Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hormones (Athens) ; 20(1): 101-110, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32996026

RESUMEN

PURPOSE: The potential benefits of treating subclinical hypothyroidism (SCH) are unclear and still controversial. Thus, we surgically induced SCH in rats and evaluated the effects of thyroxine (T4) replacement on the gene expression levels of deiodinases and thyroid hormone (TH) transporters in different tissues. METHODS: SCH was induced by hemithyroid electrocauterization. The control animals underwent the same surgical procedure but were not subjected to electrocauterization (sham). After 14 days, half of the SCH animals were treated with T4 (SCH + T4). At the end of the experimental protocol, all of the rats were euthanized, serum hormone concentrations were measured, and RNA analyses were performed on different tissues and organs. RESULTS: Consistent with previous studies, we observed increased TSH levels, normal TH levels, and reduced hypothalamic TRH expression in the SCH group. Additionally, Dio2 mRNA expression was downregulated in the hippocampus and pituitary, and Dio1 was upregulated in the kidney and pituitary of the SCH animals. The changes in Dio3 expression were tissue-specific. Concerning TH transporters, Mct10 expression was upregulated in the pituitary, kidney, hypothalamus, and hippocampus, and Mct8 expression was downregulated in the kidney of the SCH group. Crym expression was upregulated in the kidney and pituitary. Notably, T4 replacement significantly attenuated serum TSH levels and reverted Dio1, Dio2, Mct10, and Crym expression in the pituitary, hippocampus, and kidney to levels that were similar to the sham group. Tissue-specific responses were also observed in the liver and hypothalamus. CONCLUSION: Our results indicate that treatment of SCH should be considered before the appearance of clinical symptoms of hypothyroidism.


Asunto(s)
Hipotiroidismo/tratamiento farmacológico , Yoduro Peroxidasa/metabolismo , Proteínas de Unión a Tiroxina/metabolismo , Tiroxina/uso terapéutico , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Hipotálamo/fisiología , Hipotiroidismo/etiología , Yoduro Peroxidasa/genética , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Proteínas de Unión a Tiroxina/genética , Cristalinas mu
2.
Amino Acids ; 42(4): 1397-404, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21293891

RESUMEN

The ingestion of a valine (Val)-deficient diet results in a significant reduction of food intake and body weight within 24 h, and this phenomenon continues throughout the period over which such a diet is supplied. Both microarray and real-time PCR analyses revealed that the expression of somatostatin mRNA was increased in the hypothalamus in anorectic mice that received a Val-deficient diet. On the other hand, when somatostatin was administered intracerebroventricularly to intact animals that were fed a control diet, their 24-h food intake decreased significantly. In addition, Val-deficient but not pair-fed mice or those fasted for 24 h showed a less than 0.5-fold decrease in the hypothalamic mRNA expression levels of Crym, Foxg1, Itpka and two unknown EST clone genes and a more than twofold increase in those of Slc6a3, Bdh1, Ptgr2 and one unknown EST clone gene. These results suggest that hypothalamic somatostatin and genes responsive to Val deficiency may be involved in the central mechanism of anorexia induced by a Val-deficient diet.


Asunto(s)
Anorexia , Somatostatina , Valina , Animales , Masculino , Ratones , Anorexia/genética , Anorexia/metabolismo , Anorexia/fisiopatología , Ingestión de Alimentos , Hipotálamo/metabolismo , Ratones Endogámicos C57BL , Cristalinas mu , Somatostatina/genética , Somatostatina/metabolismo , Regulación hacia Arriba , Valina/deficiencia , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA