Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 322: 117584, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38104874

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cholestatic liver injury (CLI) is a pathologic process with the impairment of liver and bile secretion and excretion, resulting in an excessive accumulation of bile acids within the liver, which leads to damage to both bile ducts and hepatocytes. This process is often accompanied by inflammation. Cucumis melo L is a folk traditional herb for the treatment of cholestasis. Cucurbitacin B (CuB), an important active ingredient in Cucumis melo L, has significant anti-inflamamatory effects and plays an important role in diseases such as neuroinflammation, skin inflammation, and chronic hepatitis. Though numerous studies have confirmed the significant therapeutic effect of CuB on liver diseases, the impact of CuB on CLI remains uncertain. Consequently, the objective of this investigation is to elucidate the therapeutic properties and potential molecular mechanisms underlying the effects of CuB on CLI. AIM OF THE STUDY: The aim of this paper was to investigate the potential protective mechanism of CuB against CLI. METHODS: First, the corresponding targets of CuB were obtained through the SwissTargetPrediction and SuperPre online platforms. Second, the DisGeNET database, GeneCards database, and OMIM database were utilized to screen therapeutic targets for CLI. Then, protein-protein interaction (PPI) was determined using the STRING 11.5 data platform. Next, the OmicShare platform was employed for the purpose of visualizing the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The molecular docking technique was then utilized to evaluate the binding affinity existing between potential targets and CuB. Subsequently, the impacts of CuB on the LO2 cell injury model induced by Lithocholic acid (LCA) and the CLI model induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) were determined by evaluating inflammation in both in vivo and in vitro settings. The potential molecular mechanism was explored by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot (WB) techniques. RESULTS: A total of 122 CuB targets were collected and high affinity targets were identified through the PPI network, namely TLR4, STAT3, HIF1A, and NFKB1. GO and KEGG analyses indicated that the treatment of CLI with CuB chiefly involved the inflammatory pathway. In vitro study results showed that CuB alleviated LCA-induced LO2 cell damage. Meanwhile, CuB reduced elevated AST and ALT levels and the release of inflammatory factors in LO2 cells induced by LCA. In vivo study results showed that CuB could alleviate DDC-induced pathological changes in mouse liver, inhibit the activity of serum transaminase, and suppress the liver and systemic inflammatory reaction of mice. Mechanically, CuB downregulated the IL-6, STAT3, and HIF-1α expression and inhibited STAT3 phosphorylation. CONCLUSION: By combining network pharmacology with in vivo and in vitro experiments, the results of this study suggested that CuB prevented the inflammatory response by inhibiting the IL-6/STAT3/HIF-1α signaling pathway, thereby demonstrating potential protective and therapeutic effects on CLI. These results establish a scientific foundation for the exploration and utilization of natural medicines for CLI.


Asunto(s)
Colestasis , Cucumis melo , Medicamentos Herbarios Chinos , Triterpenos , Animales , Ratones , Interleucina-6 , Simulación del Acoplamiento Molecular , Farmacología en Red , Hígado , Colestasis/inducido químicamente , Colestasis/tratamiento farmacológico , Inflamación
2.
PeerJ ; 11: e15417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810792

RESUMEN

Background: Undoubtedly, the importance of food and food security as one of the present and future challenges is not invisible to anyone. Nowadays, the development of methods for monitoring the nutrient content in crop products is an essential issue for implementing reasonable and logical soil properties management. The modeling technique can evaluate the soil properties of fields and study the subject of crop yield through soil management. This study aims to predict fruit yield and macro-nutrient content in plant organs of Cucumis melo in response to soil elements using support vector regression (SVR). Methodology: In the spring of 2020, this study was done as a factorial test in a randomized complete block design with three replications. The first factor was the use of fertilizers in six levels: no fertilizer (control), cow manure (30 t ha-1), sheep manure (30 t ha-1), nanobiomic foliar application (2 l ha-1), silicone foliar application (3 l ha-1), and chemical fertilizer from urea, triple superphosphate, and potassium sulfate sources (200, 100, and 150 kg ha-1). In addition, four levels of vermicompost considering as the second factor: no vermicompost (control), 5, 10, and 15 t ha-1. Input data sets such as fruit yield and nitrogen, phosphorus, and potassium levels in the seeds, fruits, leaves, and roots are used to calibrate the probabilistic model of SP using SVR. Results: According to the results, when the data sets of the nitrogen, phosphorus, and potassium in the fruit uses as input, the accuracy of these models was higher than 80.0% (R2 = 0.807 for predicting fruit nitrogen; R2 = 0.999 for fruit phosphorus; R2 = 0.968 for fruit potassium). Also, the results of the prediction models in response to soil elements showed that the soil nitrogen content ranged from 0.05 to 1.1%, soil phosphorus from 10 to 59 mg kg-1, and soil potassium from 180 to 320 mg kg-1, which offers a suitable macro-nutrient content in the soil. Likewise, the best fruit nitrogen content ranged from 1.27 to 4.33%, fruit phosphorus from 15.74 to 26.19%, fruit potassium from 15.19 to 19.67%, and fruit yield from 2.16 to 5.95 kg per plant obtained under NPK chemical fertilizers and using 15 t ha-1 of vermicompost. Conclusions: Because the fruit values had the highest contribution in prediction than observed values, thus identified as the best plant organs in response to soil elements. Based on our findings, the importance of fruit phosphorus identifies as a determinant that strongly influenced melon prediction models. More significant values of soil elements do not affect increasing fruit yield and macro-nutrient content in plant organs, and excessive application may not be economical. Therefore, our studies provide an efficient approach with potentially high accuracy to estimate fruit yield and macro-nutrient in the fruits of Cucumis melo in response to soil elements and cause a saving in the amount of fertilizer during the growing season.


Asunto(s)
Cucumis melo , Suelo , Animales , Ovinos , Suelo/química , Fertilizantes/análisis , Estiércol , Nutrientes , Fósforo , Nitrógeno/análisis , Potasio/análisis
3.
Nutrients ; 15(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37571229

RESUMEN

This study investigated the anti-obesity effects of Cucumis melo var. gaettongchamoe (CG) in mice fed a high-fat diet (HFD). The mice received CG water extract (CGWE) treatment for 8 weeks, and changes in body weight and serum lipid levels were analyzed. The HFD + vehicle group showed a significant increase in body weight compared to the control group, while the HFD + CGWE and HFD + positive (orlistat) groups exhibited reduced body weight. Lipid profile analysis revealed lower levels of total cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein cholesterol in the HFD + CGWE group compared to the HFD + vehicle group. The HFD + vehicle group had increased abdominal fat weight and fat content, whereas both HFD + CGWE groups showed significant reductions in abdominal fat content and adipocyte size. Additionally, CGWE administration downregulated mRNA expression of key proteins involved in neutral lipid metabolism. CGWE also promoted hepatic lipolysis, reducing lipid droplet accumulation in hepatic tissue and altering neutral lipid metabolism protein expression. Furthermore, CGWE treatment reduced inflammatory mediators and suppressed the activation of the mitogen-activated protein kinase pathway in hepatic tissue. In conclusion, CGWE shows promise as a therapeutic intervention for obesity and associated metabolic dysregulation, including alterations in body weight, serum lipid profiles, adipose tissue accumulation, hepatic lipolysis, and the inflammatory response. CGWE may serve as a potential natural anti-obesity agent.


Asunto(s)
Adiposidad , Cucumis melo , Animales , Ratones , Ratones Obesos , Dieta Alta en Grasa/efectos adversos , Extractos Vegetales/uso terapéutico , Obesidad/tratamiento farmacológico , Obesidad/etiología , Aumento de Peso , Hígado/metabolismo , Peso Corporal , Metabolismo de los Lípidos , Triglicéridos , Colesterol , Ratones Endogámicos C57BL
4.
Molecules ; 28(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37446657

RESUMEN

In this study, silver nanoparticles were synthesized using Cucumis melo L. leaf extract via a green synthesis approach and their potential against diabetes and coccidiosis was tested under in vitro conditions. The phytochemical components in the leaf extract reacted with silver nitrate in solution and yielded C. melo-silver nanoparticles (Cm-AgNPs). The synthesis of AgNPs was confirmed via UV-visible spectroscopy by obtaining a peak at 440 nm. The nanoparticles were characterized by their morphology, crystallinity, and the presence of functional groups. In vitro α-amylase and α-glucosidase inhibition assays were carried out at different concentrations in the range of 20 to 100 µg/mL of Cm-AgNPs. The Cm-AgNPs exhibited enzyme inhibitory activity in a concentration-dependent manner. As the concentration of Cm-AgNPs increased the inhibitory activities were also increased linearly and the highest inhibition was observed at 100 µg/mL. The effectiveness of Cm-AgNPs against Eimeria tenalla was assessed by an in vitro 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay using Madin-Darby bovine kidney (MDBK) cell lines. The results revealed that the viability of the oocysts and further sporulation were decreased with the increased concentration of Cm-AgNPs. The AgNPs synthesized from the C. melo leaf extract have shown promising potential against diabetes and coccidiosis, and they could be used in biomedical applications.


Asunto(s)
Coccidiosis , Cucumis melo , Nanopartículas del Metal , Animales , Bovinos , Humanos , Nanopartículas del Metal/química , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Plata/farmacología
5.
Urolithiasis ; 51(1): 45, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36881140

RESUMEN

Melon seed extracts have high antioxidant activities and are effective against a variety of diseases, including kidney stones. In kidney stone model rats, the anti-urolithiatic effects of the hydro-ethanolic extract of melon seed and potassium citrate were studied and compared. After urolithiasis induction by ethylene glycol, the extract and potassium citrate were treated orally for 38 days concurrent with ethylene glycol. Then, urine and kidney sampling were done, and the urinary parameter levels were measured. The melon and potassium citrate treatments reduced the kidney index, the levels of urinary calcium and oxalate, calcium oxalate deposit numbers, the score of crystal deposits, histo-pathological damages, and the score of inflammation in the kidney sections, while elevating the urinary pH, magnesium, and citrate levels, and also the expression of the UMOD, spp1, and reg1 genes in the kidney of treated animals. The effect of potassium citrate is the same as the effect of melon in treated animals. So, their effects could be by normalizing urinary parameters, reducing crystal deposits, excreting small deposits from the kidney, reducing the chance of them being retained in the urinary tract, and elevating the expression of the UMOD, spp1, and reg1 genes, which are involved in kidney stone formation.


Asunto(s)
Cucumis melo , Cálculos Renales , Masculino , Animales , Ratas , Citrato de Potasio , Cálculos Renales/tratamiento farmacológico , Glicoles de Etileno , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Uromodulina
6.
PeerJ ; 11: e14932, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36883060

RESUMEN

Background: Vine decline disease caused by the fungus Monosporascus cannonballus, is a threat to melon production (Cucumis melo L.) worldwide. Nonetheless, little is known about the metabolites produced during the host pathogen interaction. Thus, the objective of this study was to measure quantities of amino acids produced over time during such an interaction. Methods: Two melon genotypes named TAM-Uvalde (susceptible) and USDA PI 124104 (resistant) were grown and inoculated with M. cannonballus. The metabolites previously stated were measured before inoculation (0 hours) and 24, 48 and 72 hours after inoculation, using high performance liquid chromatography analysis. Results: The production of some amino acids during the interaction of the resistant and susceptible melon genotypes with the fungus M. cannonballus was different regarding quantities over time. Interestingly, hydroxy proline was always up-regulated in higher quantities in response to pathogen infection in the genotype TAM-Uvalde. Also, the up-regulation in higher quantities of gamma-aminobutyric acid in the genotype TAM-Uvalde 48 and 72 hours after inoculation, suggests more penetration of the pathogen in its roots. Hence, taken together, hydroxy proline and gamma-aminobutyric acid levels could be used as markers of susceptibility to vine decline disease caused by M. cannonballus, which could be useful in developing resistant varieties.


Asunto(s)
Antifibrinolíticos , Ascomicetos , Cucumis melo , Esencias Florales , Prolina , Ácido gamma-Aminobutírico , Aminoácidos
7.
Pak J Pharm Sci ; 36(1): 223-229, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36967516

RESUMEN

Major depressive disorders such as anxiety and depression is predominantly developed in the modern era due to stressful lifestyle and now become the second leading cause of disability. The purpose of the current investigation to evaluate and compared the neuropharmacological effects of three different varaities of Cucurbitaceae seeds including Cucumis Melo var. flexuosus, Cucumis melo var. reticulatus and Santa claus melons ethanol seed extract in experimental animals at three different doses, i.e. 25, 50 and 100mg/kg in animals after 60 days of oral administration. Afterward, various neuropharphamcological activities such as general behavior, phenobarbitone induced sleeping time and exploratory behavior (Elevated plus-maze and head dip test) and motor coordination by Rotarod test were assessed and compared with the control group. The extracts producing dose depended effects on central nervous system. The general behavior profile revealed significant depression at maximum doses. At maximum dose 100mg/kg of Cucumis reticulatus and Santa Claus, seed extracts significantly increases the number of entries in open arms. On the other hand, the Cucumis flexuosus seed extract significantly increases the frequency of numbers of head dips in mice. However, the lower doses of the extracts showed less significant results. The results suggested that all extracts at maximum doses produces anxiolytic effects without affecting the motor coordination in animals.


Asunto(s)
Ansiolíticos , Cucumis melo , Trastorno Depresivo Mayor , Ratones , Animales , Extractos Vegetales/farmacología , Ansiolíticos/farmacología , Semillas , Etanol/farmacología , Conducta Animal
8.
Comput Biol Med ; 155: 106596, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773554

RESUMEN

BACKGROUND: In addition to the nutritional benefits of Cucumis melo L., herbalists in Pakistan and India employ seeds to treat various ailments. This study aimed to determine the regulatory role of C. melo seeds in calcium-mediated smooth muscle contraction. METHODS: We identified and quantified the phytochemicals of C. melo with LC ESI-MS/MS and HPLC, then conducted in vitro and in vivo tests to confirm the involvement in smooth muscle relaxation. Then, diarrhea-predominant irritable bowel syndrome gene datasets from NCBI GEO were acquired, DEGs and WGCNA followed by functional enrichment analysis. Next, molecular docking of key genes was performed. RESULTS: The quantification of C. melo seeds revealed concentrations of rutin, kaempferol, and quercetin were 702.38 µg/g, 686.29 µg/g, and 658.41 µg/g, respectively. In vitro experiments revealed that C. melo seeds had a dose-dependent relaxant effect for potassium chloride (80 mM)-induced spastic contraction and exhibited calcium antagonistic response in calcium dose-response curves. In in vivo studies, Cm.EtOH exhibited antidiarrheal, antiperistaltic, and antisecretory effects. The functional enrichment of WGCNA and DEGs IBS-associated pathogenic genes, including those involved in calcium-mediated signaling, MAPK cascade, and inflammatory responses. MAPK1 and PIK3CG were identified as key genes with greater binding affinity with rutin, quercitrin, and kaempferol in molecular docking. CONCLUSIONS: The bronchodilator and antidiarrheal effects of C. melo were produced by altering the regulatory genes of calcium-mediated smooth contraction.


Asunto(s)
Cucumis melo , Extractos Vegetales , Humanos , Extractos Vegetales/farmacología , Cucumis melo/química , Quempferoles/análisis , Antidiarreicos/análisis , Espectrometría de Masas en Tándem , Calcio , Señalización del Calcio , Simulación del Acoplamiento Molecular , Semillas/química , Espasmo , Rutina/análisis
9.
J Sci Food Agric ; 103(4): 1644-1650, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36418190

RESUMEN

BACKGROUND: Sweet melon (Cucumis melo) seed is generally considered as agro-waste, however, the current study aimed to use this waste as a valuable oil source. The seed oil extracted by two different extraction techniques (cold press and solvent extraction) was investigated for its anti-hyperlipidemic potential. Hyperlipidemic rabbits were fed on the diet supplemented with sweet melon seed oil for 6 weeks (42 days) and thoroughly examined for the change in their lipid profile. RESULTS: The blood lipid profile indicated a significant decrease in total cholesterol triglyceride and low-density lipoprotein (LDL) contents of blood in hyperlipidemic rabbits fed on the diet supplemented with sweet melon seed oils while high-density lipoprotein (HDL) contents showed a noteworthy increase during the study period. CONCLUSION: Cucumis melo seed oil can be used to control hyperlipidemia without restricting the intake of lipids in diet. Solvent extraction provided better results regarding extraction yield and product functionality than cold press method. © 2022 Society of Chemical Industry.


Asunto(s)
Cucumis melo , Animales , Conejos , Cucumis melo/química , Semillas/química , Lípidos , Aceites de Plantas/análisis , Solventes
10.
Food Chem ; 402: 134229, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36182778

RESUMEN

Multi-microscopy techniques and Fourier transform infrared (FT-IR) spectroscopy were used in this study to investigate the intrinsic causes leading to fruit texture difference between two cultivars of oriental melon 'HDB' (crisp) and 'HPM' (mealy). On the histological aspect, orderly arranged regular-shaped cells with tissue natural fracture pattern showed cell rupture in 'HDB' versus loosely arranged irregular-shaped cells with tissue natural fracture pattern showed cell-to-cell separation in 'HPM' of sarcocarp are histological causes for crisp and mealy fruit texture, respectively. On the biochemical aspect, FT-IR spectra (4000-850 cm-1) of sarcocarp tissue cell wall materials (CWM) happened a dramatic change at the mature stage in 'HPM', but not in 'HDB'. Insightly, the lower de-methyl-esterified homogalacturonan (HG) abundance with higher water-soluble pectin (WSP) ratio and lower hemicellulose (HC) content contribute a poor intercellular adhesion in 'HPM' middle lamella (ML) at the mature stage compared to 'HDB'.


Asunto(s)
Cucumis melo , Cucumis melo/química , Frutas/química , Espectroscopía Infrarroja por Transformada de Fourier , Microscopía , Pectinas/química , Agua/análisis
11.
Molecules ; 29(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38202721

RESUMEN

Fungal diseases have always been a major problem for cantaloupe crops; however, synthetic fungicides are hazardous to humans and the environment. Consequently, a feasible alternative to fungicides without side effects could be by using bio agents and naturally occurring plants with antibacterial potential. This study has achieved a novel procedure for managing wilt and root rot diseases by potentially using Trichoderma sp. culture filtrates in consortium with plant extract of Calotropis procera, Rhizoctonia solani, Fusarium oxysporum, and Pythium ultimum, which were isolated from infected cantaloupe roots with identified root rot symptoms. The antagonistic activity of four Trichoderma isolates and analysis of antibiotics and filtrate enzymes of the most active Trichoderma isolate were determined as well as phytochemical analysis of C. procera plant extract using HPLC-UV. The obtained results showed that all Trichoderma isolates considerably lowered the radial growth of P. ultimum, R. solani, and F. oxysporum in varying degrees. The scanning electron micrographs illustrate the mycoparasitic nature of Trichoderma sp. on F. oxysporum. The phytochemical analysis of C. procera indicated that phenolic contents were the major compounds found in extracts, such as vanillin (46.79%), chlorogenic acid (30.24%), gallic acid (8.06%), and daidzein (3.45%) but including only a low amount of the flavonoid compounds rutin, naringenin, and hesperetin. The Pot experiment's findings showed that cantaloupe was best protected against wilting and root rot diseases when it was treated with both Trichoderma sp. culture filtrates (10%) and C. procera extract of (15 mg/mL), both alone and in combination. This study demonstrates that the application of bio agent Trichoderma spp. filtrate with C. procera phenol extract appears useful for controlling wilting and root rot disease in cantaloupe. This innovative approach could be used as an alternative to chemical fungicide for the control of wilting and rot root diseases.


Asunto(s)
Calotropis , Cucumis melo , Porcelana Dental , Fungicidas Industriales , Aleaciones de Cerámica y Metal , Titanio , Trichoderma , Humanos , Polifenoles , Fenoles/farmacología , Antibacterianos , Fitoquímicos , Extractos Vegetales/farmacología
12.
BMC Complement Med Ther ; 22(1): 334, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539762

RESUMEN

BACKGROUND: Cucumis melon is a medicinal plant with multiple pharmacological properties such as anti-inflammatory, antioxidant, and diuretic effects. An increasing body of scientific evidence established the anti-diabetic/anti-obesity effects of Cucumis melo in humans, mice, and hamster models. However, there are no tangible reports on its ability to prevent cardiovascular complications following diet-induced obesity. The anti-atherogenic and cardioprotective effects of the Methanolic extract of Cucumis melo. L. Inodorus seeds on a high-fat diet (HFD)-induced obese rats was assessed in this study.  METHODS: Forty male Wistar rats were randomly divided into five groups, (n = 8/group); i.e., Normal (N), HFD, HFD + 50 mg/kg b.w. of MCMs (Methanolic extract of Cucumis melon seeds), HFD + 100 mg/Kg b.w. of MCMs and HFD + 200 mg/kg b.w. of MCMs. The experimental animals were anaesthetized and sacrificed after 10 weeks, and blood samples and heart tissue were collected for further analysis. Using the Graph Pad Prism version 5.0, the results expressed as Mean ± SD was tested using the one-way ANOVA to show intergroup differences, followed by Bonferonni 's post hoc test. The level of significance was determined at P ≤ 0.05. RESULTS: MCMs significantly (P < 0.05) reduced body weight, adiposity index, total fat mass, low-density lipoprotein cholesterol (LDL-c), and total cholesterol (TC) compared with the HFD obese groups MCMs caused a significant reduction in the body weight, total fat mass, adiposity index, low-density lipoprotein cholesterol (LDL-c), and total cholesterol (TC) when compared to the animals in HFD obese groups. Also, the Atherogenic index of plasma (AIP), Castelli index and, malondialdehyde (MDA) significantly (P < 0.05) decreased in MCMs treated groups compared to the HFD obese group. The catalase, protein, and HDL levels were significantly increased in MCMs treated groups compared to HFD-obese animals. Expression of nitric oxide in the form of nitrite in the heart tissue significantly increased in the MCMs treated compared to the HFD-obese rats, with the majority of the positive results recorded at 100 mg/Kg b.w. of MCMs. CONCLUSIONS: MCMs have anti-atherogenic and Cardio-protective properties on High Fat Diet-Induced Obesity in Male rats via an antioxidant and nitric oxide-dependent mechanism. Further study is recommended to evaluate the molecular mechanisms to which these anti-atherogenic and cardio-protective actions can be attributed and exploit the GCMS result in the development of drug candidates.


Asunto(s)
Cucumis melo , Cucurbitaceae , Humanos , Ratas , Ratones , Animales , Ratas Wistar , Dieta Alta en Grasa/efectos adversos , Antioxidantes/uso terapéutico , LDL-Colesterol , Óxido Nítrico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Peso Corporal , Semillas
13.
Pak J Biol Sci ; 25(7): 619-626, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36098168

RESUMEN

<b>Background and Objective:</b> There is ample evidence that the consumption of fruits and vegetables, with a high content of secondary metabolites, favours better human health. In the same sense, the application of organic fertilizers has favoured the content of phenolic compounds and a greater antioxidant capacity in various crops. Factoring that the application of Vermicompost (VC) increases the nutritional quality of plants. This research determined the content of soluble solids, biochemical components and the antioxidant capacity of the melon fruits (<i>Cucumis melo</i> L.) developed under shade net conditions with VC as a source of fertilization. <b>Materials and Methods:</b> During the 2020 spring-summer season, a hybrid melon Honeydew type was grown under five mixtures of VC: River sand (RS), with ratios 0:1, 1:1, 1:2, 1:3 and 1:4. Nutrient Steiner solution was applied only in the first mixture (control) while VC was used as an organic nutrient for all other mixtures. The five formulated mixtures, with five replications, were randomly distributed. The total phenolic content, total flavonoids, antioxidant capacity and the total soluble solids of the melon fruit were determined. Data obtained were statistically analyzed by analysis of variance and means were compared by Tukey 0.05 test. <b>Results:</b> The ANOVA indicates that no statistical differences were registered for any of the variables under study, however, the levels of the parameters were high. <b>Conclusion:</b> VC treatment of melon fruit is proven to be a promising source of nutrients to plants increasing their natural antioxidants and content of soluble solids.


Asunto(s)
Cucumis melo , Cucurbitaceae , Antioxidantes/química , Cucurbitaceae/química , Suplementos Dietéticos/análisis , Humanos , Fenoles/química , Ríos , Arena
14.
Chem Biodivers ; 19(9): e202200200, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35950335

RESUMEN

Diabetes mellitus is a typical life threatening of disease, which generate due to the dysfunction of ß cells of pancreas. In 2014, WHO stated that 422 million people were infected with DM. The current pattern of management of diabetes included synthetic or plant based oral hypoglycemic drugs and insulin but drug resentence is become a very big issues in antidiabetic therapy. Thus, it's very earnest to discover now medication for this disease. Now the days, it is well acknowledged that diabetic patients are more prone towards covid and related complications. Thus, medical practitioners reformed the methodology of prescribing medication for covid infected antidiabetic therapy and encouraging the medication contains dual pharmacological properties. It is also well know that polyphenols specifically hold a significant role in oxidative stress and reduced the severity of many inflammatory diseases. Cucumis melo has rich history as ethano-pharmacological use in Indian subcontinent. The fruit and seed are well-known for the treatment of various diseases due to the presence of phenolics. Therefore, in this study, the combined mixture of flower and seeds were used for the extraction of polyphenolic rich extract and tested for antidiabetic activity through the antioxidant and in vivo experiments. The antioxidant potential measurement exhibited that the selected plant extract has the significant competence to down-regulate oxidative stress (DPPH scavenging IC50 at 60.7±1.05 µg/mL, ABTS IC50 at 62.15±0.50 µg/mL). Furthermore, the major polyphenolic phyto-compounds derived from the Cucumis melo were used for in silico anticovid activity, docking, and complementarity studies. The anticovid activity prognosis reflected that selected phyto-compounds amentoflavone and vanillic acid have optimal possibility to interact with 3C-like protease and through this moderate anticovid activity can be exhibit. The docking experiments established that the selected compounds have propensity to interact with protein tyrosine phosphatase 1B, 11ß-Hydroxysteroid dehydrogenase, superoxide dismutase, glutathione peroxidase, and catalase ß-glucuronidase receptor. In vivo experiments showed that 500 mg/kg, Cucumis melo extract ominously amplified body weight, plasma insulin, high-density lipoprotein levels, and biochemical markers. Furthermore, extract significantly downregulate the blood glucose, total cholesterol, triglycerides, low-density lipoprotein, and very low-density lipoprotein.


Asunto(s)
COVID-19 , Cucumis melo , Diabetes Mellitus Experimental , Momordica , 11-beta-Hidroxiesteroide Deshidrogenasas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Biomarcadores , Glucemia , Catalasa/metabolismo , Colesterol , Cucumis melo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucuronidasa , Glutatión Peroxidasa/metabolismo , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina , Lipoproteínas HDL/uso terapéutico , Lipoproteínas LDL/uso terapéutico , Momordica/metabolismo , Péptido Hidrolasas , Extractos Vegetales/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Superóxido Dismutasa/metabolismo , Triglicéridos , Ácido Vanílico
15.
Ecotoxicol Environ Saf ; 241: 113777, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35738099

RESUMEN

Pesticides are widely used in melon production causing safety issues around the consumption of melon and increasing pathogen and insect tolerance to pesticides. This study investigated whether a nano-selenium (Nano-Se) spray treatment can improve resistance to biological stress in melon plants, reducing the need for pesticides, and how this mechanism is activated. To achieve this, we examine the ultrastructure and physio-biochemical responses of two melon cultivars after foliar spraying with Nano-Se. Nano-Se treatment reduced plastoglobulins in leaf mesophyll cells, thylakoid films were left intact, and compound starch granules increased. Nano-Se treatment also increased root mitochondria and left nucleoli intact. Nano-Se treatment enhanced ascorbate peroxidase, peroxidase, phenylalanine ammonia lyase, ß-1,3-glucanase, chitinase activities and their mRNA levels in treated melon plants compared to control plants (without Nano-Se treatments). Exogenous application of Nano-Se improved fructose, glucose, galactitol, stachyose, lactic acid, tartaric acid, fumaric acid, malic acid and succinic acid in treated plants compared to control plants. In addition, Nano-Se treatment enhanced cucurbitacin B and up-regulated eight cucurbitacin B synthesis-related genes. We conclude that Nano-Se treatment of melon plants triggered antioxidant capacity, photosynthesis, organic acids, and up-regulated cucurbitacin B synthesis-related genes, which plays a comprehensive role in stress resistance in melon plants.


Asunto(s)
Cucumis melo , Cucurbitaceae , Plaguicidas , Selenio , Antioxidantes/farmacología , Cucumis melo/genética , Triterpenos
16.
Molecules ; 27(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35566265

RESUMEN

Muskmelon pedicel is the fruit stalk of muskmelon and one of the traditional Chinese medicines, which can be used to treat jaundice, diabetes and neuropathy. However, in recent years, agricultural soil heavy metal cadmium (Cd) pollution has become serious, coupled with the imperfect sales management of herbal medicine, increasing the potential health risk of contaminated herbal medicine in the human body. In this paper, the comprehensive quality of contaminated muskmelon was tested. The results showed that Cd stress significantly inhibited the growth of muskmelon plants, reduced the anthocyanin and chlorophyll contents, and increased the fruit size and sweetness of muskmelon. In addition, heavy metal Cd can also cause oxidative stress in plants, resulting in a series of changes in antioxidant enzyme activities. In the experimental group, the content of polyphenols and saponins increased by 27.02% and 23.92%, respectively, after high-concentration Cd treatment, which may be a mechanism of plant resistance to stress. This paper reveals that the content of bioactive substances in Chinese herbal medicine is high, but the harm in heavy metals cannot be underestimated, which should be paid attention to by relevant departments.


Asunto(s)
Cucumis melo , Contaminantes del Suelo , Agricultura , Antioxidantes/farmacología , Cadmio/química , Clorofila/farmacología , Frutas/química , Humanos , Suelo/química , Contaminantes del Suelo/toxicidad
17.
Environ Pollut ; 307: 119413, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35525515

RESUMEN

Current research reveals the positive role of iron oxide nanoparticles (IONPs) and selenium (Se) in extenuation of arsenic (As) induced toxicity in Cucumis melo. C. melo plants grown in As spiked soil (20 mg kg-1 As) showed reduced growth, chlorophyll (Chl) content, photosynthetic rate, stomatal conductivity and transpiration. On the other hand, the alone applications of IONPs or Se improved growth and physiochemical parameters of C. melo plants. Additionally, exogenous application IONPs and Se synergistically improved the activity of antioxidative enzymes and glyoxalase system in C. melo plants. In addition, the collective treatment of IONPs and Se reduced As uptake, enhanced rate of photosynthesis and increased gas exchange attributes of C. melo plants under As stress. Interactive effect of IONPs and Se regulated reduced glutathione (GSH), oxidized glutathione (GSSG) and ascorbate (AsA) content in C. melo plants exposed to As-contaminated Soil. IONPs and Se treatment also regulated expression of respiratory burst oxidase homologue D (RBOHD) gene, chlorophyll synthase (CHLG) and protochlorophyllide oxidoreductase (POR). Therefore, the combined treatment of IONPs and Se may enhance the growth of crop plants by alleviating As stress.


Asunto(s)
Arsénico , Cucumis melo , Selenio , Antioxidantes/metabolismo , Arsénico/toxicidad , Clorofila/metabolismo , Suplementos Dietéticos , Expresión Génica , Glutatión/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro , Estrés Oxidativo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fotosíntesis , Protoclorofilida/farmacología , Selenio/farmacología , Suelo
18.
PeerJ ; 10: e13088, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35287348

RESUMEN

Melon (Cucumis melo L.) is an agronomically important vegetable. Most cultivars of melon are andromonoecious and bisexual flowers only emerged from the leaf axil of lateral branches. However, the regulatory mechanism contributing to the occurrence of bisexual flowers were still obscure. In this study, ethephon was applied in two common cultivars of melon. In control without ethephon treatment, no bisexual flower was made in the main stem. However, 6.56 ± 1.42 and 6.63 ± 0.55 bisexual flowers were respectively induced in main stem of 'Yangjiaocui-QX' and 'Lvbao' after ethephon treatment, and induced bisexual flowers distributed in 12-20 nodes of main stem. During the formation of bisexual flowers, 41 metabolites were significantly up-regulated and 98 metabolites were significantly down-regulated. According to the KEGG enrichment analysis of 139 different metabolites, a total of 30 pathways were mapped and KEGG terms of "Phenylalanine, tyrosine and tryptophan biosynthesis", "Phenylalanine metabolism" and "Flavone and flavonol biosynthesis" were significantly enriched. In three significantly enriched KEGG terms, shikimic acid, L-tryptophan, L-phenylalanine, and kaempferol were significantly up-regulated while L-tyrosine, 4-hydroxycinnami acid and luteolin were significantly down-regulated in ET compared to CK. Different metabolites were also classified depend on major class features and 14 classes were acquired. The results of metabonomics and endogenous hormone identification indicated that ethylene could enhance the concentration of salicylic acid, methyl jasmonate, ABA and IAA. This study provided an important theoretical foundation for inducing bisexual flowers in main stem and breeding new varieties of melon in future.


Asunto(s)
Cucumis melo , Cucurbitaceae , Fitomejoramiento , Flores , Fenilalanina
19.
Appl Biochem Biotechnol ; 194(1): 368-381, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34792748

RESUMEN

Biosynthesized silver nanoparticles have a wide range of biological activities and using nanoparticles as one of the novel approaches in cancer therapy. In this present research work, the anti-cancer efficacy of Cucumis melo fruit extract and its silver nanoparticles was explored. Wistar rats were divided into six groups and hepatic cancer was induced with 0.01% DEN (diethylnitrosamine) through drinking water for 16 weeks. Cyclophosphamide was given as the standard drug at the dose of 50 mg/kg body weight. Hematological parameters showed a decrease in the levels of hemoglobin (Hb), packed cell volume (PCV), red blood cells (RBC), mean corpuscular volume (MCV), mean corpuscular Hb (MCH), mean corpuscular Hb concentration (MCHC), and platelets (PLTS) levels except white blood cell (WBC) in DEN-induced cancer animals. Significant alterations in the hematological parameters were observed after treatment which indicate the protective effect of Cucumis melo fruit on the hemopoietic system. The structural integrity of the cells has been damaged in cancer-induced animals, and this results in cytoplasmic leakage of enzyme into the blood stream, leads to the elevated levels of these enzymes in blood with subsequent fall in the tissues. Hence, the levels of liver function markers such as AST ALT, ALP, LDH, GGT, and 5'NT were significantly elevated in serum and the liver of cancer-induced rats. The levels of serum tumor markers, viz., alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA), elevated in rats induced with DEN, which then were reduced following Cucumis melo fruit treatment, indicating the anti-cancer activity of the drug. Histological evaluation of the liver and kidney was also performed to authenticate the present work. Treatment with crude extract and silver nanoparticles of Cucumis melo fruit indicates that Cucumis melo fruit could have exerted its protective effect.


Asunto(s)
Carcinoma Hepatocelular , Cucumis melo/química , Dietilnitrosamina/toxicidad , Frutas/química , Neoplasias Hepáticas Experimentales , Nanopartículas del Metal , Extractos Vegetales/química , Plata , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/metabolismo , Masculino , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Ratas , Ratas Wistar , Plata/química , Plata/farmacología
20.
Pak J Pharm Sci ; 34(3(Supplementary)): 1171-1178, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34602448

RESUMEN

To evaluate in-vivo antioxidant potential of fruit mucilage from Cucumis melo variety momordica (PM) and variety agrestis (KM) using rats as experimental animals, the fruits were collected, identified, dried and pulverized. Mucilages were isolated from the fruit powders by microwave-assisted method. Aqueous extracts obtained were filtered to remove fruit pulp. Each filtrate was centrifuged at 4000xg rpm for 15 min. Each supernatant was precipitated with 3 volumes of 95% ethanol and maintained overnight at 4°C. These precipitates were filtered and lyophilized. In vivo antioxidant activity was determined using rats for 14 days. Paracetamol (75mg/Kg, i.p.) for inducing oxidative stress and Vitamin C & Vitamin E (200mg/Kg each, p.o.) as standard treatment were used. PM and KM were given in 500mg/Kg and 1000mg/Kg, p.o. doses in separate groups. SOD, MDA, GSH and CAT levels were estimated in organs (liver, kidney, heart, brain) of all groups using standard procedures. Toxic control showed prominent toxicity in the liver. The levels of GSH, CAT and SOD were raised and MDA levels were reduced in all organs of test and standard groups. The levels of antioxidant biomarkers varied in all remaining groups. The overall results are significant suggesting strong antioxidant potential of PM and KM.


Asunto(s)
Antioxidantes/farmacología , Cucumis melo , Frutas , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Catalasa/efectos de los fármacos , Catalasa/metabolismo , Glutatión/efectos de los fármacos , Glutatión/metabolismo , Corazón/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Malondialdehído/metabolismo , Ratas , Superóxido Dismutasa/efectos de los fármacos , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA