation on occupation-specific performance. At baseline and following supplementation, firefighters completed a battery of tests. These tests included an aerobic speed test on an air-braked cycle ergometer followed by the hose carry, body drag, stair climb, and Keiser sled hammer for time. RESULTS: No significant differences in measures of performance were observed at baseline (p > 0.05). There was a significant main effect for time observed for rescue, stair climb, total time to completion, and time trial performance (p < 0.05). There was a significant group × time (p < 0.05) interaction for rescue and forcible entry. Independent sample t-tests indicated that the Creatine group experienced a greater reduction (from baseline) in completion time for the rescue (1.78 ± 0.57 s, 95% CI: 0.61, 2.95 s, p = 0.004) and forcible entry (2.66 ± 0.97 s, 95% CI: 0.68, 4.65 s, p = 0.01) tests compared to the ProCarb group. No significant group × time interactions were observed for the hose line advance, stair climb, total time to completion, and time trial performance (p > 0.05). CONCLUSIONS: The addition of supplemental creatine to a protein and carbohydrate supplement to the diet of career firefighters throughout a three week period improves occupational performance in firefighters in specific areas of high-intensity, repetitive actions.


Asunto(s)
Creatina , Bomberos , Masculino , Humanos , Adulto , Creatina/farmacología , Suplementos Dietéticos , Carbohidratos , Método Doble Ciego
14.
BMC Med ; 21(1): 440, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968687

RESUMEN

BACKGROUND: Creatine is an organic compound that facilitates the recycling of energy-providing adenosine triphosphate (ATP) in muscle and brain tissue. It is a safe, well-studied supplement for strength training. Previous studies have shown that supplementation increases brain creatine levels, which might increase cognitive performance. The results of studies that have tested cognitive performance differ greatly, possibly due to different populations, supplementation regimens, and cognitive tasks. This is the largest study on the effect of creatine supplementation on cognitive performance to date. METHODS: Our trial was preregistered, cross-over, double-blind, placebo-controlled, and randomised, with daily supplementation of 5 g for 6 weeks each. We tested participants on Raven's Advanced Progressive Matrices (RAPM) and on the Backward Digit Span (BDS). In addition, we included eight exploratory cognitive tests. About half of our 123 participants were vegetarians and half were omnivores. RESULTS: Bayesian evidence supported a small beneficial effect of creatine. The creatine effect bordered significance for BDS (p = 0.064, η2P = 0.029) but not RAPM (p = 0.327, η2P = 0.008). There was no indication that creatine improved the performance of our exploratory cognitive tasks. Side effects were reported significantly more often for creatine than for placebo supplementation (p = 0.002, RR = 4.25). Vegetarians did not benefit more from creatine than omnivores. CONCLUSIONS: Our study, in combination with the literature, implies that creatine might have a small beneficial effect. Larger studies are needed to confirm or rule out this effect. Given the safety and broad availability of creatine, this is well worth investigating; a small effect could have large benefits when scaled over time and over many people. TRIAL REGISTRATION: The trial was prospectively registered (drks.de identifier: DRKS00017250, https://osf.io/xpwkc/ ).


Asunto(s)
Creatina , Suplementos Dietéticos , Humanos , Creatina/efectos adversos , Teorema de Bayes , Encéfalo , Método Doble Ciego , Cognición
15.
Nutrients ; 15(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37892421

RESUMEN

The combination of resistance exercise and creatine supplementation has been shown to decrease body fat percentage in adults ≥ 50 years of age. However, the effect on adults < 50 years of age is currently unknown. To address this limitation, we systematically reviewed the literature and performed several meta-analyses comparing studies that included resistance exercise and creatine supplementation to resistance exercise and placebo on fat mass and body fat percentage Twelve studies were included, involving 266 participants. Adults (<50 years of age) who supplemented with creatine and performed resistance exercise experienced a very small, yet significant reduction in body fat percentage (-1.19%, p = 0.006); however, no difference was found in absolute fat mass (-0.18 kg, p = 0.76). Collectively, in adults < 50 years of age, the combination of resistance exercise and creatine supplementation produces a very small reduction in body fat percentage without a corresponding decrease in absolute fat mass.


Asunto(s)
Creatina , Entrenamiento de Fuerza , Humanos , Adulto , Ejercicio Físico , Suplementos Dietéticos , Composición Corporal , Músculo Esquelético , Fuerza Muscular
16.
Nutrients ; 15(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37892478

RESUMEN

This Special Issue of Nutrients 'Dietary Supplements and Musculoskeletal Health and Function' provides new insights into the use of a wide range of dietary supplements, such as zinc, creatine, Vitamin D, HMB, BCAA, betaine, glucoraphanin, citrulline and collagen, to improve bone and muscle structure and function [...].


Asunto(s)
Suplementos Dietéticos , Vitaminas , Vitamina D , Creatina , Zinc
17.
Front Immunol ; 14: 1176956, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662917

RESUMEN

Creatine is an indispensable organic compound utilized in physiological environments; however, its role in immunity is still poorly understood. Here, we show that creatine supplementation enhances anti-tumor immunity through the functional upregulation of macrophages by increasing adenosine triphosphate (ATP) production. Creatine supplementation significantly suppressed B16-F10-originated tumor growth in mice compared with the control treatment. Under these conditions, intratumor macrophages polarized towards the M1 phenotype rather than the M2 phenotype, and there was an increase in tumor antigen-specific CD8+ T cells in the mice. The cytokine production and antigen-presenting activity in the macrophages were enhanced by creatine supplementation, resulting in a substantial increase in tumor antigen-specific CD8+ T cells. ATP upregulation was achieved through the cytosolic phosphocreatine (PCr) system via extracellular creatine uptake, rather than through glycolysis and mitochondrial oxidative phosphorylation in the macrophages. Blockade of the creatine transporter (CrT) failed to upregulate ATP and enhance the immunological activity of macrophages in creatine supplementation, which also impaired CD8+ T cell activity. Consequently, CrT blockade failed to suppress tumor growth in the creatine-supplemented mice. Thus, creatine is an important nutrient that promotes macrophage function by increasing ATP levels, ultimately contributing to enhanced anti-tumor immunity orchestrated by CD8+ T cells.


Asunto(s)
Adenosina Trifosfato , Creatina , Animales , Ratones , Creatina/farmacología , Macrófagos , Antígenos de Neoplasias , Suplementos Dietéticos
18.
Anim Biotechnol ; 34(8): 3988-3999, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37747460

RESUMEN

This study was purposed to investigate the efficacy of dietary creatine nitrate (CrN) supplementation on redox status and mitochondrial function in pectoralis major (PM) muscle of broilers that experienced preslaughter transport. A total of 288 Arbor Acres broilers (28-day-old) were randomly assigned into five dietary treatments, including a basal diet or the basal diet supplemented with 600 mg/kg guanidinoacetic acid (GAA), 300, 600, or 900 mg/kg CrN for 14 days, respectively. On the transportation day, the basal diet group was divided into two groups on average, resulting in six groups. The control group was transported for 0.5 h and the other groups for 3 h (identified as Control, T3h, GAA600, CrN300, CrN600, and CrN900 group, respectively), and all crates were randomly placed on the truck travelling at an average speed of 80 km/h. Our results showed that GAA600 and CrN treatments decreased the muscle ROS level and MDA content (P < 0.05) and increased the mitochondrial membrane potential (P < 0.001), as well as a higher mRNA expression of avUCP (P < 0.001) and lower mRNA expressions of Nrf2 (P < 0.001), Nrf2 and PGC-1α (P < 0.05) compared with T3h group. Meanwhile, the mRNA and protein expressions of Nrf1, TFAM, and PGC-1α in CrN600 and CrN900 groups were lower than those in the T3h group (P < 0.05). Conclusively, dietary supplementation with GAA and CrN decreased muscle oxidative products and enhanced mitochondrial uncoupling mechanism and mtDNA copy number, which relieved muscle oxidative damage and maintained mitochondrial function.


Asunto(s)
Creatina , Músculos Pectorales , Animales , Creatina/farmacología , Creatina/metabolismo , Nitratos/farmacología , Nitratos/metabolismo , Pollos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Suplementos Dietéticos , Dieta , Mitocondrias , Oxidación-Reducción , ARN Mensajero/metabolismo , Alimentación Animal/análisis
19.
J Sports Med Phys Fitness ; 63(11): 1188-1193, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37675500

RESUMEN

BACKGROUND: Acute fluid ingestion increases estimated body fat percentage (BF%) measurements by single frequency (SF-BIA) and multi-frequency bioelectrical impedance (MF-BIA). It is unknown if MF-BIA accurately measures total BF% and total body water (TBW) after creatine supplementation, which causes fluid retention, and resultant increases in fat-free mass and TBW. The purpose of this study was to analyze the effect of creatine supplementation on body composition and TBW measured through a popular MF-BIA device (InBody 770). METHODS: Thirteen male and 14 female subjects (18-22 years) completed one week of creatine monohydrate (0.3 g/kg body weight) or maltodextrin. Pre- and post-supplementation body composition measurements included dual-energy X-ray absorptiometry (DEXA), SF-BIA measured by an Omron HBF-306C device, and MF-BIA measured by an InBody 770 device to measure BF%, fat free mass (FFM), and fat mass (FM). Additionally, intracellular water (ICW), extracellular water (ECW), and TBW were estimated by MF- BIA. RESULTS: FFM increased more in the creatine group than the placebo group measured by all body composition modes (1.2 kg, 1.9 kg, and 1.1 kg increase for SF-BIA, MF-BIA, and DEXA respectively, P<0.05). Creatine supplementation resulted in a 2% increase (P<0.05) in TBW measured by MF-BIA (40.4±9.5 to 41.2±9.6 kg). CONCLUSIONS: One week of creatine supplementation increased TBW as detected by the InBody 770 device. Changes in body composition that occurred due to the increase in TBW were detected as an increase in FFM measured by SF-BIA, MF-BIA, and DEXA.


Asunto(s)
Composición Corporal , Creatina , Femenino , Humanos , Masculino , Absorciometría de Fotón , Agua Corporal , Suplementos Dietéticos , Impedancia Eléctrica , Agua
20.
Nutrients ; 15(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37630756

RESUMEN

Creatine supplementation improves anaerobic performance and recovery; however, to date, these outcomes have not been well explored in females. This study evaluated the effect of creatine monohydrate loading on exercise recovery, measured by heart rate variability (HRV) and repeated sprint performance, in women across the menstrual cycle. In this randomized, double-blind, cross-over study, 39 women (mean ± standard deviation: age: 24.6 ± 5.9 years, height: 172.5 ± 42.3 cm, weight: 65.1 ± 8.1 kg, BF: 27.4 ± 5.8%) were randomized to a creatine monohydrate (n = 19; 20 g per day in 4 × 5 g doses) or non-caloric PL group (n = 20). HRV was measured at rest and after participants completed a repeated sprint cycling test (10 × 6 s maximal sprints). Measurements were conducted before and after supplementation in the follicular/low hormone and luteal/high hormone phases. Creatine monohydrate supplementation did not influence HRV values, as no significant differences were seen in HRV values at rest or postexercise. For repeated sprint outcomes, there was a significant phase × supplement interaction (p = 0.048) for fatigue index, with the greatest improvement seen in high hormone in the creatine monohydrate group (-5.8 ± 19.0%) compared to changes in the PL group (0.1 ± 8.1%). Sprint performance and recovery were reduced by the high hormone for both groups. Though not statistically significant, the data suggests that creatine monohydrate could help counteract performance decrements caused by the high hormone. This data can help inform creatine monohydrate loading strategies for females, demonstrating potential benefits in the high hormone phase.


Asunto(s)
Creatina , Ciclo Menstrual , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Creatina/farmacología , Estudios Cruzados , Ciclismo , Suplementos Dietéticos , Progesterona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA