Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(4): 122, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483653

RESUMEN

This study aims to explore the concentrations of Se and Hg in shellfish along the Gulf of Mannar (GoM) coast (Southeast India) and to estimate related risks and risk-based consumption limits for children, pregnant women, and adults. Se concentrations in shrimp, crab, and cephalopods ranged from 0.256 to 0.275 mg kg-1, 0.182 to 0.553 mg kg-1, and 0.176 to 0.255 mg kg-1, respectively, whereas Hg concentrations differed from 0.009 to 0.014 mg kg-1, 0.022 to 0.042 mg kg-1 and 0.011 to 0.024 mg kg-1, respectively. Se and Hg content in bamboo shark (C. griseum) was 0.242 mg kg-1 and 0.082 mg kg-1, respectively. The lowest and highest Se concentrations were found in C. indicus (0.176 mg kg-1) and C. natator (0.553 mg kg-1), while Hg was found high in C. griseum (0.082 mg kg-1) and low in P. vannamei (0.009 mg kg-1). Se shellfishes were found in the following order: crabs > shrimp > shark > cephalopods, while that of Hg were shark > crabs > cephalopods > shrimp. Se in shellfish was negatively correlated with trophic level (TL) and size (length and weight), whereas Hg was positively correlated with TL and size. Hg concentrations in shellfish were below the maximum residual limits (MRL) of 0.5 mg kg-1 for crustaceans and cephalopods set by FSSAI, 0.5 mg kg-1 for crustaceans and 1.0 mg kg-1 for cephalopods and sharks prescribed by the European Commission (EC/1881/2006). Se risk-benefit analysis, the AI (actual intake):RDI (recommended daily intake) ratio was > 100%, and the AI:UL (upper limit) ratio was < 100%, indicating that all shellfish have sufficient level of Se to meet daily requirements without exceeding the upper limit (UL). The target hazard quotient (THQ < 1) and hazard index (HI < 1) imply that the consumption of shellfish has no non-carcinogenic health impacts for all age groups. However, despite variations among the examined shellfish, it was consistently observed that they all exhibited a Se:Hg molar ratio > 1. This finding implies that the consumption of shellfish is generally safe in terms of Hg content. The health benefit indexes, Se-HBV and HBVse, consistently showed high positive values across all shellfish, further supporting the protective influence of Se against Hg toxicity and reinforcing the overall safety of shellfish consumption. Enhancing comprehension of food safety analysis, it is crucial to recognize that the elevated Se:Hg ratio in shellfish may be attributed to regular selenoprotein synthesis and the mitigation of Hg toxicity by substituting Se bound to Hg.


Asunto(s)
Mercurio , Selenio , Contaminantes Químicos del Agua , Embarazo , Animales , Niño , Adulto , Femenino , Humanos , Mercurio/análisis , Selenio/análisis , Monitoreo Biológico , Peces/metabolismo , Mariscos/análisis , Crustáceos , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
2.
Mar Pollut Bull ; 200: 116156, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38359477

RESUMEN

The present study analyzed the content of total mercury (THg) and selenium (Se) in the muscle of shrimp collected from local markets in the 11 Pacific coastal states of Mexico. Methylmercury (MeHg) concentration, Se:Hg ratio, health benefits value from selenium consumption (HBVSe) and the permissible weekly consumption were estimated to assess the health risk to consumers. All THg and Se concentrations were below the maximum permissible limits. All hazard quotient (HQ) values were <1, however in Hermosillo, Culiacán and Guadalajara, the Se:Hg ratio and HBVSe were <1 and negative, due to the low concentrations of Se. As a general conclusion, there is no risk nor benefit from the consumption of shrimp from the Pacific coast of Mexico due to its Hg and Se content.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Selenio , Contaminantes Químicos del Agua , Animales , Mercurio/análisis , Selenio/análisis , México , Contaminantes Químicos del Agua/análisis , Crustáceos
3.
J Sci Food Agric ; 104(6): 3507-3516, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38145928

RESUMEN

BACKGROUND: This study was conducted to investigate the quality and shelf life of shrimps (Parapenaeus longirostris, Lucas 1846) glazed with biodegradable gelatin solutions combined with grape (Vitis vinifera L.) seed oil (GSO). Therefore, shrimps were divided into five groups and were glazed with distilled water (control), G (gelatin), G + 5% GSO (gelatin with 5% GSO), G + 10% GSO (gelatin with 10% GSO) and G + 15% GSO (gelatin with 15% GSO). Glazed shrimps were vacuum packaged and stored at -18 °C for 12 months. Proximate composition of the shrimps was determined, and the microbial (total viable counts, psychrotrophic bacteria count and Enterobacteriaceae), sensorial, chemical (residual sulfite, pH, total volatile basic nitrogen, trimethylamine nitrogen, thiobarbituric acid reactive substances) analysis, colour measurement, and melanosis formation were evaluated throughout the storage period. RESULTS: According to the analysis results, edible G + GSO coatings improved the meat quality and the brightness of the shrimps. The combined treatment reduced the quality loss of the shrimps which was caused by lipid content and prevented the total psychotropic bacteria growth throughout the storage. Moreover, glazing with G + GSO retarded the melanosis formation of the frozen shrimps. CONCLUSION: The study results revealed that GSO may be a recommended alternatively to sodium metabisulfite, which is a hazardous chemical substance commonly used against melanosis of shrimps. © 2023 Society of Chemical Industry.


Asunto(s)
Melanosis , Vitis , Animales , Gelatina/química , Crustáceos , Aceites de Plantas , Nitrógeno
4.
Mar Drugs ; 21(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37755080

RESUMEN

BACKGROUND: The use of conventional astaxanthin extraction methods, typically involving organic solvents, leads to a heightened environmental impact. The aim of this study was to explore the potential use of environmentally friendly extraction solvents, such as vegetable oils, for recovering the shrimp by-product astaxanthin. METHODS: Ultrasound-assisted extraction (UAE) in vegetable oils, including olive oil (OO), sunflower oil (SO), and flaxseed oil (FO), was employed to extract astaxanthin. The astaxanthin antioxidant activity was evaluated using an ABTS assay, and a mixture of gum Arabic and soy lecithin was used to form coacervates to produce astaxanthin encapsulation. RESULTS: A by-product-vegetable oil ratio of 1:60, extraction time of 210 min, 60% amplitude of the extraction process, and the use of OO as the extracting medium resulted in an astaxanthin yield of 235 ± 4.07 µg astaxanthin/g by-products. The astaxanthin encapsulation efficiency on day 0 and astaxanthin recovery on day 1 were recorded at 66.6 ± 2.7% and 94.4 ± 4.6%, respectively. CONCLUSIONS: The utilization of OO as an extraction solvent for astaxanthin from shrimp by-products in UAE represents a novel and promising approach to reducing the environmental impact of shrimp by-products. The effective astaxanthin encapsulation efficiency highlights its potential application in food industries.


Asunto(s)
Aceites de Plantas , Ultrasonido , Animales , Xantófilas , Crustáceos , Solventes
6.
J Hazard Mater ; 439: 129617, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35872457

RESUMEN

The emerging demand for the enhancement of biodegradation of persistent organic pollutants from marine oil spills using oil-treating agents to minimize the environmental impacts promotes the development of green dispersants. Shrimp waste is a potential raw material to generate green dispersants. The biodegradability of dispersed oil and dispersants themselves are key factors for the national consideration of the approval, stockpile, and usage of dispersants. However, it is unknown whether shrimp-waste-based dispersant (SWD) has high bioavailability or facilitates the biodegradation of dispersed oil. In this study, we tackled the biodegradation of oil dispersed by a purified SWD. Furthermore, the SWD biodegradability was evaluated by exploring the degradation genes via metagenomic sequencing, analyzing the enzymatic activities for dispersant biodegradation by molecular docking, and discussing the SWD toxicity. We discovered that the SWD facilitated the biodegradation of two crude oils (Alaska North Slope and Marine Fuel-No.6). The metagenomic analysis with molecular docking showed that fresh seawater had feasible enzymes to degrade the SWD to safety components. Additionally, the SWD was low toxic and high bioactive. The findings helped confirm that the purified SWD is an effective and eco-sustainable marine oil spill treating agent and tracked the biodegradation of dispersed oil and the SWD.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Biodegradación Ambiental , Crustáceos , Simulación del Acoplamiento Molecular , Petróleo/metabolismo , Contaminación por Petróleo/análisis , Agua de Mar , Tensoactivos , Contaminantes Químicos del Agua/análisis
7.
Environ Toxicol Chem ; 41(5): 1311-1318, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35156233

RESUMEN

Chemical herding agents are surfactant mixtures used to coalesce spilled oil and increase slick thickness to facilitate mechanical recovery or in situ burning. Only two herders are currently listed on the United States' National Oil and Hazardous Substances Pollution Contingency Plan or National Contingency Plan product schedule for potential use in spill response: the surface collecting agents Siltech OP-40™ and ThickSlick 6535™. Toxicity data for spill response agents are frequently available only for two estuarine species, mysid shrimp (Americamysis bahia) and inland silversides (Menidia beryllina), and are particularly limited for herding agents. Toxicity can vary over several orders of magnitude across product type and species, even within specific categories of spill response agents. Seven aquatic species were tested with both Siltech OP-40™ and ThickSlick 6535™ to evaluate acute herder toxicity and relative species sensitivity. The toxicity assessment included: acute tests with A. bahia and M. beryllina, the freshwater crustacean Ceriodaphina dubia, and the freshwater fish Pimephales promelas; development of the echinoderm Arbacia unctulate; and growth of a freshwater alga Raphidocelis subcapitata and marine alga Dunaliella tertiolecta. Siltech acute toxicity values ranged from 1.1 to 32.8 ppm. ThickSlick acute toxicity values ranged from 2.2 to 126.4 ppm. The results of present study show greater toxicity of Siltech compared to ThickSlick with estimated acute hazard concentrations intended to provide 95% species protection of 1.1 and 3.6 ppm, respectively, on empirical data and 0.64 and 3.3 ppm, respectively, with the addition of interspecies correlation data. The present study provides a greater understanding of species sensitivity of these two oil spill response agents. Environ Toxicol Chem 2022;41:1311-1318. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Crustáceos/fisiología , Peces , Contaminación por Petróleo/análisis , Tensoactivos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
8.
Artículo en Inglés | MEDLINE | ID: mdl-34597777

RESUMEN

To investigate the effects of dietary icariin (ICA) supplementation on acute oxidative stress and hepatopancreatic injury induced by lipopolysaccharide (LPS) injection in Eriocheir sinensis, an 8-week feeding trial of crabs was conducted using 4 diets with different supplementation levels of ICA (0, 50, 100, and 200 mg/kg diet weight, respectively), and then challenged with LPS of 400 µg/kg body weight for 6 h. Results showed that 100 mg/kg ICA supplementation increased the antioxidant capacity, reduced the stress-related indicators in haemolymph, strengthen the mitochondrial membrane potential, and reduce apoptosis compared to the single LPS-treated crabs. The expressions of apoptosis-related genes and proteins were also evaluated to further understand the effects of dietary ICA pretreatment on LPS-induced cell apoptosis. As a result, dietary 100 mg/kg diet weight ICA pre-addition significantly down-regulated the expression of HSP60, HSP70, Caspase 3c, Caspase 8, Caspase 3, Caspase 9, P38, and Bax (P < 0.05), and alleviated the suppressed expression of PI3K, AKT, MEK, and Bcl-2 (P < 0.05) in crabs challenged with LPS. Overall, this research reveals that ICA supplementation of 100 mg/kg diet weight could enhance the resistance to oxidative damage and apoptosis in E. sinensis facing LPS challenge.


Asunto(s)
Crustáceos/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Flavonoides/farmacología , Hepatopáncreas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Hepatopáncreas/patología
9.
Mar Drugs ; 19(8)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34436301

RESUMEN

The valuable marine carotenoid, astaxanthin, is used in supplements, medicines and cosmetics. In this study, crustacyanin, an astaxanthin-binding protein, was used to solubilize and concentrate astaxanthin. The recombinant crustacyanin of European lobster spontaneously formed an inclusion body when it was over-expressed in Escherichia coli. In this study, fusing the NusA-tag to the crustacyanin subunits made it possible to express in a soluble fraction and solubilize astaxanthin in aqueous solution. By cutting off the NusA-tag, the crustacyanin subunits generated the pure insoluble form, and captured and concentrated astaxanthin. Overall, the attaching and releasing NusA-tag method has the potential to supply solubilized carotenoids in aqueous solution and concentrated carotenoids, respectively.


Asunto(s)
Carotenoides/química , Crustáceos , Animales , Organismos Acuáticos , Productos Biológicos , Conformación Proteica , Solubilidad , Xantófilas/química
10.
Molecules ; 26(9)2021 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34063189

RESUMEN

Xanthophyll astaxanthin, which is commonly used in aquaculture, is one of the most expensive and important industrial pigments. It is responsible for the pink and red color of salmonid meat and shrimp. Due to having the strongest anti-oxidative properties among carotenoids and other health benefits, natural astaxanthin is used in nutraceuticals and cosmetics, and in some countries, occasionally, to fortify foods and beverages. Its use in food technology is limited due to the unknown effects of long-term consumption of synthetic astaxanthin on human health as well as few sources and the high cost of natural astaxanthin. The article characterizes the structure, health-promoting properties, commercial sources and industrial use of astaxanthin. It presents the possibilities and limitations of the use of astaxanthin in food technology, considering its costs and food safety. It also presents the possibilities of stabilizing astaxanthin and improving its bioavailability by means of micro- and nanoencapsulation.


Asunto(s)
Carotenoides/análisis , Industria de Alimentos/tendencias , Tecnología de Alimentos , Xantófilas/análisis , Animales , Antioxidantes/análisis , Basidiomycota/química , Colorantes , Crustáceos , Suplementos Dietéticos , Alimentos Funcionales , Humanos
11.
Environ Toxicol Chem ; 40(8): 2112-2120, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33818824

RESUMEN

Arthropods (including insects, crustaceans, and arachnids) rely on the synthesis of chitin to complete their life cycles (Merzendorfer 2011). The highly conserved chitin synthetic process and the absence of this process in vertebrates make it an exploitable target for pest management and veterinary medicines (Merzendorfer 2013; Junquera et al. 2019). Susceptible, nontarget organisms, such as insects and aquatic invertebrates, exposed to chitin synthesis inhibitors may suffer population declines, which may have a negative impact on ecosystems and associated services. Hence, it is important to properly identify, prioritize, and regulate relevant chemicals posing potential hazards to nontarget arthropods. The need for a more cost-efficient and mechanistic approach in risk assessment has been clearly evident and triggered the development of the adverse outcome pathway (AOP) framework (Ankley et al. 2010). An AOP links a molecular initiating event (MIE) through key events (KEs) to an adverse outcome. The mechanistic understanding of the underlying toxicological processes leading to a regulation-relevant adverse outcome is necessary for the utilization of new approach methodologies (NAMs) and efficient coverage of wider chemical and taxonomic domains. In the last decade, the AOP framework has gained traction and expanded within the (eco)toxicological research community. However, there exists a lack of mature invertebrate AOPs describing molting defect-associated mortality triggered by direct inhibition of relevant enzymes in the chitin biosynthetic pathway (chitin synthesis inhibitors) or interference with associated endocrine systems by environmental chemicals (endocrine disruptors). Arthropods undergo molting to grow and reproduce (Heming 2018). This process is comprised of the synthesis of a new exoskeleton, followed by the exuviation of the old exoskeleton (Reynolds 1987). The arthropod exoskeleton (cuticle) can be divided into 2 layers, the thin and nonchitinous epicuticle, which is the outermost layer of the cuticle, and the underlying chitinous procuticle. A single layer of epithelial cells is responsible for the synthesis and secretion of both cuticular layers (Neville 1975). The cuticle protects arthropods from predators and desiccation, acts as a physical barrier against pathogens, and allows for locomotion by providing support for muscular function (Vincent and Wegst 2004). Because the procuticle mainly consists of chitin microfibrils embedded in a matrix of cuticular proteins supplemented by lipids and minerals in insects (Muthukrishnan et al. 2012) and crustaceans (Cribb et al. 2009; Nagasawa 2012), chitin is a determinant factor for the appropriate composition of the cuticle and successful molting (Cohen 2001). A detailed overview of the endocrine mechanisms regulating chitin synthesis is given in Supplemental Data, Figure S1. The shedding of the old exoskeleton in insects is mediated by a sequence of distinct muscular contractions, the ecdysis motor program (EMP; Ayali 2009; Song et al. 2017a). Like the expression of chitin synthase isoform 1 (CHS-1), the expression of peptide hormones regulating the EMP is also controlled by ecdysteroids (Antoniewski et al. 1993; Gagou et al. 2002; Ayali 2009). Cuticular chitin is polymerized from uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) by the transmembrane enzyme CHS-1, which is localized in the epithelial plasma membrane in insects (Locke and Huie 1979; Binnington 1985; Merzendorfer and Zimoch 2003; Merzendorfer 2006). Because crustaceans are also dependent on the synthesis of chitin, the underlying mechanisms are believed to be similar, although less is known about different CHS isoforms and their localization (Rocha et al. 2012; Qian et al. 2014; Uddowla et al. 2014; Harðardóttir et al. 2019). Disruption of either chitin synthesis or the upstream endocrine pathways can lead to lethal molting disruption (Arakawa et al. 2008; Merzendorfer et al. 2012; Song et al. 2017a, 2017b). In the case of chitin synthesis inhibition, molting disruption can be referred to as "premature molting." If ecdysis cannot be completed because of decreased chitin synthesis, the organism may not successfully molt. Even if ecdysis can be completed on inhibition of chitin synthesis, the organism may not survive because of the poor integrity of the new cuticle. These effects are observed in arthropods following molting, which fail to survive subsequent molts (Arakawa et al. 2008; Chen et al. 2008) or animals being stuck in their exuviae (Wang et al. 2019) and ultimately dying as a result of insufficient food or oxygen intake (Camp et al. 2014; Song et al. 2017a). The term "premature molting" is used to differentiate from the term "incomplete ecdysis," which describes inhibition of ecdysis on a behavioral level, namely through reduction of the EMP (Song et al. 2017a). The present AOP describes molting-associated mortality through direct inhibition of the enzyme CHS-1. It expands the small but increasing number of invertebrate AOPs that have relevance to arthropods, the largest phylum within the animal kingdom (Bar-On et al. 2018). The development of this AOP will be useful in further research and regulatory initiatives related to assessment of CHS inhibitors and identification of critical knowledge gaps and may suggest new strategies for ecotoxicity testing efforts. Environ Toxicol Chem 2021;40:2112-2120. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Rutas de Resultados Adversos , Artrópodos , Animales , Artrópodos/metabolismo , Quitina/metabolismo , Quitina Sintasa , Crustáceos/metabolismo , Ecosistema , Insectos/metabolismo , Muda , Isoformas de Proteínas
12.
Arch Environ Contam Toxicol ; 80(2): 461-473, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33528594

RESUMEN

When oil is spilled into the environment its toxicity is affected by abiotic conditions. The cumulative and interactive stressors of chemical contaminants and environmental factors are especially relevant in estuaries where tidal fluctuations cause wide variability in salinity, temperature, and ultraviolet (UV) light penetration, which is an important modifying factor for polycyclic aromatic hydrocarbon (PAH) toxicity. Characterizing the interactions of multiple stressors on oil toxicity will improve prediction of environmental impacts under various spill scenarios. This study examined changes in crude oil toxicity with temperature, salinity, and UV light. Oil exposures included high-energy, water-accommodated fractions (HEWAFs) and thin oil sheens. Larval (24-48 h post hatch) estuarine species representing different trophic levels and habitats were evaluated. Mean 96 h LC50 values for oil prepared as a HEWAF and tested under standard conditions (20 ppt, 25 °C, No-UV) were 62.5 µg/L tPAH50 (mud snails), 198.5 µg/L (grass shrimp), and 774.5 µg/L (sheepshead minnows). Thin oil sheen 96 h LC50 values were 5.3 µg/L tPAH50 (mud snails), 14.7 µg/L (grass shrimp), and 22.0 µg/L (sheepshead minnows) under standard conditions. UV light significantly increased the toxicity of oil in all species tested. Oil toxicity also was greater under elevated temperature and lower salinity. Multi-stressor (oil combined with either increased temperature, decreased salinity, or both) LC50 values were reduced to 3 µg/L tPAH50 for HEWAFs and < 1.0 µg/L tPAH50 for thin oil sheens. Environmental conditions at the time of an oil spill will significantly influence oil toxicity and organismal response and should be taken into consideration in toxicity testing and oil spill damage assessments.


Asunto(s)
Larva/efectos de los fármacos , Contaminación por Petróleo , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Crustáceos , Peces Killi/fisiología , Dosificación Letal Mediana , Louisiana , Hidrocarburos Policíclicos Aromáticos/toxicidad , Salinidad , Caracoles/efectos de los fármacos , Temperatura , Pruebas de Toxicidad , Rayos Ultravioleta
13.
J Appl Toxicol ; 41(1): 105-117, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32876350

RESUMEN

Cadmium (Cd) is a toxic heavy metal with no known biological functions in the human body. Due to a considerably long biological half-life and very low rate of excretion, accumulation of Cd in different body organs (eg, liver, kidney, and testes) over time is associated with perturbed functioning of these organs. Recent studies have shown the extreme sensitivity of the testes to Cd toxicity. In testes, Cd has been reported to induce oxidative stress, apoptosis of spermatogenic cells, reduction in androgen production and sperm functions. Moreover, Cd in combination with other environmental toxicants may be responsible for the declining fertility of males in both animals and humans. Pinpointing how Cd toxicity affects various testicular processes will be imperative for the development of preventative measures to promote fertility among males. Therefore, in the present review, we summarize the recent findings related to the Cd-induced oxidative toxicity, apoptotic toxicity, steroidogenic toxicity, and spermatotoxicity, along with their possible mechanisms in testicular tissue of different animal species. In addition, the utilization of various antioxidant compounds, medicinal plants and other compounds for the management of Cd toxicity in testes is discussed.


Asunto(s)
Apoptosis/efectos de los fármacos , Cadmio/toxicidad , Fertilidad/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Enfermedades Testiculares/inducido químicamente , Enfermedades Testiculares/fisiopatología , Animales , Crustáceos , Humanos , Masculino , Ratas
14.
J Struct Biol ; 212(2): 107612, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32896659

RESUMEN

One fundamental character common to pancrustaceans (Crustacea and Hexapoda) is a mineralized rigid exoskeleton whose principal organic components are chitin and proteins. In contrast to traditional research in the field that has been devoted to the structural and physicochemical aspects of biomineralization, the present study explores transcriptomic aspects of biomineralization as a first step towards adding a complementary molecular layer to this field. The rigidity of the exoskeleton in pancrustaceans dictates essential molt cycles enabling morphological changes and growth. Thus, formation and mineralization of the exoskeleton are concomitant to the timeline of the molt cycle. Skeletal proteinaceous toolkit elements have been discovered in previous studies using innovative molt-related binary gene expression patterns derived from transcriptomic libraries representing the major stages comprising the molt cycle of the decapod crustacean Cherax quadricarinatus. Here, we revisited some prominent exoskeleton-related structural proteins encoding and, using the above molt-related binary pattern methodology, enlarged the transcriptomic database of C. quadricarinatus. The latter was done by establishing a new transcriptomic library of the cuticle forming epithelium and molar tooth at four different molt stages (i.e., inter-molt, early pre-molt, late pre-molt and post-molt) and incorporating it to a previous transcriptome derived from the gastroliths and mandible. The wider multigenic approach facilitated by the newly expanded transcriptomic database not only revisited single genes of the molecular toolkit, but also provided both scattered and specific information that broaden the overview of proteins and gene clusters which are involved in the construction and biomineralization of the exoskeleton in decapod crustaceans.


Asunto(s)
Exoesqueleto/fisiología , Biomineralización/genética , Crustáceos/genética , Transcriptoma/genética , Animales , Quitina/genética , Epitelio/fisiología , Perfilación de la Expresión Génica/métodos , Diente Molar/fisiología , Muda/genética , Proteínas/genética
15.
J Food Sci ; 85(10): 3638-3643, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32856293

RESUMEN

Shrimps cause a significant part of crustacea-related allergies. It is used in processed foods, including fermented Korean foods, such as kimchi. Even low amounts of shrimp allergens can provoke reactions in consumers allergic to shrimp. Accurate food labeling is the most effective means of preventing the consumption of allergenic ingredients. To validate labeling compliance and minimize the risk of cross-contaminations, the effectiveness of methodologies used for the detection of allergens in foods should be compared. Here, seven commercial kits, based on quantitative real-time polymerase chain reaction (PCR) or enzyme-linked immunosorbent assay (ELISA), were assessed for their ability to detect the presence of shrimp allergens in food. Our results showed that SureFood real-time PCR kit and Ridascreen ELISA kit had the highest recovery, whereas five other kits underperformed in the determination of allergen content of kimchi and its ingredients. The variation in recovery among the kits depended on the limit of detection and reactivity to the shrimp allergens, tropomyosin, and sarcoplasmic calcium-binding protein. PRACTICAL APPLICATION: This research confirms the performance of commercial kits to detect the presence of shrimp allergens in kimchi, and demonstrates that the sensitivity of these kits depends on reactivity to the specific shrimp allergenic proteins. These results can be used to food allergy labeling and can be applied by the food industry to develop allergen test kits for fermented foods with improved performance.


Asunto(s)
Alérgenos/análisis , Crustáceos/genética , ADN/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Alimentos Fermentados/análisis , Reacción en Cadena de la Polimerasa/métodos , Hipersensibilidad a los Mariscos/prevención & control , Verduras/química , Alérgenos/genética , Alérgenos/inmunología , Animales , Crustáceos/química , Crustáceos/inmunología , Ensayo de Inmunoadsorción Enzimática/economía , Etiquetado de Alimentos , Reacción en Cadena de la Polimerasa/economía , Hipersensibilidad a los Mariscos/inmunología , Verduras/inmunología
16.
Sci Rep ; 10(1): 11898, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681120

RESUMEN

Marine pollution is a significant issue in recent decades, with the increase in industries and their waste harming the environment and ecosystems. Notably, the rise in shellfish industries contributes to tons of shellfish waste composed of up to 58% chitin. Chitin, the second most ample polymer next to cellulose, is insoluble and resistant to degradation. It requires chemical-based treatment or enzymatic hydrolysis to cleave the chitin polymers. The chemical-based treatment can lead to environmental pollution, so to solve this problem, enzymatic hydrolysis is the best option. Moreover, the resulting biopolymer by-products can be used to boost the fish immune system and also as drug delivery agents. Many marine microbial strains have chitinase producing ability. Nevertheless, we still lack an economical and highly stable chitinase enzyme for use in the industrial sector. So we isolate a novel marine bacterial strain Achromobacter xylosoxidans from the shrimp waste disposal site using chitin minimal medium. Placket-Burman and central composite design statistical models for culture condition optimisation predicted a 464.2 U/ml of chitinase production. The culture conditions were optimised for maximum chitinase production recording up to 467 U/ml. This chitinase from the A. xylosoxidans was 100% active at an optimum temperature of 45 °C (withstand up to 55 °C) and pH 8 with 80% stability. The HPLC analysis of chitinase degraded shellfish waste reveals a major amino acid profile composition-arginine, lysine, aspartic acid, alanine, threonine and low levels of isoleucine and methionine. These chitinase degraded products and by-products can be used as supplements in the aquaculture industry.


Asunto(s)
Achromobacter denitrificans/enzimología , Achromobacter denitrificans/aislamiento & purificación , Quitina/metabolismo , Quitinasas/biosíntesis , Crustáceos/microbiología , Eliminación de Residuos , Aminoácidos/análisis , Animales , Quitina/química , Quitinasas/aislamiento & purificación , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Filogenia , Temperatura
17.
Mar Drugs ; 18(5)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32370045

RESUMEN

Astaxanthin is a naturally occurring red carotenoid pigment belonging to the family of xanthophylls, and is typically found in marine environments, especially in microalgae and seafood such as salmonids, shrimps and lobsters. Due to its unique molecular structure, astaxanthin features some important biologic properties, mostly represented by strong antioxidant, anti-inflammatory and antiapoptotic activities. A growing body of evidence suggests that astaxanthin is efficacious in the prevention and treatment of several ocular diseases, ranging from the anterior to the posterior pole of the eye. Therefore, the present review aimed at providing a comprehensive evaluation of current clinical applications of astaxanthin in the management of ocular diseases. The efficacy of this carotenoid in the setting of retinal diseases, ocular surface disorders, uveitis, cataract and asthenopia is reported in numerous animal and human studies, which highlight its ability of modulating several metabolic pathways, subsequently restoring the cellular homeostatic balance. To maximize its multitarget therapeutic effects, further long-term clinical trials are warranted in order to define appropriate dosage, route of administration and exact composition of the final product.


Asunto(s)
Antiinflamatorios/administración & dosificación , Crustáceos , Oftalmopatías/tratamiento farmacológico , Animales , Suplementos Dietéticos , Humanos , Biología Marina , Xantófilas/administración & dosificación
18.
Chem Biol Drug Des ; 95(6): 624-630, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32168424

RESUMEN

QSAR analysis of a set of previously synthesized phosphonium ionic liquids (PILs) tested against Gram-negative multidrug-resistant clinical isolate Acinetobacter baumannii was done using the Online Chemical Modeling Environment (OCHEM). To overcome the problem of overfitting due to descriptor selection, fivefold cross-validation with variable selection in each step of the model development was applied. The predictive ability of the classification models was tested by cross-validation, giving balanced accuracies (BA) of 76%-82%. The validation of the models using an external test set proved that the models can be used to predict the activity of newly designed compounds with a reasonable accuracy within the applicability domain (BA = 83%-89%). The models were applied to screen a virtual chemical library with expected activity of compounds against MDR Acinetobacter baumannii. The eighteen most promising compounds were identified, synthesized, and tested. Biological testing of compounds was performed using the disk diffusion method in Mueller-Hinton agar. All tested molecules demonstrated high anti-A. baumannii activity and different toxicity levels. The developed classification SAR models are freely available online at http://ochem.eu/article/113921 and could be used by scientists for design of new more effective antibiotics.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/química , Líquidos Iónicos/química , Compuestos Organofosforados/química , Animales , Antibacterianos/farmacología , Simulación por Computador , Crustáceos/efectos de los fármacos , Bases de Datos de Compuestos Químicos , Evaluación Preclínica de Medicamentos , Farmacorresistencia Bacteriana Múltiple , Humanos , Líquidos Iónicos/farmacología , Aprendizaje Automático , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad Cuantitativa
19.
Molecules ; 25(3)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033085

RESUMEN

Bioremediation of soils polluted with petroleum compounds is a widely accepted environmental technology. We compared the effects of biostimulation and bioaugmentation of soil historically contaminated with aliphatic and polycyclic aromatic hydrocarbons. The studied bioaugmentation treatments comprised of the introduction of differently developed microbial inoculants, namely: an isolated hydrocarbon-degrading community C1 (undefined-consisting of randomly chosen degraders) and a mixed culture C2 (consisting of seven strains with well-characterized enhanced hydrocarbon-degrading capabilities). Sixty days of remedial treatments resulted in a substantial decrease in total aliphatic hydrocarbon content; however, the action of both inoculants gave a significantly better effect than nutrient amendments (a 69.7% decrease for C1 and 86.8% for C2 vs. 34.9% for biostimulation). The bioaugmentation resulted also in PAH removal, and, again, C2 degraded contaminants more efficiently than C1 (reductions of 85.2% and 64.5%, respectively), while biostimulation itself gave no significant results. Various bioassays applying different organisms (the bacterium Vibrio fischeri, the plants Sorghum saccharatum, Lepidium sativum, and Sinapis alba, and the ostracod Heterocypris incongruens) and Ames test were used to assess, respectively, potential toxicity and mutagenicity risk after bioremediation. Each treatment improved soil quality, however only bioaugmentation with the C2 treatment decreased both toxicity and mutagenicity most efficiently. Illumina high-throughput sequencing revealed the lack of (C1) or limited (C2) ability of the introduced degraders to sustain competition from indigenous microbiota after a 60-day bioremediation process. Thus, bioaugmentation with the bacterial mixed culture C2, made up of identified, hydrocarbon-degrading strains, is clearly a better option for bioremediation purposes when compared to other treatments.


Asunto(s)
Bacterias/metabolismo , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Animales , Biodegradación Ambiental , Crustáceos/metabolismo , Lepidium sativum , Sinapis/metabolismo , Suelo/química , Microbiología del Suelo , Sorghum/metabolismo
20.
Ecotoxicol Environ Saf ; 192: 110262, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32061992

RESUMEN

From the perspective of ecological risk, this study uses a multisource data method to search for global data, uses the acute and chronic ratio method to process the data, uses the species-sensitive distribution method to evaluate the ecological risk that petroleum hydrocarbons pose to aquatic organisms, and evaluates the ecological risk of the water environment in five Chinese water bodies. The results are as follows. First, in an aquatic ecosystem, the toxicological effects of petroleum hydrocarbons were found to be more obvious on consumers, and the sensitivity of fish was found to be higher than that of crustaceans. Second, the acutely lethal effects of petroleum hydrocarbons, fluorene, and benzo [a] pyrene on aquatic ecosystems were fitted by using the documentary method of multisource data collection and a Log-logistic curve. Third, in the case study evaluation of five Chinese water bodies, the ecological risks of polycyclic aromatic hydrocarbons were ranked (from low to high) as fluorene < benzo [a] pyrene. The ecological risk values of benzo [a] pyrene were all greater than 1. These risks should not be underestimated, and prevention and control work should be performed.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Petróleo/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Benzo(a)pireno/toxicidad , Crustáceos/efectos de los fármacos , Ecosistema , Peces , Fluorenos/toxicidad , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA