Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 5147, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429352

RESUMEN

Rice husk, an agricultural waste from the rice industry, can cause serious environmental pollution if not properly managed. However, rice husk ash (RHA) has been found to have many positive properties, making it a potential replacement for non-renewable peat in soilless planting. Thus, this study investigated the impact of a RHA composite substrate on the growth, photosynthetic parameters, and fruit quality of cucumber (Yuyi longxiang variety) and melon (Yutian yangjiaomi variety). The RHA, peat, vermiculite, and perlite were blended in varying proportions, with the conventional seedling substrate (peat:vermiculite:perlite = 1:1:1 volume ratio) serving as the control (CK). All plants were cultivated in barrels filled with 10L of the mixed substrates. The results from this study found that RHA 40 (RHA:peat:vermiculite:perlite = 4:4:1:1 volume ratio) significantly enhanced substrate ventilation and positively influenced the stem diameter, root activity, seedling index, chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) of cucumber and melon plants. Additionally, plant planted using RHA 40, the individual fruit weight of cucumber and melon found to increase by 34.62% and 21.67%, respectively, as compared to the control. Aside from that, both cucumber and melon fruits had significantly higher sucrose, total soluble sugar, vitamin C, and soluble protein levels. This subsequently improved the activity of sucrose synthase and sucrose phosphate synthase in both cucumber and melon. In conclusion, the RHA 40 found to best promote cucumber and melon plant growth, increase plant leaf photosynthesis, and improve cucumber and melon fruit quality, making it a suitable substrate formula for cucumber and melon cultivation in place of peat.


Asunto(s)
Óxido de Aluminio , Silicatos de Aluminio , Cucumis sativus , Cucurbitaceae , Oryza , Dióxido de Silicio , Carbohidratos de la Dieta , Suelo
2.
PLoS One ; 19(2): e0298514, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38408078

RESUMEN

The use of fungicides to manage disease has led to multiple environmental externalities, including resistance development, pollution, and non-target mortality. Growers have limited options as legacy chemistry is withdrawn from the market. Moreover, fungicides are generally labeled for traditional soil-based production, and not for liquid culture systems. Biocontrol agents for disease management are a more sustainable and environmentally friendly alternative to conventional agroprotectants. Pythium ultimum is a soil borne oomycete plant pathogen with a broad taxonomic host range exceeding 300 plants. Cucumber seedlings exposed to P. ultimum 1 day after a protective inoculation with bacterial endophyte accession IALR1619 (Pseudomonas sp.) recorded 59% survival; with the control assessed at 18%. When the pathogen was added 5 days post endophyte inoculation, 74% of the seedlings treated survived, compared to 36% of the control, indicating a longer-term effect of IALR1619. Under hydroponic conditions, IALR1619 treated leaf type lettuce cv. 'Cristabel' and Romaine cv. 'Red Rosie' showed 29% and 42% higher shoot fresh weight compared to their controls, respectively. Similar results with less growth decline were observed for a repeat experiment with IALR1619. Additionally, an experiment on hydroponic lettuce in pots with perlite was carried out with a mixture of P. ultimum and P. dissotocum after IALR1619 inoculation. The endophyte treated 'Cristabel' showed fresh weight gain, but the second cultivar 'Pensacola' yielded no increase. In summary, the endophyte IALR1619 provided short term as well as medium-term protection against Pythium blight in cucumber seedlings and may be used as an alternative to conventional fungicides in a greenhouse setting. This study also demonstrated the potential of ALR1619 as a biocontrol agent against Pythium blight in hydroponic lettuce.


Asunto(s)
Cucumis sativus , Fungicidas Industriales , Pythium , Pseudomonas , Cucumis sativus/microbiología , Lactuca , Hidroponía , Plantones , Plantas , Suelo , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
3.
BMC Plant Biol ; 24(1): 24, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38166490

RESUMEN

BACKGROUND: Salinity stress is a major limiting factor for plant growth, particularly in arid and semi-arid environments. To mitigate the detrimental effects of salinity stress on vegetable production, selenium (Se) biofortification and grafting onto tolerant rootstocks have emerged as effective and sustainable cultivation practices. This study aimed to investigate the combined effects of Se biofortification and grafting onto tolerant rootstock on the yield of cucumber grown under salinity stress greenhouse conditions. The experiment followed a completely randomized factorial design with three factors: salinity level (0, 50, and 100 mM of NaCl), foliar Se application (0, 5, and 10 mg L-1 of sodium selenate) and grafting (grafted and non-grafted plants) using pumpkin (Cucurbita maxima) as the rootstock. Each treatment was triplicated. RESULTS: The results of this study showed that Se biofortification and grafting significantly enhanced salinity tolerance in grafted cucumbers, leading to increased yield and growth. Moreover, under salinity stress conditions, Se-Biofortified plants exhibited increased leaf relative water content (RWC), proline, total soluble sugars, protein, phenol, flavonoids, and antioxidant enzymes. These findings indicate that Se contributes to the stabilization of cucumber cell membrane and the reduction of ion leakage by promoting the synthesis of protective compounds and enhancing antioxidant enzyme activity. Moreover, grafting onto pumpkin resulted in increased salinity tolerance of cucumber through reduced Na uptake and translocation to the scion. CONCLUSION: In conclusion, the results highlight the effectiveness of Se biofortification and grafting onto pumpkin in improving cucumber salinity tolerance. A sodium selenate concentration of 10 mg L-1 is suggested to enhance the salinity tolerance of grafted cucumbers. These findings provide valuable insights for the development of sustainable cultivation practices to mitigate the adverse impact of salinity stress on cucumber production in challenging environments.


Asunto(s)
Cucumis sativus , Selenio , Antioxidantes , Tolerancia a la Sal , Ácido Selénico , Biofortificación
4.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279332

RESUMEN

Pollen cells require large amounts of sugars from the anther to support their development, which is critical for plant sexual reproduction and crop yield. Sugars Will Eventually be Exported Transporters (SWEETs) have been shown to play an important role in the apoplasmic unloading of sugars from anther tissues into symplasmically isolated developing pollen cells and thereby affect the sugar supply for pollen development. However, among the 17 CsSWEET genes identified in the cucumber (Cucumis sativus L.) genome, the CsSWEET gene involved in this process has not been identified. Here, a member of the SWEET gene family, CsSWEET5a, was identified and characterized. The quantitative real-time PCR and ß-glucuronidase expression analysis revealed that CsSWEET5a is highly expressed in the anthers and pollen cells of male cucumber flowers from the microsporocyte stage (stage 9) to the mature pollen stage (stage 12). Its subcellular localization indicated that the CsSWEET5a protein is localized to the plasma membrane. The heterologous expression assays in yeast demonstrated that CsSWEET5a encodes a hexose transporter that can complement both glucose and fructose transport deficiencies. CsSWEET5a can significantly rescue the pollen viability and fertility of atsweet8 mutant Arabidopsis plants. The possible role of CsSWEET5a in supplying hexose to developing pollen cells via the apoplast is also discussed.


Asunto(s)
Arabidopsis , Cucumis sativus , Arabidopsis/genética , Arabidopsis/metabolismo , Cucumis sativus/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hexosas/metabolismo , Polen/genética , Polen/metabolismo , Saccharomyces cerevisiae/metabolismo , Fertilidad/genética , Regulación de la Expresión Génica de las Plantas
5.
Pest Manag Sci ; 80(2): 554-568, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37733166

RESUMEN

PURPOSE AND METHODS: Botrytis cinerea is the primary disease affecting cucumber production. It can be managed by applying pesticides and cultivating disease-resistant cucumber strains. However, challenges, such as drug resistance in pathogenic bacteria and changes in physiological strains, are obstacles in the effective management of B. cinerea. Nano-selenium (Nano-Se) has potential in enhancing crop resistance to biological stress, but the exact mechanism for boosting disease resistance remains unclear. Here, we used metabolomics and transcriptomics to examine how Nano-Se, as an immune activator, induces plant resistance. RESULT: Compared with the control group, the application of 10.0 mg/L Nano-Se on the cucumber plant's leaf surface resulted in increased levels of chlorophyll, catalase (10.2%), glutathione (326.6%), glutathione peroxidase (52.2%), cucurbitacin (41.40%), and metabolites associated with the phenylpropane synthesis pathway, as well as the total antioxidant capacity (21.3%). Additionally, the expression levels of jasmonic acid (14.8 times) and related synthetic genes, namely LOX (264.1%), LOX4 (224.1%), and AOC2 (309.2%), were up-regulated. A transcription analysis revealed that the CsaV3_4G002860 gene was up-regulated in the KEGG enrichment pathway in response to B. cinerea infection following the 10.0 mg/L Nano-Se treatment. DISCUSSION: In conclusion, the activation of the phenylpropane biosynthesis and branched-chain fatty acid pathways by Nano-Se promotes the accumulation of jasmonic acid and cucurbitacin in cucumber plants. This enhancement enables the plants to exhibit resistance against B. cinerea infections. Additionally, this study identified a potential candidate gene for cucumber resistance to B. cinerea induced by Nano-Se, thereby laying a theoretical foundation for further research in this area. © 2023 Society of Chemical Industry.


Asunto(s)
Cucumis sativus , Ciclopentanos , Hidroxibenzoatos , Oxilipinas , Selenio , Cucumis sativus/genética , Cucumis sativus/microbiología , Cucurbitacinas , Selenio/farmacología , Selenio/metabolismo , Botrytis/fisiología , Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas
6.
Sci Total Environ ; 912: 168792, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38000747

RESUMEN

Both microplastics and Cr(VI) potentially threaten soil and crops, but little is known about their interaction in the soil-plant system. This study investigated the effect and mechanism of polyethylene (PE), polyamide (PA), and polylactic acid (PLA) microplastics on Cr bioaccumulation and toxicity in a Cr(VI) contaminated soil-cucumber system during the lifecycle. The results show that microplastics had a greater effect on Cr accumulation in cucumber roots, stems, and leaves than in fruits. PE microplastics increased, but PA and PLA microplastics decreased the Cr accumulation in cucumber. Microplastics, especially high-dose, small, and aged microplastics, exacerbated the effects of accumulated Cr in cucumber on fresh weight and fruit yield. The nutrient contents in fruits except soluble sugars were reduced by microplastics. The random forest regression model shows that the microplastic type was the most important factor causing changes in the soil-cucumber system except for Cr(VI) addition. Under Cr(VI) and microplastic co-exposure, bacteria that could simultaneously tolerate Cr(VI) stress and degrade microplastics were enriched in the rhizosphere soil. The partial least squares path model shows that microplastics reduced the beneficial effect of the bacterial community on cucumber growth. Microplastics, especially PLA microplastics, alleviated the adverse effects of Cr(VI) stress on root metabolism.


Asunto(s)
Cromo , Cucumis sativus , Microplásticos , Plásticos , Frutas , Rizosfera , Suelo , Bacterias , Poliésteres
7.
Plant Physiol Biochem ; 206: 108263, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38100887

RESUMEN

The supply level of exogenous nitrogen has a very important influence on the growth and development of cucumber. Insufficient or excessive nitrogen application will lead to metabolic disorders in the body and affect the formation of yield. Therefore, it is of great scientific and practical significance to explore the corresponding mitigation measures. Melatonin (MT) is a multi-regulatory molecule with pleiotropic effects on plant growth and development. A large number of studies have shown that the appropriate amount of melatonin supplementation is beneficial to plant growth and development by promoting root development, delaying leaf senescence, and improving fruit yield. However, the study of MT function combined with a detailed physiological analysis of nitrogen (N) absorption and metabolism in cucumber plants needs further strengthening. We performed hydroponic tests at different nitrogen levels to determine the metabolic processes associated with the enhanced tolerance to nitrogen in melatonin-treated cucumber (Cucucumis sativus L.) seedlings. Cucumber seedlings were sprayed with 100 µM melatonin or water and treated with different nitrogen in the growth chamber for 7 days. Nitrogen deficiency significantly inhibited seedling growth, and this growth inhibition was partially alleviated by melatonin. The expression analysis of related carbon and nitrogen genes showed that the genes whose expression was significantly altered by melatonin were mainly related to carbon (C) and nitrogen (N) metabolism. By enzyme activity and reactive oxygen content data analysis, melatonin-treated cucumber seedlings showed relatively stable carbon and nitrogen levels compared to untreated ones. In conclusion, MT can repair the impaired growth and development situation by regulating the nitrogen assimilation capacity and the balance between oxidation and oxidative metabolism and carbon metabolism in the cucumber under different nitrogen levels.


Asunto(s)
Cucumis sativus , Melatonina , Plantones/metabolismo , Cucumis sativus/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo
8.
ACS Nano ; 17(23): 23442-23454, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37991776

RESUMEN

In this work, we systematically investigated how cell wall and cell wall components affect the delivery of charged carbon quantum dots (CDs, from -34 to +41 mV) to leaf cells of cucumber and Arabidopsis plants. Four different types of leaf cells in cucumber and Arabidopsis were used, i.e., protoplasts (without cell wall), isolated individual cells (cell wall hydrolyzed with pectinase), regenerated individual cells (cell wall regenerated from protoplast), and intact leaf cells (intact cell wall, in planta). Leaf cells were incubated with charged CDs (0.5 mg/mL) for 2 h. Confocal imaging results showed that protoplasts, regenerated individual cells, and leaf cells showed favored uptake of the negatively charged CDs (-34 mV) compared to the PEI (polyethylenimine) coated and positively charged carbon dots [PEI600-CDs (17 mV) and PEI10K-CDs (41 mV)], while in isolated individual cells, the trend is opposite. The results of the content of the cell wall components showed that no significant changes in the total cell wall content were found between isolated individual cells and regenerated individual cells (1.28 vs 1.11 mg/106 cells), while regenerated individual cells showed significant higher pectin content [water-soluble pectin (0.13 vs 0.06 mg/106 cells, P < 0.01), chelator-soluble pectin (0.04 vs 0.01 mg/106 cells, P < 0.01), and alkaline pectin (0.02 vs 0.01 mg/106 cells, P < 0.01)] and significant lower cellulose content (0.13 vs 0.32 mg/106 cells, P < 0.01) than the isolated individual cells. No difference of the hemicellulose content was found between isolated individual cells and regenerated individual cells (0.20 vs 0.21 mg/106 cells). Our results suggest that compared with cellulose and hemicellulose in the cell wall, the pectin is a more important factor referring to the favored uptake of negatively charged carbon dots in leaf cells. Overall, this work provides a method to study the role of cell wall components in the uptake of nanoparticles in plant cells and also points out the importance of understanding the interactions between cell barriers and nanoparticles to design nanoparticles for agricultural use.


Asunto(s)
Arabidopsis , Pared Celular , Cucumis sativus , Pectinas , Puntos Cuánticos , Arabidopsis/metabolismo , Carbono , Celulosa/metabolismo , Pectinas/metabolismo , Hojas de la Planta/metabolismo , Cucumis sativus/metabolismo
9.
Virology ; 588: 109891, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37826911

RESUMEN

Trichosanthes kirilowii has been mainly grown for use in traditional Chinese medicine. In this study, cucurbit mild mosaic virus (CuMMV) belonging to the genus Fabavirus was identified from T. kirilowii plants. CuMMV possesses a segmented, bipartite linear single-stranded RNA genome composed of RNA1 and RNA2. Sequence analysis showed that each genomic segment shares the highest sequence similarity with those of CuMMV isolated from pumpkin. A full-length infectious cDNA clone of CuMMV was further constructed and was found to induce typical symptoms in T. kirilowii, Cucumis sativus, C. melo, Citrullus lanatus, and Cucurbita pepo. The sap inoculum derived from the infectious cDNA clone of CuMMV could be mechanically transmitted and reproduce similar symptoms in the tested plants. This is the first report on the construction of a biologically active, full-length infectious cDNA clone of CuMMV, which will provide a useful tool in understanding CuMMV-encoded proteins and plant-CuMMV interactions.


Asunto(s)
Cucumis sativus , Fabavirus , Virus del Mosaico , Trichosanthes , Trichosanthes/genética , ADN Complementario/genética , Fabavirus/genética , Cucumis sativus/genética , Plantas , Virus del Mosaico/genética
10.
BMC Microbiol ; 23(1): 184, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438698

RESUMEN

BACKGROUND: The release of organic acids (OAs) is considered the main mechanism used by phosphate-solubilizing bacteria (PSB) to dissolve inorganic phosphate in soil. Nevertheless, little is known about the effect of individual OAs produced by a particular PSB in a soil-plant system. For these reasons, the present work aimed at investigating the effect of Enterobacter sp. strain 15S and the exogenous application of its OAs on (i) the solubilization of tricalcium phosphate (TCP), (ii) plant growth and (iii) P nutrition of cucumber. To this purpose two independent experiments have been performed. RESULTS: In the first experiment, carried out in vitro, the phosphate solubilizing activity of Enterobacter 15S was associated with the release of citric, fumaric, ketoglutaric, malic, and oxalic acids. In the second experiment, cucumber plants were grown in a Leonard jar system consisting of a nutrient solution supplemented with the OAs previously identified in Enterobacter 15S (jar's base) and a substrate supplemented with the insoluble TCP where cucumber plants were grown (jar's top). The use of Enterobacter 15S and its secreted OAs proved to be efficient in the in situ TCP solubilization. In particular, the enhancement of the morpho-physiological traits of P-starved cucumber plants was evident when treated with Enterobacter 15S, oxalate, or citrate. The highest accumulation of P in roots and shoots induced by such treatments further corroborated this hypothesis. CONCLUSION: In our study, the results presented suggest that organic acids released by Enterobacter 15S as well as the bacterium itself can enhance the P-acquisition by cucumber plants.


Asunto(s)
Cucumis sativus , Fosfatos de Calcio , Fosfatos , Compuestos Orgánicos , Ácido Cítrico , Enterobacter , Oxalatos
11.
J Biotechnol ; 374: 49-69, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37517677

RESUMEN

Heat-shock proteins (Hsps) are a family of proteins essential in preserving the vitality and functionality of proteins under stress conditions. Cucumber (Cucumis sativus) is a widely grown plant with high nutritional value and is used as a model organism in many studies. This study employed a genomics, transcriptomics, and metabolomics approach to investigate cucumbers' Hsps against abiotic stress conditions. Bioinformatics methods were used to identify six Hsp families in the cucumber genome and to characterize family members. Transcriptomics data from the Sequence Read Archive (SRA) database was also conducted to select CsHsp genes for further study. Real-time PCR was used to evaluate gene expression levels under different stress conditions, revealing that CssHsp-08 was a vital gene for resistance to stress conditions; including drought, salinity, cold, heat stresses, and ABA application. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of plant extracts revealed that amino acids accumulate in leaves under high temperatures and roots under drought, while sucrose accumulates in both tissues under applied most stress factors. The study provides valuable insights into the structure, organization, evolution, and expression profiles of the Hsp family and contributes to a better understanding of plant stress mechanisms. These findings have important implications for developing crops that can withstand environmental stress conditions better.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Proteínas de Choque Térmico/genética , Multiómica , Estrés Fisiológico/genética , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
12.
Environ Pollut ; 334: 122008, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37356795

RESUMEN

Crop plants face severe yield losses worldwide owing to their exposure to multiple abiotic stresses. The study described here, was conducted to comprehend the response of cucumber seedlings to drought (induced by 15% w/v polyethylene glycol 8000; PEG) and nickel (Ni) stress in presence or absence of titanium dioxide nanoparticle (nTiO2). In addition, it was also investigated how nitrogen (N) and carbohydrate metabolism, as well as the defense system, are affected by endogenous potassium (K+) and hydrogen sulfide (H2S). Cucumber seedlings were subjected to Ni stress and drought, which led to oxidative stress and triggered the defense system. Under the stress, N and carbohydrate metabolism were differentially affected. Supplementation of the stressed seedlings with nTiO2 (15 mg L-1) enhanced the activity of antioxidant enzymes, ascorbate-glutathione (AsA-GSH) system and elevated N and carbohydrates metabolism. Application of nTiO2 also enhanced the accumulation of phytochelatins and activity of the enzymes of glyoxalase system that provided additional protection against the metal and toxic methylglyoxal. Osmotic stress brought on by PEG and Ni, was countered by the increase of proline and carbohydrates levels, which helped the seedlings keep their optimal level of hydration. Application nTiO2 improved the biosynthesis of H2S and K+ retention through regulating Cys biosynthesis and H+-ATPase activity, respectively. Observed outcomes lead to the conclusion that nTiO2 maintains redox homeostasis, and normal functioning of N and carbohydrates metabolism that resulted in the protection of cucumber seedlings against drought and Ni stress. Use of 20 mM tetraethylammonium chloride (K+- channel blocker), 500 µM sodium orthovanadate (PM H+-ATPase inhibitor), and 1 mM hypotaurine (H2S scavenger) demonstrate that endogenous K+ and H2S were crucial for the nTiO2-induced modulation of plants' adaptive responses to the imposed stress.


Asunto(s)
Cucumis sativus , Sulfuro de Hidrógeno , Nanopartículas , Cucumis sativus/metabolismo , Níquel/toxicidad , Níquel/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Sequías , Nitrógeno/metabolismo , Ácido Ascórbico/metabolismo , Plantones/metabolismo , Metabolismo de los Hidratos de Carbono , Nanopartículas/toxicidad
13.
Environ Toxicol ; 38(9): 2069-2083, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37310102

RESUMEN

Despite enormous progress in modern medicine, prostate cancer (PCa) remains a major public health problem due to its high incidence and mortality. Although studies have shown in vitro antitumor effects of cucurbitacins from Cucumis sativus, the in vivo anticancer effect of the seed oil as a whole, has yet to be demonstrated. The present study evaluated the in vitro anticancer mechanisms of C. sativus (CS) seed oil and its possible chemopreventive potential on benzo(a)pyrene (BaP)-induced PCa in Wistar rat. In vitro cell growth, clone formation, cell death mechanism, cell adhesion and migration as well as expression of integrins ß-1 and ß-4 were assessed. In vivo PCa was induced in 56 male rats versus 8 normal control rats, randomized in normal (NOR) and negative (BaP) control groups which, received distilled water; the positive control group (Caso) was treated with casodex (13.5 mg/kg BW). One group received the total seed extract at the dose of 500 mg/kg BW; while the remaining three groups were treated with CS seed oil at 42.5, 85, and 170 mg/kg BW. The endpoints were: morphologically (prostate tumor weight and volume), biochemically (total protein, prostate specific antigen (PSA), oxidative stress markers such as MDA, GSH, catalase, and SOD) and histologically. As results, CS seed oil significantly and concentration-dependently reduced the DU145 prostate cancer cell growth and clone formation (optimum = 100 µg/mL). It slightly increased the number of apoptotic cells and inhibited the migration and invasion of DU145 cells, while it decreased their adhesion to immobilized collagen and fibrinogen. The expression of integrin ß-1 and ß-4 was increased in presence of 100 µg/mL CS oil. In vivo, the BaP significantly elevated the incidence of PC tumors (75%), the total protein and PSA levels, pro-inflammatory cytokines (TNF-α, IL-1, and IL-6) and MDA levels compared to NOR. CS seeds oil significantly counteracted the effect of BaP by decreasing significantly the PC incidence (12.5%), and increasing the level of antioxidant (SOD, GSH, and catalase) and anti-inflammatory cytokine IL-10 in serum. While in BaP group PCa adenocarninoma was the most representative neoplasm, rats treated with 85 and 170 mg/kg prevented it in the light of the casodex. It is conclude that CS may provide tumor suppressive effects in vitro and in vivo which makes it an interesting candidate to support the current treatment protocol.


Asunto(s)
Cucumis sativus , Cucurbitaceae , Neoplasias de la Próstata , Humanos , Masculino , Ratas , Animales , Benzo(a)pireno/toxicidad , Catalasa , Cucumis sativus/metabolismo , Antígeno Prostático Específico/uso terapéutico , Cucurbitaceae/metabolismo , Ratas Wistar , Citocinas/metabolismo , Neoplasias de la Próstata/inducido químicamente , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/prevención & control , Superóxido Dismutasa , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico
14.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1290-1296, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37236946

RESUMEN

Aiming at solving the problems of soil environment deterioration and the decline of both yield and quality caused by excessive application of chemical fertilizer, we investigated the effects of rotted corn straw on the soil environment of root zone, yield and quality of cucumber with 'Jinyou 35' cucumber as the experimental material. There were three treatments, namely, combined application of rotted corn straw and chemical fertilizer (T1, the total nitrogen fertilizer application were 450 kg N·hm-2, of which 9000 kg·hm-2 rotted corn straw was used as the subsoil fertilizer, and the rest was supplemented with chemical fertilizer), pure chemical fertilizer (T2, the total nitrogen fertilizer application was the same as T1) and no fertilization (control). The results showed that the content of soil organic matter in root zone soil in T1 treatment was much higher, but no difference between T2 treatment and the control, after two continuous plantings in one year. The concentrations of soil alkaline nitrogen, available phosphorus, available potassium of T1 and T2 in cucumber root zone were higher than that in the control. T1 treatment had lower bulk density, but markedly higher porosity and respiratory rate than T2 treatment and the control in root zone soil. The electric conductivity of T1 treatment was higher than that of the control, but significantly lower than T2 treatment. There was no significant difference in pH among the three treatments. The quantity of bacteria and actinomycetes in cucumber rhizosphere soil were the highest in T1, and the lowest in the control. However, the highest quantity of fungi was found in T2. The enzyme activities of rhizosphere soil in T1 treatment were markedly higher than those of the control, whereas those of T2 treatment were significantly lower or had no significant difference relative to the control. The cucumber root dry weight and root activity of T1 were significantly higher than that of the control. The yield of T1 treatment increased by 10.1%, and fruit quality improved obviously. The root activity of T2 treatment was also significantly higher than that in the control. There was no significant difference in root dry weight and yield between T2 treatment and the control. Furthermore, T2 treatment revealed a decrease in fruit quality relative to T1 treatment. These results suggested that the combined application of rotted corn straw and chemical fertilizer could improve soil environment, promote root growth, enhance root activity and improve yield and quality of cucumber in solar-greenhouse, which could be popularized and applied in protected cucumber production.


Asunto(s)
Cucumis sativus , Suelo , Suelo/química , Agricultura/métodos , Zea mays , Fertilizantes , Nitrógeno/análisis
15.
J Plant Physiol ; 285: 153996, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37141674

RESUMEN

Continuous cropping of ginseng leads to serious declines in yield and quality because of self-toxicity of allelochemicals and other factors in soil. However, because of the long growth cycle and low survival rate of ginseng, rapid screening of autotoxic activity is difficult. Therefore, it is important to analyze the allelochemicals and identify a model plant with autotoxic responses similar to those of ginseng. In this study, UPLC-Orbitrap-HRMS targeted metabolomics and verification of autotoxic activity were used to analyze a problem soil from continuously cropped ginseng. Allelochemical markers were screened by OPLS-DA. Seeds and seedlings of maize, Chinese cabbage, cucumber, green beans, wheat, sunflower, and oats were selected to identify potential model plants. Model plants with autotoxic responses similar to those of ginseng were evaluated by comparing morphological, physiological, and biochemical characteristics. The n-butanol extract of the continuously cropped problem soil had the most significant autotoxic activity. Twenty-three ginsenosides and the contributions to autotoxic effects were screened and evaluated. Of potential model plants, seeds and seedlings of cucumber showed similar growth inhibition to that of ginseng under the action of allelochemicals. Thus, metabolomics can be used to screen allelochemicals in soil and predict the autotoxic effects, and the cucumber plant model can be used to rapidly screen allelopathic activity of ginseng. The study will provide reference for methodology in allelopathy research on ginseng.


Asunto(s)
Cucumis sativus , Panax , Feromonas/farmacología , Plantas , Plantones , Suelo , Metabolómica
16.
Curr Rheumatol Rev ; 19(3): 345-351, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36748212

RESUMEN

BACKGROUND: According to the World Health Organization, osteoarthritis (OA) is one of the 10 most disabling diseases in developed countries, with worldwide estimates of 9.6% prevalence in men and 18.0% in women over 60 years old. Its management is not well established and involves the use of high doses of painkillers coupled with anti-inflammatory agents. OBJECTIVE: In the search for alternatives to manage the disease, previous studies have shown superior properties of Q-ActinTM in managing OA-related pain compared with standard treatments. Qactin is a cucumber extract with the anti-inflammatory iminosugar idoBR1 standardised to over 1%. This study investigated the effects of different doses (20 mg, 100 mg) of Q-Actin in a longitudinal placebo-controlled experiment. METHODS: There were 101 patients with knee OA enrolled for the 180-day study, with 91 patients completing it. Patients were grouped into a placebo group (PLBO), as well as a 20mg dose (Q-Actin 1) and 100 mg dose (Q-Actin 2) groups. The PLBO group received cellulose in capsules identical to the Q-Actin capsules. RESULTS: There was a significant improvement in the pain-related parameters over time that was dose-dependent. CONCLUSION: This study clearly demonstrated the effectiveness of Q-Actin compared to placebo in the management of pain related to moderate osteoarthritis.


Asunto(s)
Cucumis sativus , Osteoartritis de la Rodilla , Masculino , Humanos , Femenino , Persona de Mediana Edad , Actinas , Cápsulas/uso terapéutico , Osteoartritis de la Rodilla/tratamiento farmacológico , Dolor , Extractos Vegetales/uso terapéutico , Resultado del Tratamiento
17.
Plant Dis ; 107(7): 2002-2008, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36480735

RESUMEN

Understanding the seedborne nature of plant viruses is essential for developing disease control strategies and is impactful to the seed market. Here, we investigated seed transmissibility of tomato leaf curl New Delhi virus-cucumber isolate (ToLCNDV-CB) and -oriental melon isolate (ToLCNDV-OM) in cucumber and seed transmissibility of tomato leaf curl Taiwan virus (ToLCTV) and tomato yellow leaf curl Thailand virus (TYLCTHV) in tomato. Parent plants were inoculated using agroinfiltration with virus infectious clones, and virus infection was confirmed by PCR with virus-specific primers. ToLCNDV-CB and ToLCNDV-OM were detected in different parts of the female and male flowers and the fruits of cucumbers. ToLCNDV-CB and ToLCNDV-OM were also detected in cucumber seed coats and seedlings with an infection rate higher than 79%. Similar results were observed with ToLCTV and TYLCTHV as they were detected in different parts of the female and male flowers and fruits of three tomato cultivars. ToLCTV and TYLCTHV were also detected in tomato seed coats and seedlings with an infection rate higher than 36%. In addition, pollen-mediated transmission assays of these four begomoviruses were conducted with pollen derived from virus-infected plants to healthy plants. Results showed that ToLCNDV-CB and ToLCNDV-OM were detected in cross-pollinated cucumber progenies with an infection rate higher than 70%. ToLCTV and TYLCTHV were also detected in cross-pollinated tomato progenies with an infection rate higher than 77%. Our results indicated that ToLCNDV, ToLCTV, and TYLCTHV can be transmitted via seeds or pollens of cucumber and tomato plants. To our knowledge, this is the first report documenting the pollen-mediated transmission of begomoviruses.


Asunto(s)
Begomovirus , Cucumis sativus , Solanum lycopersicum , Begomovirus/genética , Taiwán , Semillas , Polen
18.
Sci Rep ; 12(1): 21802, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526706

RESUMEN

Annual plants allocate soil nutrients to floral display and pollinator rewards to ensure pollination success in a single season. Nitrogen and phosphorus are critical soil nutrients whose levels are altered by intensive land use that may affect plants' fitness via pollinator attractiveness through floral display and rewards. In a controlled greenhouse study, we studied in cucumbers (Cucumis sativus) how changes in soil nitrogen and phosphorus influence floral traits, including nectar and pollen reward composition. We evaluated how these traits affect bumble bee (Bombus impatiens, an important cucumber pollinator) visitation and ultimately fruit yield. While increasing nitrogen and phosphorus increased growth and floral display, excess nitrogen created an asymptotic or negative effect, which was mitigated by increasing phosphorus. Male floral traits exhibited higher plasticity in responses to changes in soil nutrients than female flowers. At 4:1 nitrogen:phosphorus ratios, male flowers presented increased nectar volume and pollen number resulting in increased bumble bee visitation. Interestingly, other pollinator rewards remained consistent across all soil treatments: male and female nectar sugar composition, female nectar volume, and pollen protein and lipid concentrations. Therefore, although cucumber pollination success was buffered in conditions of nutrient stress, highly skewed nitrogen:phosphorus soil ratios reduced plant fitness via reduced numbers of flowers and reward quantity, pollinator attraction, and ultimately yield.


Asunto(s)
Cucumis sativus , Néctar de las Plantas , Abejas , Animales , Suelo , Polinización/fisiología , Flores/fisiología , Plantas , Fósforo , Nitrógeno
19.
J Food Sci ; 87(11): 5054-5069, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36254496

RESUMEN

This study evaluated preservatives to stabilize sodium chloride (NaCl)-free-cucumber fermentations. The brining of air-purged laboratory cucumber fermentations with 100.0 mM calcium chloride (CaCl2 ) and 25.0 mM acetic acid resulted in immediate rises in pH, the chemical reduction of the medium, and malodors. Supplementation with 3.0 mM sodium benzoate or 3.0 mM potassium sorbate enabled a decline in pH, a continuous oxidative state of the medium, and delayed rising pH spoilage. However, lactic and acetic acids eventually disappeared in fermentations supplemented with preservatives. The amount of preservatives needed to suppress growth of brined-cucumber-spoilage microbes was determined in Fermented Cucumber Juice Medium (FCJM). Supplementation of FCJM with 10.0 mM sodium benzoate was inhibitory for the spoilage yeasts, Issatchenkia occidentalis and Pichia manshurica, and the lactobacilli, Lentilactobacillus buchneri and Lentilactobacillus parafarraginis, but not of Zygosaccharomyces globiformis. Potassium sorbate inhibited the spoilage yeasts at 15.0 mM in FCJM but not the lactobacilli. Supplementation of FCJM with 20.0 mM fumaric acid had a bactericidal effect on the spoilage-associated lactobacilli. As expected, NaCl-free-commercial cucumber fermentations brined with 100 mM CaCl2 , no acetic acid, and 6 mM potassium sorbate resulted in complete fermentations, but supported rising pH, microbially induced spoilage during long-term storage. Post-fermentation supplementation with 12 mM sodium benzoate, 10 mM fumaric acid, a combination of the two, or 10 mM fumaric acid and 2 mM AITC prevented microbial activity during long-term bulk storage. PRACTICAL APPLICATION: Several preservative-based strategies for stabilizing NaCl-free cucumber fermentation in a commercial production setting were developed, enabling the implementation of a processing technology that reduces wastewater volumes and environmental impact.


Asunto(s)
Cucumis sativus , Fermentación , Cloruro de Sodio/análisis , Cloruro de Calcio/análisis , Ácido Sórbico/farmacología , Benzoato de Sodio/farmacología , Concentración de Iones de Hidrógeno , Levaduras , Ácido Acético , Sodio , Microbiología de Alimentos
20.
Environ Entomol ; 51(6): 1172-1181, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36166572

RESUMEN

Organic soil amendments can influence insect pest populations and the damage to plants they cause. In this study, the effects of medicinal plant processing wastes (MPPWs) applied as organic fertilizers on the host preference and performance of Tuta absoluta and Aphis gossypii were investigated on tomato and cucumber plants, respectively. Processing wastes of cumin, rosemary, thyme, artichoke, chamomile, fenugreek, and nettle were applied in four levels of 0, 20, 40, and 80 g dry matter/1kg culture media in pot experiments. Results showed the application of MPPWs, especially 80 g of nettle, reduced the number of T. absoluta eggs (from 0.8 to 0.4 egg/leaf) and their hatching percentage (from 90 to 76%). The highest and lowest number of aphids were observed in control (36 aphids/plant) and treated cucumbers with 80 g of cumin (18 aphids/plant). Also, the lowest intrinsic rate of increase (0.08 d-1) and net reproductive rate (20 offspring) of T. absoluta were observed in tomatoes fertilized with nettle. The highest and lowest net reproductive rate of A. gossypii were obtained on control and treated plants with 80 g of nettle, respectively. Results of damage assessment showed that the percentage of dry weight loss in the aphid-infested plants was reduced by the use of MPPWs, so that lowest weight loss was observed in the treatment with 80 g of nettle. In conclusion, soil amendment using MPPWs could result in lower pest populations and may improve plant tolerance to insect pest stress, thus these by-products could be considered a valuable tool in pest management.


Asunto(s)
Áfidos , Cucumis sativus , Lepidópteros , Plantas Medicinales , Solanum lycopersicum , Animales , Suelo , Fertilización , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA