Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Poult Sci ; 103(4): 103488, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335669

RESUMEN

This experiment aimed to investigate the effect of Lonicerae flos and Turmeric extracts (LTE) added to diets on growth performance and intestinal health of broilers. A total of 720 healthy 21-day-old yellow-feathered broilers were randomly divided into 3 treatment groups, with 6 replicates and 40 broilers per replicate. These 3 dietary treatments included a basal diet + 0 g/t LTE (CON), a basal diet + 300 g/t LTE (LTE300), and a basal diet + 500 g/t LTE (LTE500). The results showed that dietary supplementation of LTE linearly increased (P < 0.05) average daily gain (d 21-38) and average daily feed intake (d 21-60). At d 60, LTE300 had the highest serum total antioxidant capacity and total superoxide dismutase (P < 0.05), and LTE500 had the lowest malondialdehyde level (P < 0.05) among the three groups. Moreover, compared to CON, LTE300 significantly (P < 0.05) reduced endotoxin (d 38 and d 60) and diamine oxidase activity (d 38); LTE500 significantly (P < 0.05) reduced endotoxin (d 38 and d 60) and diamine oxidase levels (d 60) in the serum. LTE groups significantly (P < 0.05) increased ileal the ratio of villus height to crypt depth and serum immunoglobulin G. Furthermore, dietary supplementation of LTE also improved the intestinal epithelial barrier by the up-regulated mRNA expression of Claudin-1, Occludin and zonula occludens-1, and decreased the mRNA expression of interleukin-2, interleukin-8, tumor necrosis factor-α, nuclear factor κB, myeloid differentiation factor 88 and toll-like receptor 4. Compared to CON, 16S rRNA sequencing analysis showed that LTE300 had a better effect on the microbial diversity and composition in the ileum, and Bacillus and Lactobacillus_agilis were significantly enriched in LTE300. PICRUSt results showed that LTE300 was significantly (P < 0.05) enriched in four pathway pathways at KEGG level 2. In conclusion, dietary supplementation with LTE improved growth performance and intestinal health by enhancing antioxidant capacity, intestinal barrier and immune function, and regulating intestinal flora of yellow-feathered broilers.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Antioxidantes , Lonicera , Extractos Vegetales , Animales , Antioxidantes/metabolismo , Pollos/fisiología , Curcuma/metabolismo , ARN Ribosómico 16S , Dieta/veterinaria , Endotoxinas , ARN Mensajero , Alimentación Animal/análisis , Suplementos Dietéticos/análisis
2.
Toxicol Mech Methods ; 34(2): 122-129, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37771095

RESUMEN

AIM: The aim of this study was to evaluate the protective effect of curcumin-rich turmeric (CRT) extract against isotretinoin (ISO)-induced liver damage through routine biochemical parameters and oxidative stress parameters that indicate liver damage. MATERIAL AND METHOD: 42 albino Wistar rats of 200 g were randomly grouped as Group I: Healthy control, Group II: Sunflower oil, Group III: Curcumin 200 mg/kg, Group IV: ISO control groups (7.5 mg/kg), Group V: Curcumin 50 mg/kg + ISO 7.5 mg/kg, Group VI: Curcumin 100 mg/kg + ISO 7.5 mg/kg, Group VII: Curcumin 200 mg/kg + ISO 7.5 mg/kg. At the end, after the rats were killed, their blood and liver tissues were collected. ALT and AST levels in serum; superoxide dismutase activity (SOD), GSH, and MDA levels in liver tissue were determined. RESULTS: Our results showed that ALT, AST, and MDA levels increased, and SOD and GSH levels decreased in the ISO-administered group compared to the healthy control group. CRT 50, 100, and 200 mg/kg groups were compared to ISO group. A dose-dependent increase in protective effect was observed. A decrease in ALT, AST, and MDA levels, and an increase in SOD and GSH levels were determined. A protective effect was found at all doses. The best protective effect was in the CRT 200 mg/kg group. CONCLUSION: CRT extract can be considered a candidate herbal medicine for the elimination of liver damage in individuals using ISO. However, further experimental and clinical validation should be studied.


Asunto(s)
Curcumina , Ratas , Animales , Curcumina/farmacología , Curcuma/metabolismo , Isotretinoína/toxicidad , Isotretinoína/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/metabolismo , Estrés Oxidativo , Ratas Wistar , Hígado , Superóxido Dismutasa/metabolismo , Antioxidantes/metabolismo
3.
Toxins (Basel) ; 15(12)2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38133191

RESUMEN

The most frequent adverse effects of AFB1 in chicken are low performance, the depression of the immune system, and a reduced quality of both eggs and meat, leading to economic losses. Since oxidative stress plays a major role in AFB1 toxicity, natural products are increasingly being used as an alternative to mineral binders to tackle AFB1 toxicosis in farm animals. In this study, an in vivo trial was performed by exposing broilers for 10 days to AFB1 at dietary concentrations approaching the maximum limits set by the EU (0.02 mg/kg feed) in the presence or absence of turmeric powder (TP) (included in the feed at 400 mg/kg). The aims were to evaluate (i) the effects of AFB1 on lipid peroxidation, antioxidant parameters, histology, and the expression of drug transporters and biotransformation enzymes in the liver; (ii) the hepatic accumulation of AFB1 and its main metabolites (assessed using an in-house-validated HPLC-FLD method); (iii) the possible modulation of the above parameters elicited by TP. Broilers exposed to AFB1 alone displayed a significant increase in lipid peroxidation in the liver, which was completely reverted by the concomitant administration of TP. Although no changes in glutathione levels and antioxidant enzyme activities were detected in any treatment group, AFB1 significantly upregulated and downregulated the mRNA expression of CYP2A6 and Nrf2, respectively. TP counteracted such negative effects and increased the hepatic gene expression of selected antioxidant enzymes (i.e., CAT and SOD2) and drug transporters (i.e., ABCG2), which were further enhanced in combination with AFB1. Moreover, both AFB1 and TP increased the mRNA levels of ABCC2 and ABCG2 in the duodenum. The latter changes might be implicated in the decrease in hepatic AFB1 to undetectable levels (

Asunto(s)
Antioxidantes , Micotoxinas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Pollos/metabolismo , Curcuma/metabolismo , Polvos/metabolismo , Polvos/farmacología , Micotoxinas/metabolismo , Aflatoxina B1/metabolismo , Hígado , Estrés Oxidativo , ARN Mensajero/metabolismo
4.
PLoS One ; 18(7): e0288997, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37471428

RESUMEN

AIMS: This study aims to comprehensively review the existing evidence and conduct analysis of updated randomized controlled trials (RCTs) of turmeric (Curcuma longa, CL) and its related bioactive compounds on glycemic and metabolic parameters in patients with type 2 diabetes (T2DM), prediabetes, and metabolic syndrome (MetS) together with a sub-group analysis of different CL preparation forms. METHODS: An umbrella review (UR) and updated systematic reviews and meta-analyses (SRMAs) were conducted to evaluate the effects of CL compared with a placebo/standard treatment in adult T2DM, prediabetes, and MetS. The MEDLINE, Embase, The Cochrane Central Register of Control Trials, and Scopus databases were searched from inception to September 2022. The primary efficacy outcomes were hemoglobin A1C (HbA1C) and fasting blood glucose (FBG). The corrected covered area (CCA) was used to assess overlap. Mean differences were pooled across individual RCTs using a random-effects model. Subgroup and sensitivity analyses were performed for various CL preparation forms. RESULTS: Fourteen SRMAs of 61 individual RCTs were included in the UR. The updated SRMA included 28 studies. The CCA was 11.54%, indicating high overlap across SRMAs. The updated SRMA revealed significant reduction in FBG and HbA1C with CL supplementation, obtaining a mean difference (95% confidence interval [CI]) of -8.129 (-12.175, -4.084) mg/dL and -0.134 (-0.304, -0.037) %, respectively. FBG and HbA1C levels decreased with all CL preparation forms as did other metabolic parameters levels. The results of the sensitivity and subgroup analyses were consistent with those of the main analysis. CONCLUSION: CL supplementation can significantly reduce FBG and HbA1C levels and other metabolic parameters in T2DM and mitigate related conditions, including prediabetes and MetS. TRIAL REGISTRATION: PROSPERO (CRD42016042131).


Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Estado Prediabético , Adulto , Humanos , Glucemia/metabolismo , Curcuma/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Suplementos Dietéticos , Hemoglobina Glucada , Síndrome Metabólico/tratamiento farmacológico , Estado Prediabético/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Metaanálisis como Asunto , Revisiones Sistemáticas como Asunto
5.
Molecules ; 28(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37241785

RESUMEN

The newly FDA-approved drug, Axitinib, is an effective therapy against RTKs, but it possesses severe adverse effects like hypertension, stomatitis, and dose-dependent toxicity. In order to ameliorate Axitinib's downsides, the current study is expedited to search for energetically stable and optimized pharmacophore features of 14 curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione) derivatives. The rationale behind the selection of curcumin derivatives is their reported anti-angiogenic and anti-cancer properties. Furthermore, they possessed a low molecular weight and a low toxicity profile. In the current investigation, the pharmacophore model-based drug design, facilitates the filtering of curcumin derivatives as VEGFR2 interfacial inhibitors. Initially, the Axitinib scaffold was used to build a pharmacophore query model against which curcumin derivatives were screened. Then, top hits from pharmacophore virtual screening were subjected to in-depth computational studies such as molecular docking, density functional theory (DFT) studies, molecular dynamics (MD) simulations, and ADMET property prediction. The findings of the current investigation revealed the substantial chemical reactivity of the compounds. Specifically, compounds S8, S11, and S14 produced potential molecular interactions against all four selected protein kinases. Docking scores of -41.48 and -29.88 kJ/mol for compounds S8 against VEGFR1 and VEGFR3, respectively, were excellent. Whereas compounds S11 and S14 demonstrated the highest inhibitory potential against ERBB and VEGFR2, with docking scores of -37.92 and -38.5 kJ/mol against ERBB and -41.2 and -46.5 kJ/mol against VEGFR-2, respectively. The results of the molecular docking studies were further correlated with the molecular dynamics simulation studies. Moreover, HYDE energy was calculated through SeeSAR analysis, and the safety profile of the compounds was predicted through ADME studies.


Asunto(s)
Neoplasias Colorrectales , Curcumina , Humanos , Simulación del Acoplamiento Molecular , Curcumina/farmacología , Farmacóforo , Axitinib , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Curcuma/metabolismo , Detección Precoz del Cáncer , Simulación de Dinámica Molecular , Ligandos
6.
J Nat Med ; 77(1): 152-172, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36443621

RESUMEN

Essential oils (EOs) comprised of various bioactive compounds have been widely detected in the Curcuma species. Due to the widespread distribution and misidentification of Curcuma species and differences in processing methods, inconsistent reports on major compounds in rhizomes of the same species from different geographical regions are not uncommon. This inconsistency leads to confusion and inaccuracy in compound detection of each species and also hinders comparative study based on EO compositions. The present study aimed to characterize EO compositions of 12 Curcuma species, as well as to detect the compositional variation among different species, and between the plant specimens and their related genetically validated crude drug samples using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The plant specimens of the same species showed similar EO patterns, regardless of introducing from different geographical sources. Based on the similarity of EO compositions, all the specimens and samples were separated into eight main groups: C. longa; C. phaeocaulis, C. aeruginosa and C. zedoaria; C. zanthorrhiza; C. aromatica and C. wenyujin; C. kwangsiensis; C. amada and C. mangga; C. petiolata; C. comosa. From EOs of all the specimens and samples, 54 major compounds were identified, and the eight groups were chemically characterized. Most of the major compounds detected in plant specimens were also observed in crude drug samples, although a few compounds converted or degraded due to processing procedures or over time. Orthogonal partial least squares-discriminant analysis allowed the marker compounds to discriminate each group or each species to be identified.


Asunto(s)
Curcuma , Aceites Volátiles , Curcuma/química , Curcuma/metabolismo , Aceites Volátiles/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Asia , Rizoma/química
7.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 691-702, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35754158

RESUMEN

This study aimed to evaluate the effect of turmeric powder (TP) supplementation on laying hens' performance, blood biochemical parameters and egg quality parameters. In total, 144 laying hens (Hy-line W36) ageing 53 weeks were used in this study. Birds were randomly assigned to three treatments (6 replicates, 8 birds in each). The diets contained 0 (control), 0.25, and 0.5% TP based on the maize-soybean meal. It was found that the TP supplementation significantly reduced egg production, weight and mass throughout the experiment (p < 0.05). However, the feed conversion ratio increased (p < 0.05), whereas feed intake remained unaffected. Yolk percentage, height and index reduced, and the yolk colour, accompanied by the egg-shell percentage, increased (p< 0.05) during the first 4 weeks of the experiment. Interestingly, only the albumen pH was affected by TP supplementation during the second 4 weeks (p < 0.05). The serum malondialdehyde level reduced significantly, and the total antioxidant capacity increased in the groups fed on the diets supplemented with TP (p < 0.05). Serum lipids levels, including triglyceride, cholesterol and very-low-density lipoprotein (VLDL), and the yolk triglyceride level reduced due to TP supplementation (p < 0.05). The interactive effect of all three independent factors on the internal quality traits of the stored eggs was significant only for yolk pH (p < 0.05). Thus, TP could be a potential lipid reducing factor, especially triglycerides, and a natural antioxidant in laying hens' diet. However, it may significantly impair the productive performance of laying hens under normal environmental conditions.


Asunto(s)
Antioxidantes , Curcuma , Animales , Femenino , Antioxidantes/metabolismo , Curcuma/metabolismo , Polvos/farmacología , Yema de Huevo , Pollos , Óvulo , Dieta/veterinaria , Suplementos Dietéticos , Triglicéridos , Alimentación Animal/análisis , Huevos
8.
Analyst ; 148(1): 175-181, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36472862

RESUMEN

Curcumin is a dietary spice and coloring agent widely used in food and herbal medicine. Herein, we visualized the distribution of curcumin in fresh Curcuma longa (turmeric) root sections using the state-of-the-art vacuum-ultraviolet (VUV, 118 nm) single photon-postionization mass spectrometric imaging method. Compared with other mass spectrometric imaging methods, the proposed method does not require any sample pre-treatment. The proposed approach could be more conducive to in situ detection of small molecules. The mass spectroscopic imaging (MSI) images of curcumin sections with a lateral resolution of 100 µm indicated that the concentrations of curcumin decreased from the phloem to the xylem of the root. We also show MS imaging of curcumin in the turmeric root at different maturity periods, revealing the transformation of this endogenous species. The result of quantitative analysis indicates that the total curcumin content of the mature turmeric root is estimated to be 3.43%, which is consistent with the previous report that the content of curcumin in the turmeric root is estimated between 3% and 5%. The report indicated that the proposed method of VUV single photon postionization MSI can be used to explore the metabolic process of plants, which is critical for herbal farming, harvest, and its ingredient extraction.


Asunto(s)
Curcumina , Curcumina/análisis , Curcuma/química , Curcuma/metabolismo , Espectrometría de Masas , Extractos Vegetales/química
9.
Molecules ; 27(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36364236

RESUMEN

Turmeric spice contains curcuminoids, which are polyphenolic compounds found in the Curcuma longa plant's rhizome. This class of molecules includes curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Using prostate cancer cell lines PC3, LNCaP, DU145, and C42B, we show that curcuminoids inhibit cell proliferation (measured by MTT assay) and induce apoptosis-like cell death (measured by DNA/histone ELISA). A copper chelator (neocuproine) and reactive oxygen species scavengers (thiourea for hydroxyl radical, superoxide dismutase for superoxide anion, and catalase for hydrogen peroxide) significantly inhibit this reaction, thus demonstrating that intracellular copper reacts with curcuminoids in cancer cells to cause DNA damage via ROS generation. We further show that copper-supplemented media sensitize normal breast epithelial cells (MCF-10A) to curcumin-mediated growth inhibition, as determined by decreased cell proliferation. Copper supplementation results in increased expression of copper transporters CTR1 and ATP7A in MCF-10A cells, which is attenuated by the addition of curcumin in the medium. We propose that the copper-mediated, ROS-induced mechanism of selective cell death of cancer cells may in part explain the anticancer effects of curcuminoids.


Asunto(s)
Curcumina , Neoplasias , Masculino , Humanos , Cobre/farmacología , Especies Reactivas de Oxígeno/metabolismo , Curcuma/metabolismo , Diarilheptanoides/farmacología , Apoptosis , Oxidación-Reducción , Peróxido de Hidrógeno/farmacología , Genómica , Neoplasias/tratamiento farmacológico
10.
Vopr Pitan ; 91(5): 6-15, 2022.
Artículo en Ruso | MEDLINE | ID: mdl-36394925

RESUMEN

Despite the existence of sufficiently effective drug therapy, interest in additional dietary interventions that improve the clinical condition of patients with the most common alimentary diseases is constantly growing; as well as the inclusion of biologically active compounds (BAC) of plant origin as functional ingredients in foods for special dietary uses (FSDU) and dietary supplements is intensively developing. The purpose of the review is comparison of curcumin doses allowed for use in dietary supplements and FSDU with doses that provide a clinical effect, as well as an analysis of ways to increase curcumin bioavailability. Material and methods. A review of the existing literature on the problem in recent years was carried out using the databases of the Russian Science Citation Index, PubMed, ResearchGate. Results. The amount of BAC added to the FSDU in the daily portion has been established by domestic regulatory documents. The allowed maximum level in FSDU for curcumin is 150 mg per day. Literature analysis has shown that effective doses of turmeric are 320- 1670 mg per day when consumed for 10-12 weeks. The main barriers for using curcumin at lower doses are its low water solubility, rapid metabolism and elimination from the body, and therefore poor bioavailability. Curcumin bioavailability can be increased by including it in liposomes, phospholipid complexes, emulsions, oleogels, hydrogels, etc. Conclusion. Curcumin content in FSDU in an amount that does not reach doses with efficacy proven in a certain pathology, and the inclusion of such FSDU in the diet for a short period does not allow to achieve the expected result. A promising approach to achieve a clinical effect at lower doses of curcumin is the use of new technological methods to increase bioavailability.


Asunto(s)
Curcumina , Humanos , Curcumina/uso terapéutico , Curcuma/metabolismo , Disponibilidad Biológica , Suplementos Dietéticos/análisis , Federación de Rusia
11.
Free Radic Biol Med ; 193(Pt 2): 648-655, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36370961

RESUMEN

PURPOSE: Turmeric has renop rotective effects that can act to reduce oxidative stress and inflammation in hemodialysis (HD) patients. Piperine has been indicated as a bioavailability enhancer of turmeric and consequently of its biological effects. However, data on the efficacy of the turmeric/piperine combination in HD patients are limited. We aimed to verify whether turmeric supplementation in combination with piperine has a superior effect to turmeric alone in increasing antioxidant capacity and reducing oxidative stress and inflammation in HD patients. METHODS: This randomized, double-blind clinical trial was conducted in HD patients (age 20-75 years). Patients were supplemented with turmeric (3 g/day) or turmeric/piperine (3 g turmeric + 2 mg piperine/day) for 12 weeks. Malondialdehyde (MDA), antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), high-sensitivity C-reactive protein (hs-CRP), and ferritin were evaluated at baseline and the end of the study. RESULTS: There was a reduction in the MDA and ferritin levels in the turmeric/piperine group and in the comparison between groups at the end of the study [MDA: -0.08(-0.14/0.01) nmol/mL versus -0.003(-0.10/0.26) nmol/mL, p = 0.003; ferritin: -193.80 ±â€¯157.29 mg/mL versus 51.99 ±â€¯293.25 mg/mL, p = 0.018]. In addition, GPx activity reduced in the turmeric group (p = 0.029). No changes were observed for CAT, GR, and hs-CRP. CONCLUSION: Turmeric plus piperine was superior to turmeric alone in decreasing MDA and ferritin levels. The use of a combination of turmeric and piperine as a dietary intervention may be beneficial for modulating the status oxidative and inflammation in HD patients. BRAZILIAN REGISTRY OF CLINICAL TRIALS NUMBER: RBR-2t5zpd; Registration Date: May 2, 2018.


Asunto(s)
Antioxidantes , Curcuma , Curcuma/metabolismo , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Proteína C-Reactiva/metabolismo , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Diálisis Renal/efectos adversos , Suplementos Dietéticos , Ferritinas/metabolismo , Método Doble Ciego
12.
Phytomedicine ; 106: 154418, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36099655

RESUMEN

BACKGROUND: Prospects for the drug treatment of acute lung injury (ALI) is unpromising. Managing inflammation can prevent ALI from progressing and minimize further deterioration. Zedoary turmeric oil injection (ZTOI), a patented traditional Chinese medicine (TCM) that has been used against ALI, has shown significant anti-inflammatory effects. However, the mechanisms underlying these effects remain unclear. PURPOSE: Elucidate the anti-inflammatory mechanism by which ZTOI acts against ALI in rats using an ingredients-targets-pathways (I-T-P) interaction network. STUDY DESIGN AND METHODS: The key ingredients of ZTOI were characterized using UPLC-MS/MS combined with literature mining. The target profiles of each ingredient were established using drug-target databases. The anti-inflammatory activity of ZTOI against lipopolysaccharides (LPS)-induced rat ALI was validated using histopathology and inflammatory factor assessments. The therapeutic targets of ZTOI were screened by integrating transcriptomic results of lung tissues with protein-protein interaction (PPI) expansion. Using KEGG pathway enrichment, an I-T-P network was established to determine the essential interactions among ingredients, targets, and pathways of ZTOI against lung inflammation in ALI. Molecular docking and immunofluorescence staining were utilized to confirm the accuracy of the I-T-P network. RESULTS: A total of 11 sesquiterpenes, whose target profiles may characterize the potential function of ZTOI, were identified as key ingredients. In the ALI rat model, ZTOI can alleviate lung inflammation by decreasing the levels of C-reactive protein, interleukin-6, interleukin-1ß, and tumor necrosis factor α both in serum and lung tissues. Based on our biological samples, transcriptomics, PPI network expansion, and KEGG pathway enrichment, 11 ingredients, 174 targets, and 8 signaling pathways were linked in the I-T-P networks. From these results, ZTOI could be inferred to exert multiple anti-inflammatory effects against ALI through Toll-like receptor, NF-kappa B, RIG-I-like receptor, TNF, NOD-like receptor, IL-17, MAPK, and the Toll and Imd signaling pathways. In addition, two significantly regulated targets in the transcriptome, Usp18 and Map3k7, could be the essential anti-inflammatory targets of ZTOI. CONCLUSION: By integrating network pharmacology with ingredient identification and transcriptomics, we show the multiple anti-inflammatory mechanisms by which ZTOI acts against ALI on an I-T-P level. This work also provides a methodological reference for related research into TCM.


Asunto(s)
Lesión Pulmonar Aguda , Medicamentos Herbarios Chinos , Neumonía , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Proteína C-Reactiva , Cromatografía Liquida , Curcuma/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Interleucina-17 , Interleucina-1beta , Interleucina-6 , Lipopolisacáridos/efectos adversos , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Proteínas NLR , Farmacología en Red , Neumonía/tratamiento farmacológico , Ratas , Receptores del Factor de Necrosis Tumoral/uso terapéutico , Espectrometría de Masas en Tándem , Transcriptoma , Factor de Necrosis Tumoral alfa/efectos adversos
13.
Toxins (Basel) ; 14(7)2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35878168

RESUMEN

Due to the climatic change, an increase in aflatoxin B1 (AFB1) maize contamination has been reported in Europe. As an alternative to mineral binders, natural phytogenic compounds are increasingly used to counteract the negative effects of AFB1 in farm animals. In cows, even low dietary AFB1 concentrations may result in the milk excretion of the genotoxic carcinogen metabolite aflatoxin M1 (AFM1). In this study, we tested the ability of dietary turmeric powder (TP), an extract from Curcuma longa (CL) rich in curcumin and curcuminoids, in reducing AFM1 mammary excretion in Holstein-Friesian cows. Both active principles are reported to inhibit AFM1 hepatic synthesis and interact with drug transporters involved in AFB1 absorption and excretion. A crossover design was applied to two groups of cows (n = 4 each) with a 4-day washout. Animals received a diet contaminated with low AFB1 levels (5 ± 1 µg/kg) for 10 days ± TP supplementation (20 g/head/day). TP treatment had no impact on milk yield, milk composition or somatic cell count. Despite a tendency toward a lower average AFM1 milk content in the last four days of the treatment (below EU limits), no statistically significant differences with the AFB1 group occurred. Since the bioavailability of TP active principles may be a major issue, further investigations with different CL preparations are warranted.


Asunto(s)
Aflatoxina M1 , Leche , Aflatoxina B1/metabolismo , Aflatoxina M1/análisis , Aflatoxinas , Alimentación Animal/análisis , Animales , Bovinos , Curcuma/metabolismo , Femenino , Contaminación de Alimentos/análisis , Lactancia , Leche/química , Polvos/metabolismo
14.
Molecules ; 27(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35745000

RESUMEN

This study aims to investigate the combined anti-inflammatory activity of ginger and turmeric extracts. By comparing the activities of individual and combined extracts in lipopolysaccharide and interferon-γ-induced murine RAW 264.7 cells, we demonstrated that ginger-turmeric combination was optimal at a specific ratio (5:2, w/w) in inhibiting nitric oxide, tumour necrosis factor and interleukin 6 with synergistic interaction (combination index < 1). The synergistic inhibitory effect on TNF was confirmed in human monocyte THP-1 cells. Ginger-turmeric combination (5:2, w/w) also upregulated nuclear factor erythroid 2−related factor 2 activity and heme oxygenase-1 protein expression. Additionally, 6-shogaol, 8-shogaol, 10-shogaol and curcumin were the leading compounds in reducing major proinflammatory mediators and cytokines, and a simplified compound combination of 6-s, 10-s and curcumin showed the greatest potency in reducing LPS-induced NO production. Our study provides scientific evidence in support of the combined use of ginger and turmeric to alleviate inflammatory processes.


Asunto(s)
Curcumina , Zingiber officinale , Animales , Antiinflamatorios/farmacología , Curcuma/metabolismo , Curcumina/farmacología , Zingiber officinale/metabolismo , Hemo-Oxigenasa 1 , Humanos , Interferón gamma , Lipopolisacáridos , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/farmacología
15.
J Nanobiotechnology ; 20(1): 206, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488343

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) characterized by diffuse inflammation of the colonic mucosa and a relapsing and remitting course. The current therapeutics are only modestly effective and carry risks for unacceptable adverse events, and thus more effective approaches to treat UC is clinically needed. RESULTS: For this purpose, turmeric-derived nanoparticles with a specific population (TDNPs 2) were characterized, and their targeting ability and therapeutic effects against colitis were investigated systematically. The hydrodynamic size of TDNPs 2 was around 178 nm, and the zeta potential was negative (- 21.7 mV). Mass spectrometry identified TDNPs 2 containing high levels of lipids and proteins. Notably, curcumin, the bioactive constituent of turmeric, was evidenced in TDNPs 2. In lipopolysaccharide (LPS)-induced acute inflammation, TDNPs 2 showed excellent anti-inflammatory and antioxidant properties. In mice colitis models, we demonstrated that orally administrated of TDNPs 2 could ameliorate mice colitis and accelerate colitis resolution via regulating the expression of the pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1ß, and antioxidant gene, HO-1. Results obtained from transgenic mice with NF-κB-RE-Luc indicated that TDNPs 2-mediated inactivation of the NF-κB pathway might partially contribute to the protective effect of these particles against colitis. CONCLUSION: Our results suggest that TDNPs 2 from edible turmeric represent a novel, natural colon-targeting therapeutics that may prevent colitis and promote wound repair in colitis while outperforming artificial nanoparticles in terms of low toxicity and ease of large-scale production.


Asunto(s)
Colitis Ulcerosa , Colitis , Exosomas , Administración Oral , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/prevención & control , Curcuma/metabolismo , Modelos Animales de Enfermedad , Exosomas/metabolismo , Inflamación/tratamiento farmacológico , Ratones , Ratones Transgénicos , FN-kappa B/metabolismo
16.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613636

RESUMEN

Prion diseases are neurodegenerative disorders in humans and animals for which no therapies are currently available. Here, we report that Curcuma phaeocaulis Valeton (Zingiberaceae) (CpV) extract was partly effective in decreasing prion aggregation and propagation in both in vitro and in vivo models. CpV extract inhibited self-aggregation of recombinant prion protein (PrP) in a test tube assay and decreased the accumulation of scrapie PrP (PrPSc) in ScN2a cells, a cultured neuroblastoma cell line with chronic prion infection, in a concentration-dependent manner. CpV extract also modified the course of the disease in mice inoculated with mouse-adapted scrapie prions, completely preventing the onset of prion disease in three of eight mice. Biochemical and neuropathological analyses revealed a statistically significant reduction in PrPSc accumulation, spongiosis, astrogliosis, and microglia activation in the brains of mice that avoided disease onset. Furthermore, PrPSc accumulation in the spleen of mice was also reduced. CpV extract precluded prion infection in cultured cells as demonstrated by the modified standard scrapie cell assay. This study suggests that CpV extract could contribute to investigating the modulation of prion propagation.


Asunto(s)
Enfermedades por Prión , Priones , Scrapie , Zingiberaceae , Animales , Ratones , Curcuma/metabolismo , Modelos Animales , Extractos Vegetales/farmacología , Enfermedades por Prión/tratamiento farmacológico , Proteínas Priónicas , Priones/metabolismo , Scrapie/metabolismo , Ovinos
17.
Protoplasma ; 259(2): 301-315, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34023960

RESUMEN

Turmeric (Curcuma longa L.; Zingiberaceae), an economically important crop and a major spice in Indian cuisine, produces natural yellow color (curcumin) as well as curcuminoids which are widely utilized in traditional and modern medicinal practices. During the turmeric culture, the fluctuations of precipitation and seasonal changes in the whole life cycle play a major role, especially water shortage and decreasing temperature (in winter season), leading to rhizome dormancy under extreme weather conditions. The objective of this investigation was to understand how the water deficit and reduced temperature affect turmeric growth, physiological adaptation, quantity, and quality of turmeric rhizomes. Four-month-old turmeric plants were subjected to four treatments, namely normal temperature and well-watered (RT-WW), or water-deficit (RT-WD) conditions in the greenhouse, 25 °C controlled temperature and well-watered (CT-WW), or water-deficit (CT-WD) conditions in glasshouse. Leaf osmotic potential considerably declined in 30 days CT-WD treatment, leading to chlorophyll degradation by 26.04%, diminution of maximum quantum yield of PSII (Fv/Fm) by 23.50%, photon yield of PSII (ΦPSII) by 29.01%, and reduction of net photosynthetic rate (Pn) by 89.39% over CT-WW (control). After 30 days water withholding, fresh- and dry-weights of rhizomes of turmeric plants grown under CT-WD declined by 30-50% when compared with RT-WW conditions. Subsequently, curcuminoid content was reduced by 40% over RT-WW plants (control), whereas transcriptional expression levels of curcuminoids-related genes (CURS1, CURS2, CURS3, and DCS) were upregulated in CT-WD conditions. In summary, the water withholding and controlled temperature (constant at 25 °C day/night) negatively affected turmeric plants as abiotic stresses tend to limit overall plant growth performances and curcuminoid yield.


Asunto(s)
Curcuma , Curcumina , Adaptación Fisiológica , Curcuma/metabolismo , Curcumina/análisis , Curcumina/metabolismo , Curcumina/farmacología , Diarilheptanoides/metabolismo , Extractos Vegetales/farmacología , Temperatura , Agua/metabolismo
18.
Life Sci ; 286: 120043, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637800

RESUMEN

Colorectal cancer (CRC) is the second leading cause of cancer death worldwide and mostly affects men. Around 20% of its incidence is by familiar disposition due to hereditary syndromes. The CRC treatment involves surgery and chemotherapy; however, the side effects of treatments and the fast emergence of drug resistance evidence the necessity to find more effective drugs. Curcumin is the main polyphenol pigment present in Curcuma longa, a plant widely used as healthy food with antioxidant properties. Curcumin has synergistic effects with antineoplastics such as 5-fluorouracil and oxaliplatin, as well anti-inflammatory drugs by inhibiting cyclooxygenase-2 and the Nuclear factor kappa B. Furthermore, curcumin shows anticancer properties by inhibition of the Wnt/ß-catenin, Hedgehog, Notch, and the phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathways implicated in the progression of CRC. However, the consumption of pure curcumin is less suitable, as the absorption is poor, and the metabolism and excretion are high. Pharmacological formulations and essential oils of the plant improve the curcumin absorption, resulting in therapeutical dosages. Despite the evidence obtained in vitro and in vivo, clinical studies have not yet confirmed the therapeutic potential of curcumin against CRC. Here we reviewed the last scientific information that supports the consumption of curcumin as an adjuvant for CRC therapy.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Curcumina/farmacología , Adyuvantes Farmacéuticos , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Línea Celular Tumoral , Quimioterapia Adyuvante/métodos , Neoplasias Colorrectales/terapia , Curcuma/metabolismo , Curcumina/metabolismo , Humanos , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Extractos Vegetales , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , beta Catenina/metabolismo
19.
Viruses ; 13(10)2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34696344

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). The availability of effective and well-tolerated antiviral drugs for the treatment of COVID-19 patients is still very limited. Traditional herbal medicines elicit antiviral activity against various viruses and might therefore represent a promising option for the complementary treatment of COVID-19 patients. The application of turmeric root in herbal medicine has a very long history. Its bioactive ingredient curcumin shows a broad-spectrum antimicrobial activity. In the present study, we investigated the antiviral activity of aqueous turmeric root extract, the dissolved content of a curcumin-containing nutritional supplement capsule, and pure curcumin against SARS-CoV-2. Turmeric root extract, dissolved turmeric capsule content, and pure curcumin effectively neutralized SARS-CoV-2 at subtoxic concentrations in Vero E6 and human Calu-3 cells. Furthermore, curcumin treatment significantly reduced SARS-CoV-2 RNA levels in cell culture supernatants. Our data uncover curcumin as a promising compound for complementary COVID-19 treatment. Curcumin concentrations contained in turmeric root or capsules used as nutritional supplements completely neutralized SARS-CoV-2 in vitro. Our data argue in favor of appropriate and carefully monitored clinical studies that vigorously test the effectiveness of complementary treatment of COVID-19 patients with curcumin-containing products.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Curcumina/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/uso terapéutico , Línea Celular , Chlorocebus aethiops , Curcuma/metabolismo , Curcumina/metabolismo , Suplementos Dietéticos , Humanos , Medicina Tradicional/métodos , Extractos Vegetales/metabolismo , Extractos Vegetales/uso terapéutico , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Células Vero
20.
Food Funct ; 12(21): 10484-10499, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34555841

RESUMEN

Hyperlipidemia is manifested by abnormal levels of circulating lipids and may lead to various cardiovascular diseases. Studies have demonstrated that turmeric supplemented in food can effectively prevent hyperlipidemia. The aim of this study is to elucidate the underlying mechanism. 27 male C57BL/6J mice were randomly divided into three groups, which were fed with a standard diet, a high-fat diet and a high-fat diet supplemented with turmeric powder (2.0% w/w), respectively. After eight weeks of feeding, turmeric intervention significantly reduced the plasma TC, TG, and LDL-C levels and the LDL-C/HDL-C ratio of mice compared with high-fat diet fed mice. TMT-based proteomic analysis showed that the expression of 24 proteins in mouse plasma and 76 proteins in mouse liver was significantly altered by turmeric, respectively. Bioinformatics analysis showed that differential proteins in the plasma were mainly involved in complement and coagulation cascades and the cholesterol metabolism pathway. The differential proteins in the liver were mainly involved in arachidonic acid metabolism, steroid hormone biosynthesis and the PPAR signaling pathway. Key differential proteins were successfully validated by western blot analysis. This study is the first to reveal the preventive mechanism of turmeric on hyperlipidemia from proteomics. The results showed that dietary turmeric could prevent hyperlipidemia through regulating the expression of proteins in metabolism pathways.


Asunto(s)
Curcuma/metabolismo , Hiperlipidemias/prevención & control , Lípidos/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteómica/métodos , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Estudios de Evaluación como Asunto , Hiperlipidemias/sangre , Hiperlipidemias/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA