Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mini Rev Med Chem ; 23(20): 1959-1974, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37198991

RESUMEN

INTRODUCTION: Parkinson's disease (PD) is characterized by fibrillation of disordered proteins known as Lewy bodies in the substantia nigra that also undergo progressive neurodegeneration. The aggregation of α-synuclein (α-syn) is a hallmark and potentially a critical step in the development of Parkinson's disease and other synucleinopathies. The synaptic vesicle protein α-syn is a small, abundant, highly conserved disordered protein and the causative agent of neurodegenerative diseases. Several novel pharmacologically active compounds are used to treat PD and other neurodegenerative disorders. Though, the mechanism through which these molecules inhibit the α-syn aggregation is still not fully understood. OBJECTIVE: This review article is focused on the recent advancements in compounds that can inhibit the development of α-syn fibrillation and oligomerization. METHODS: The current review article is based on the most recent and frequently cited papers from Google Scholar, SciFinder, and Researchgate sources. DESCRIPTION: In the progression of PD, the mechanism of α-syn aggregation involves the structural transformation from monomers into amyloid fibrils. As the accumulation of α-syn in the brain has been linked to many disorders, the recent search for disease-modifying medications mainly focused on modifying the α-syn aggregation. This review contains a detailed report of literature findings and illustrates the unique structural features, structure-activity relationship, and therapeutic potential of the natural flavonoids in the inhibition of α-syn are also discussed. CONCLUSION: Recently, many naturally occurring molecules such as curcumin, polyphenols, nicotine, EGCG, and stilbene have been recognized to inhibit the fibrillation and toxicity of α-syn. Therefore, knowing the α-synuclein filament's structure and how they originate will help invent particular biomarkers for synucleinopathies and develop reliable and effective mechanism-based therapeutics. We hope the information this review provides may help evaluate novel chemical compounds, such as α- syn aggregation inhibitors, and will contribute to developing novel drugs for treating Parkinson's disease.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Sinucleinopatías , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/análisis , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Sinucleinopatías/metabolismo , Cuerpos de Lewy/química , Cuerpos de Lewy/metabolismo , Enfermedades Neurodegenerativas/metabolismo
2.
Molecules ; 26(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205249

RESUMEN

The accumulation and aggregation of α-synuclein (α-syn) is the main pathologic event in Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. α-Syn-seeded fibril formation and its induced toxicity occupy a major role in PD pathogenesis. Thus, assessing compounds that inhibit this seeding process is considered a key towards the therapeutics of synucleinopathies. Using biophysical and biochemical techniques and seeding-dependent cell viability assays, we screened a total of nine natural compounds of alkaloid origin extracted from Chinese medicinal herbs. Of these compounds, synephrine, trigonelline, cytisine, harmine, koumine, peimisine, and hupehenine exhibited in vitro inhibition of α-syn-seeded fibril formation. Furthermore, using cell viability assays, six of these compounds inhibited α-syn-seeding-dependent toxicity. These six potent inhibitors of amyloid fibril formation and toxicity caused by the seeding process represent a promising therapeutic strategy for the treatment of PD and other synucleinopathies.


Asunto(s)
Alcaloides/farmacología , Productos Biológicos/farmacología , alfa-Sinucleína/antagonistas & inhibidores , Amiloide/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Cuerpos de Lewy/efectos de los fármacos , Cuerpos de Lewy/metabolismo , Medicina Tradicional China/métodos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo
3.
Biomolecules ; 11(5)2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922207

RESUMEN

Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein aggregates in neurons, nerve fibers or glial cells. Three main types of diseases belong to the synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. All of them develop as a result of an interplay of genetic and environmental factors. Emerging evidence suggests that epigenetic mechanisms play an essential role in the development of synucleinopathies. Since there is no disease-modifying treatment for these disorders at this time, interest is growing in plant-derived chemicals as a potential treatment option. Phytochemicals are substances of plant origin that possess biological activity, which might have effects on human health. Phytochemicals with neuroprotective activity target different elements in pathogenic pathways due to their antioxidants, anti-inflammatory, and antiapoptotic properties, and ability to reduce cellular stress. Multiple recent studies demonstrate that the beneficial effects of phytochemicals may be explained by their ability to modulate the expression of genes implicated in synucleinopathies and other diseases. These substances may regulate transcription directly via transcription factors (TFs) or play the role of epigenetic regulators through their effect on histone modification, DNA methylation, and RNA-based mechanisms. Here, we summarize new data about the impact of phytochemicals on the pathogenesis of synucleinopathies through regulation of gene expression.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Fitoquímicos/farmacología , Sinucleinopatías/genética , Encéfalo/metabolismo , Epigénesis Genética , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Humanos , Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy , Atrofia de Múltiples Sistemas , Neuroglía/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson , Fitoquímicos/metabolismo , Sinucleinopatías/metabolismo , alfa-Sinucleína/metabolismo
4.
J Neurochem ; 150(5): 566-576, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31265132

RESUMEN

Misfolding and aggregation of alpha-synuclein (α-synuclein) with concomitant cytotoxicity is a hallmark of Lewy body related disorders such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Although it plays a pivotal role in pathogenesis and disease progression, the function of α-synuclein and the molecular mechanisms underlying α-synuclein-induced neurotoxicity in these diseases are still elusive. Many in vitro and in vivo experimental models mimicking α-synuclein pathology such as oligomerization, toxicity and more recently neuronal propagation have been generated over the years. In particular, cellular models have been crucial for our comprehension of the pathogenic process of the disease and are beneficial for screening of molecules capable of modulating α-synuclein toxicity. Here, we review α-synuclein based cell culture models that reproduce some features of the neuronal populations affected in patients, from basic unicellular organisms to mammalian cell lines and primary neurons, to the cutting edge models of patient-specific cell lines. These reprogrammed cells known as induced pluripotent stem cells (iPSCs) have garnered attention because they closely reproduce the characteristics of neurons found in patients and provide a valuable tool for mechanistic studies. We also discuss how different cell models may constitute powerful tools for high-throughput screening of molecules capable of modulating α-synuclein toxicity and prevention of its propagation. This article is part of the Special Issue "Synuclein".


Asunto(s)
Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Técnicas de Cultivo de Célula , Células Cultivadas , Reprogramación Celular , Dopamina/metabolismo , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/metabolismo , Cuerpos de Lewy/metabolismo , Modelos Neurológicos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Pliegue de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sinucleinopatías/metabolismo
5.
J Biol Chem ; 294(14): 5657-5665, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30755483

RESUMEN

α-Synuclein (AS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, a hallmark of Parkinson's disease (PD). AS is particularly exposed to oxidation of its methionine residues, both in vivo and in vitro Oxidative stress has been implicated in PD and oxidized α-synuclein has been shown to assemble into soluble, toxic oligomers, rather than amyloid fibrils. However, the structural effects of methionine oxidation are still poorly understood. In this work, oxidized AS was obtained by prolonged incubations with dopamine (DA) or epigallocatechin-3-gallate (EGCG), two inhibitors of AS aggregation, indicating that EGCG promotes the same final oxidation product as DA. The conformational transitions of the oxidized and non-oxidized protein were monitored by complementary biophysical techniques, including MS, ion mobility (IM), CD, and FTIR spectroscopy assays. Although the two variants displayed very similar structures under conditions that stabilize highly disordered or highly ordered states, differences emerged in the intermediate points of transitions induced by organic solvents, such as trifluoroethanol (TFE) and methanol (MeOH), indicating a lower propensity of the oxidized protein for forming either α- or ß-type secondary structures. Furthermore, oxidized AS displayed restricted secondary-structure transitions in response to dehydration and slightly amplified tertiary-structure transitions induced by ligand binding. This difference in susceptibility to induced folding could explain the loss of fibrillation potential observed for oxidized AS. Finally, site-specific oxidation kinetics point out a minor delay in Met-127 modification, likely due to the effects of AS intrinsic structure.


Asunto(s)
Catequina/análogos & derivados , Metionina/química , Agregado de Proteínas , Pliegue de Proteína , alfa-Sinucleína/química , Catequina/química , Humanos , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Metionina/metabolismo , Oxidación-Reducción , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , alfa-Sinucleína/metabolismo
7.
Curr Pharm Des ; 14(30): 3247-66, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19075704

RESUMEN

Lewy bodies (LBs) and Lewy neurites (LNs) in the brain constitute the main histopathological features of Parkinson's disease (PD) and dementia with Lewy bodies (DLB), and are comprised of amyloid-like fibrils composed of a small protein ( approximately 14 kDa) named alpha-synuclein (alphaS). As the aggregation of (alphaS in the brain has been implicated as a critical step in the development of the diseases, the current search for disease-modifying drugs is focused on modification of the process of (alpha S deposition in the brain. In this article, the recent developments on the molecules that inhibit the formation of alpha-synuclein fibrils (falphaS) as well as the oligomerization of alphaS are reviewed. Recently, various compounds such as curcumin, nicotine and wine-related polyphenols have been reported to inhibit the formation of falphaS, and to destabilize preformed falphaS at pH 7.5 at 37 degrees C in vitro. Although the mechanisms by which these compounds inhibit falphaS formation from falphaS, and destabilize preformed falphaS are still unclear, they could be key molecules for the development of preventives and therapeutics for PD and other alpha-synucleinopathies.


Asunto(s)
Antiparkinsonianos , Diseño de Fármacos , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/metabolismo , Animales , Antiparkinsonianos/química , Antiparkinsonianos/farmacología , Antiparkinsonianos/uso terapéutico , Encéfalo/metabolismo , Demencia/tratamiento farmacológico , Demencia/metabolismo , Humanos , Cuerpos de Lewy/metabolismo , Estructura Molecular , Enfermedad de Parkinson/metabolismo , Relación Estructura-Actividad
8.
Curr Drug Targets CNS Neurol Disord ; 2(3): 149-52, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12769795

RESUMEN

Lewy bodies (LB) were first described by Lewy in 1912 [1] as neuronal pale eosinophilic inclusions which became a pathological hallmark of Parkinson s disease (PD). In his original study, Lewy defined these inclusions as pale eosinophilic cytoplasmic structures, and studies since then have revealed LB to be ubiquitin-, alpha-synuclein-, and parkin-containing inclusions. This suggests that knowledge of the biochemical steps involved in the genesis of LB might disclose a final common pathway which might be responsible for different types of inherited and sporadic parkinsonism. This would lead to the identification of new therapeutic targets for interfering with disease progression. Although LB were originally described solely in PD, in the last decade these inclusions were described in a spectrum of degenerative disorders ranging from pure movement disorders to dementia. This suggests that common biochemical alterations leading to the formation of intracellular inclusions might underlie various pathological conditions. Consequently, the knowledge of the biochemical steps involved in the formation of neuronal inclusions could represent a key to develop new therapeutic strategies. In recent years it has been possible to develop both in vitro and in vivo neuronal inclusions resembling Lewy bodies. These experimental approaches have ranged from the use of alpha-synuclein transgenic mice to the continuous exposure to a mitochondrial complex I inhibitor. The aim of the present paper is to review briefly, recent advances on Lewy body research to achieve new insight into the etiology of PD and the molecular events leading to neurodegeneration.


Asunto(s)
Evaluación Preclínica de Medicamentos/tendencias , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Enfermedades Neurodegenerativas/fisiopatología , Ubiquitinas/metabolismo , Animales , Progresión de la Enfermedad , Activadores de Enzimas/farmacología , Predicción , Humanos , Cuerpos de Lewy/química , Complejos Multienzimáticos/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuronas/metabolismo , Neuronas/patología , Trastornos Parkinsonianos/fisiopatología , Relación Estructura-Actividad
9.
Aging Cell ; 1(1): 17-21, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12882349

RESUMEN

Levels of iron are increased in the brains of Parkinson's disease (PD) patients compared to age-matched controls. This has been postulated to contribute to progression of the disease via several mechanisms including exacerbation of oxidative stress, initiation of inflammatory responses and triggering of Lewy body formation. In this minireview, we examine the putative role of iron in PD and its pharmacological chelation as a prospective therapeutic for the disease.


Asunto(s)
Quelantes del Hierro/farmacología , Hierro/antagonistas & inhibidores , Hierro/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Animales , Terapia por Quelación/métodos , Terapia por Quelación/tendencias , Encefalitis/tratamiento farmacológico , Encefalitis/metabolismo , Encefalitis/fisiopatología , Humanos , Quelantes del Hierro/uso terapéutico , Cuerpos de Lewy/efectos de los fármacos , Cuerpos de Lewy/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Sustancia Negra/patología , Sustancia Negra/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA