Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(25): 7584-7597, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35261309

RESUMEN

Background:The combined supplementation of vitamins C and E potentially can mitigate oxidative stress (OS) and accelerate recovery following exercise. However, there is little evidence and a lack of consensus on the effects of these vitamins for this purpose. The objective of this systematic review was to summarize the evidence on the effects of the combined supplementation of vitamins C and E in OS, inflammatory markers, muscle damage, muscle soreness, and musculoskeletal functionality following acute exercise. Methods: The search was carried out from inception until March 2021, on MEDLINE, EMBASE, Cochrane CENTRAL, Web of Science, and SPORT Discus. We included placebo-controlled randomized clinical trials (RCTs) that evaluated the effects of combined supplementation of vitamins C and E in OS, inflammatory markers, muscle damage, muscle soreness, and muscle strength following a single bout of exercise. Random-effect meta-analyses were used to compare pre to post-exercise mean changes in subjects who received supplementation with vitamins C and E or placebo versus controls. Data are presented as standard mean difference (SMD) and 95% confidence interval (95% CI). Results: Eighteen RCTs, accounting for data from 322 individuals, were included. The use of vitamins attenuated lipid peroxidation (SMD= -0.703; 95% CI= -1.035 to -0.372; p < 0.001), IL-6 (SMD= -0.576; 95%CI= -1.036 to -0.117; p = 0.014), and cortisol levels (SMD= -0.918; 95%CI= -1.475 to -0.361; p = 0.001) immediately, and creatine kinase levels 48 h following exercise (SMD= -0.991; 95%CI= -1.611 to -0.372; p = 0.002). Supplementing the combination of vitamins had no effects on protein carbonyls, reduced/oxidized glutathione ratio, catalase, interleukin-1Ra, C-reactive protein, lactate dehydrogenase, muscle soreness, and muscle strength. Conclusion: Prior supplementation of the combination of vitamins C and E attenuates OS (lipid peroxidation), the inflammatory response (interleukin-6), cortisol levels, and muscle damage (creatine kinase) following a session of exercise.


Asunto(s)
Ácido Ascórbico , Mialgia , Humanos , Ácido Ascórbico/farmacología , Hidrocortisona/farmacología , Suplementos Dietéticos , Músculo Esquelético , Ensayos Clínicos Controlados Aleatorios como Asunto , Vitaminas/farmacología , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Ejercicio Físico/fisiología , Fuerza Muscular , Creatina Quinasa/farmacología
2.
Redox Rep ; 27(1): 92-99, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35435141

RESUMEN

Background: The cardiovascular crisis is advancing rapidly throughout the world. A large number of studies have shown that plant polyphenols affect major mechanisms involved in cardiovascular events through their action on the antioxidant system, signaling, and transcription pathways. D-limonene, a monocyclic monoterpene obtained from citrus fruits, is reported to possess many pharmacological activities.Methods: The experiment was designed to determine the protective effect of D-limonene against cardiac injury induced by CCl4 in Wistar rats. Rats were treated with two doses of D-limonene against cardiac injury induced by CCl4. Serum toxicity markers, cardiac toxicity biomarker enzymes, inflammatory mediators, anti-oxidant armory, lipid peroxidation, lipid profile, and histology were done.Results: CCl4 intoxication resulted in a substantial rise in FFA, TC, TG, PL, LDL, VLDL, and a reduction in HDL, restoring these changes with the administration of D-limonene at a dosage of 200 mg/kg. CCl4 administration also resulted in lipid oxidation and decreased antioxidant activity. At the same time, D-limonene at a dosage of 200 mg/kg body weight inhibited LPO and restored in vivo antioxidant components to normal. CCl4 intoxication also resulted in a significant increase in inflammatory markers like IL-6, TNF-α, high sensitivity Corticotropin Releasing Factor (Hs-CRF), and biomarkers of cardiac toxicity like alanine aminotransferase (ALT), lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase MB (CKMB), and Troponin I & troponin-t activities. D-limonene reversed all these changes to normal. Histology further confirmed our obtained results.Conclusion: These findings indicate that D-limonene can ameliorate cardiac injury at a 200 mg/kg body weight dosage. Henceforth, D-Limonene intervenes in mediating CCl4 induced toxicity by various signaling pathways.


Asunto(s)
Antioxidantes , Cardiotoxicidad , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Peso Corporal , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Creatina Quinasa/metabolismo , Creatina Quinasa/farmacología , Ciclohexanos , Limoneno/metabolismo , Limoneno/farmacología , Limoneno/uso terapéutico , Peroxidación de Lípido , Lípidos , Hígado , Estrés Oxidativo , Extractos Vegetales/farmacología , Ratas , Ratas Wistar
3.
J Healthc Eng ; 2022: 5961267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35345656

RESUMEN

During the training process, the aerobics athletes gradually increase their technical movements, the appreciation of the movements has been gradually improved, and the injuries of the athletes themselves have also gradually become serious. Based on CT image analysis, we study the protective effect of amino acids on aerobics athletes' muscle injury after endurance exercise. There are three major substance metabolism disorders in patients with muscle sclerosis, which are mainly manifested as decreased glucose tolerance and insulin resistance. Some patients develop muscle-derived diabetes. At the same time, the synthesis of lipids such as cholesterol and apolipoproteins decreases, the production of ketone bodies increases and the body uses more ketones for energy. The BCAA/AAA factor refers to the branched-chain amino acid/aromatic amino acid (BCAA/AAA) value. In amino acid metabolism, plasma albumin decreased significantly, the ratio of amino acids was unbalanced, and BCAA/AAA decreased, which was more likely to induce muscular encephalopathy. Using computer tomography (CT) to study the protective effect of amino acids on muscle injury, 32 aerobics athletes were randomly divided into an intervention group (Ig) and a control group (CG), each with 16 people. After 64-slice spiral CT scanning of muscles and three-dimensional reconstruction, the intervention group and the control group participated in aerobic endurance training 3 weeks in advance to establish a muscle microinjury model. The intervention group took the preprepared BCAA, while the control group did not take it. After three weeks of training, there will be one hour and three hours of aerobics competition. We need to detect changes in blood glucose (BS), creatine kinase (SCK), lactate dehydrogenase (LD), alanine (ALA), and alanine aminotransferase (AA) before and after exercise and 1 hour after exercise and record AVS athletes' pain analysis table. We successfully established the muscle injury model, letting all athletes' VAS score in 6-8 points; after 1 hour of exercise, the measurement results were the same as those of 2 hours. Therefore, after endurance training, the blood glucose content of the intervention group gradually decreased and returned to the original level after 2 hours of exercise, while the control group was lower than the level of exercise after 2 hours of exercise; the content of alanine in the two groups decreased more after 2 hours of exercise; the results of serum creatine kinase in the intervention group were higher than those in the control group after exercise. In the intervention group, lactate dehydrogenase increased rapidly at 2 hours after exercise; the alanine aminotransferase in the intervention group increased after exercise, but there was no significant change in the control group. It is also concluded that the longer the exercise time and the more energy consumption, the more effective the branched-chain amino acids supplement will be. The obtained imaging data can provide a more intuitive and accurate basis for the scientific selection of athletes, and amino acids can promote the synthesis of hormones, accelerate the synthesis of proteins and other products, reduce the content of creatine kinase in the blood, and protect the rapid recovery of muscle damage.


Asunto(s)
Aminoácidos , Glucemia , Alanina/metabolismo , Alanina/farmacología , Alanina Transaminasa , Aminoácidos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Aminoácidos de Cadena Ramificada/farmacología , Atletas , Computadores , Creatina Quinasa/metabolismo , Creatina Quinasa/farmacología , Humanos , Lactato Deshidrogenasas/metabolismo , Músculo Esquelético/diagnóstico por imagen , Músculos/metabolismo , Tomografía , Tomografía Computarizada por Rayos X
4.
Drug Chem Toxicol ; 45(6): 2664-2677, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34587847

RESUMEN

The aim of this study was to investigate the protective efficacy of chrysin against propetamphos exposure. For this purpose, 2 to 3-month-old 40 male Wistar Albino rats were used. These animals were randomly assigned to four groups. The animals in the control group received the vehicle substance (corn oil) alone. Groups 2, 3 and 4 were administered with 50 mg/kg.bw/day of chrysin (in corn oil), 10 mg/kg.bw/day of propetamphos (in corn oil), and 10 mg/kg.bw/day of propetamphos plus 50 mg/kg.bw/day of chrysin, respectively, for 28 days. Some oxidative stress/lipid peroxidation parameters (MDA, SOD, CAT, GSH-Px, NO, glutathione) and serum biochemical parameters (triglyceride, cholesterol, creatinine, BUN, creatine phosphokinase, ALT, ALP and pseudocholinesterase) were analyzed in tissue/blood samples. Also, histopathological findings were observed. According to the data obtained, no significant alteration had occurred in these parameters and the histological findings in the group given chrysin alone, when compared to the control group. Significant unfavorable alterations were detected in the oxidative stress/lipid peroxidation/antioxidant status parameters, all biochemical parameters and histopathological findings of the group that received propetamphos alone. In the group that was given both chrysin and propetamphos, remedial/recovery alterations were observed in the oxidative stress/lipid peroxidation/antioxidant status values, serum biochemical parameters and histopathological findings, such that the values and histopathological findings showed partly similarity to those of the control group. In result, it is suggested that chrysin may provide protection against propetamphos exposure and propetamphos-induced organ damage in rats at a certain level.


Asunto(s)
Antioxidantes , Aceite de Maíz , Animales , Masculino , Ratas , Antioxidantes/farmacología , Antioxidantes/metabolismo , Butirilcolinesterasa/metabolismo , Aceite de Maíz/metabolismo , Aceite de Maíz/farmacología , Creatina Quinasa/metabolismo , Creatina Quinasa/farmacología , Creatinina/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido , Hígado , Estrés Oxidativo , Ratas Wistar , Superóxido Dismutasa/metabolismo , Triglicéridos
5.
Int J Vitam Nutr Res ; 92(5-6): 448-468, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33196371

RESUMEN

This systematic review and meta-analysis examined the effects of selected root plants (curcumin, ginseng, ginger and garlic) on markers of muscle damage and muscular performance measures following muscle-damaging protocols. We included 25 studies (parallel and crossover design) with 353 participants and used the PEDro scale to appraise each study. Forest plots were generated to report on standardised mean differences (SMD) and p-values at 24 and 48 hours following the muscle-damaging protocols. The meta-analysis showed that the supplemental (SUPP) condition showed significantly lower levels of indirect muscle damage markers (creatine kinase, lactate dehydrogenase and myoglobin) and muscle soreness at 24 hours and 48 hours (p < 0.01) than the placebo (PLA) condition. The inflammatory markers were significantly lower for the SUPP condition than the PLA condition at 24 hours (p = 0.02), although no differences were identified at 48 hours (p = 0.40). There were no significant differences in muscular performance measures between the SUPP and PLA conditions at 24 hours and 48 hours (p > 0.05) post-exercise. According to our qualitative data, a number of studies reported a reduction in oxidative stress (e.g., malondialdehyde, superoxide dismutase) with a concomitant upregulation of anti-oxidant status, although other studies showed no effects. Accordingly, selected root plants minimised the level of several biomarkers of muscle damage, inflammation and muscle soreness during periods of exercise-induced muscle damage. However, the benefits of these supplements in ameliorating oxidative stress, increasing anti-oxidant status and accelerating recovery of muscular performance appears equivocal, warranting further research in these outcome measures.


Asunto(s)
Curcumina , Mialgia , Antioxidantes/farmacología , Biomarcadores , Creatina Quinasa/farmacología , Curcumina/farmacología , Suplementos Dietéticos , Ejercicio Físico/fisiología , Humanos , Lactato Deshidrogenasas , Malondialdehído , Músculo Esquelético/fisiología , Mialgia/prevención & control , Mioglobina/farmacología , Superóxido Dismutasa
6.
J Muscle Res Cell Motil ; 19(2): 143-55, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9536441

RESUMEN

Using both slack tests and force clamp experiments, the velocity of unloaded shortening (Vu; Vu(st), slack test; Vu(fc), force clamp) was determined for maximally Ca(2+)-activated myofibrillar bundles. These were obtained by mechanically splitting single muscle fibres of rat, rabbit, crab and lobster skeletal muscles. A comparison was made between the Vu of thick (mammalian: 45-70 microns mean diameter; crustacean: 90-175 microns) and thin (mammalian: 25-40 microns; crustacean: 35-85 microns) preparations of the same muscle fibre. The bundle diameter had opposite effects on Vu in mammalian and crustacean muscle fibres. The Vu of thin mammalian bundles was about 0.6 times that of the thick ones, whereas in crustacean preparations this ratio was about 1.5. The kinetics of stretch-induced delayed force increase of maximally Ca(2+)-activated fibres (stretch activation) appeared not to differ between the thick and thin bundles from any animal preparation. Control experiments showed that the observed diameter effects on Vu are not due to differences in the chemical environment of the myofilaments. One possible explanation is that the intrinsic physical factors of the myofibrils modify Vu differently during progressive shortening in mammalian and crustacean preparations.


Asunto(s)
Braquiuros , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Nephropidae , Animales , Creatina Quinasa/farmacología , Glutaral , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/ultraestructura , Conejos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA