Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Transl Sci ; 14(3): 1049-1061, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33382907

RESUMEN

Liver microphysiological systems (MPSs) are promising models for predicting hepatic drug effects. Yet, after a decade since their introduction, MPSs are not routinely used in drug development due to lack of criteria for ensuring reproducibility of results. We characterized the feasibility of a liver MPS to yield reproducible outcomes of experiments assaying drug toxicity, metabolism, and intracellular accumulation. The ability of the liver MPS to reproduce hepatotoxic effects was assessed using trovafloxacin, which increased lactate dehydrogenase (LDH) release and reduced cytochrome P450 3A4 (CYP3A4) activity. These observations were made in two test sites and with different batches of Kupffer cells. Upon culturing equivalent hepatocytes in the MPS, spheroids, and sandwich cultures, differences between culture formats were detected in CYP3A4 activity and albumin production. Cells in all culture formats exhibited different sensitivities to hepatotoxicant exposure. Hepatocytes in the MPS were more functionally stable than those of other culture platforms, as CYP3A4 activity and albumin secretion remained prominent for greater than 18 days in culture, whereas functional decline occurred earlier in spheroids (12 days) and sandwich cultures (7 days). The MPS was also demonstrated to be suitable for metabolism studies, where CYP3A4 activity, troglitazone metabolites, diclofenac clearance, and intracellular accumulation of chloroquine were quantified. To ensure reproducibility between studies with the MPS, the combined use of LDH and CYP3A4 assays were implemented as quality control metrics. Overall results indicated that the liver MPS can be used reproducibly in general drug evaluation applications. Study outcomes led to general considerations and recommendations for using liver MPSs. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Microphysiological systems (MPSs) have been designed to recreate organ- or tissue-specific characteristics of extracellular microenvironments that enhance the physiological relevance of cells in culture. Liver MPSs enable long-lasting and stable culture of hepatic cells by culturing them in three-dimensions and exposing them to fluid flow. WHAT QUESTION DID THIS STUDY ADDRESS? What is the functional performance relative to other cell culture platforms and the reproducibility of a liver MPS for assessing drug development and evaluation questions, such as toxicity, metabolism, and pharmacokinetics? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? The liver MPS systematically detected the toxicity of trovafloxacin. When compared with spheroids and sandwich cultures, this system had a more stable function and different sensitivity to troglitazone, tamoxifen, and digoxin. Quantifying phase II metabolism of troglitazone and intracellular accumulation of chloroquine demonstrated the potential use of the liver MPS for studying drug metabolism and pharmacokinetics. Quality control criteria for assessing chip function were key for reliably using the liver MPS. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? Due to its functional robustness and physiological relevance (3D culture, cells expose to fluid flow and co-culture of different cell types), the liver MPS can, in a reproducible manner: (i) detect inflammatory-induced drug toxicity, as demonstrated with trovafloxacin, (ii) detect the toxicity of other drugs, such as troglitazone, tamoxifen, and digoxin, with different effects than those detected in spheroids and sandwich cultures, (iii) enable studies of hepatic function that rely on prolonged cellular activity, and (iv) detect phase II metabolites and drug accumulation to potentially support the interpretation of clinical data. The integration of MPSs in drug development will be facilitated by careful evaluation of performance and reproducibility as performed in this study.


Asunto(s)
Hígado/efectos de los fármacos , Cultivo Primario de Células/métodos , Pruebas de Toxicidad/métodos , Células Cultivadas , Citocromo P-450 CYP3A/metabolismo , Evaluación Preclínica de Medicamentos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Dispositivos Laboratorio en un Chip , Hígado/citología , Hígado/metabolismo , Modelos Biológicos , Cultivo Primario de Células/instrumentación , Reproducibilidad de los Resultados , Esferoides Celulares , Pruebas de Toxicidad/instrumentación
2.
Nat Commun ; 10(1): 2621, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197168

RESUMEN

The high selectivity of the human blood-brain barrier (BBB) restricts delivery of many pharmaceuticals and therapeutic antibodies to the central nervous system. Here, we describe an in vitro microfluidic organ-on-a-chip BBB model lined by induced pluripotent stem cell-derived human brain microvascular endothelium interfaced with primary human brain astrocytes and pericytes that recapitulates the high level of barrier function of the in vivo human BBB for at least one week in culture. The endothelium expresses high levels of tight junction proteins and functional efflux pumps, and it displays selective transcytosis of peptides and antibodies previously observed in vivo. Increased barrier functionality was accomplished using a developmentally-inspired induction protocol that includes a period of differentiation under hypoxic conditions. This enhanced BBB Chip may therefore represent a new in vitro tool for development and validation of delivery systems that transport drugs and therapeutic antibodies across the human BBB.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Células Endoteliales/metabolismo , Microfluídica/instrumentación , Anticuerpos/farmacología , Astrocitos , Barrera Hematoencefálica/citología , Evaluación Preclínica de Medicamentos/instrumentación , Evaluación Preclínica de Medicamentos/métodos , Endotelio Vascular/citología , Humanos , Dispositivos Laboratorio en un Chip , Microfluídica/métodos , Microvasos/citología , Pericitos , Permeabilidad , Células Madre Pluripotentes , Cultivo Primario de Células/instrumentación , Cultivo Primario de Células/métodos
3.
Stem Cells Transl Med ; 8(8): 810-821, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31038850

RESUMEN

Xenogeneic-free media are required for translating advanced therapeutic medicinal products to the clinics. In addition, process efficiency is crucial for ensuring cost efficiency, especially when considering large-scale production of mesenchymal stem cells (MSCs). Human platelet lysate (HPL) has been increasingly adopted as an alternative for fetal bovine serum (FBS) for MSCs. However, its therapeutic and regenerative potential in vivo is largely unexplored. Herein, we compare the effects of FBS and HPL supplementation for a scalable, microcarrier-based dynamic expansion of human periosteum-derived cells (hPDCs) while assessing their bone forming capacity by subcutaneous implantation in small animal model. We observed that HPL resulted in faster cell proliferation with a total fold increase of 5.2 ± 0.61 in comparison to 2.7 ± 02.22-fold in FBS. Cell viability and trilineage differentiation capability were maintained by HPL, although a suppression of adipogenic differentiation potential was observed. Differences in mRNA expression profiles were also observed between the two on several markers. When implanted, we observed a significant difference between the bone forming capacity of cells expanded in FBS and HPL, with HPL supplementation resulting in almost three times more mineralized tissue within calcium phosphate scaffolds. FBS-expanded cells resulted in a fibrous tissue structure, whereas HPL resulted in mineralized tissue formation, which can be classified as newly formed bone, verified by µCT and histological analysis. We also observed the presence of blood vessels in our explants. In conclusion, we suggest that replacing FBS with HPL in bioreactor-based expansion of hPDCs is an optimal solution that increases expansion efficiency along with promoting bone forming capacity of these cells. Stem Cells Translational Medicine 2019;8:810&821.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Regeneración Ósea , Medios de Cultivo/farmacología , Cultivo Primario de Células/métodos , Células Madre/efectos de los fármacos , Adipogénesis , Animales , Técnicas de Cultivo Celular por Lotes/instrumentación , Reactores Biológicos , Plaquetas/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Medios de Cultivo/química , Humanos , Ratones , Ratones Desnudos , Osteogénesis , Periostio/citología , Cultivo Primario de Células/instrumentación , Trasplante de Células Madre/métodos , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA