Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 143(35): 14115-14124, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34374290

RESUMEN

Breast cancer consists of heterogenic subpopulations, which determine the prognosis and response to chemotherapy. Among these subpopulations, a very limited number of cancer cells are particularly problematic. These cells, known as breast cancer stem cells (BCSCs), are thought responsible for metastasis and recurrence. They are thus major contributor to the unfavorable outcomes seen for many breast cancer patients. BCSCs are more prevalent in the hypoxic niche. This is an oxygen-deprived environment that is considered crucial to their proliferation, stemness, and self-renewal but also one that makes BCSCs highly refractory to traditional chemotherapeutic regimens. Here we report a small molecule construct, AzCDF, that allows the therapeutic targeting of BCSCs and which is effective in normally refractory hypoxic tumor environments. A related system, AzNap, has been developed that permits CSC imaging. Several design elements are incorporated into AzCDF, including the CAIX inhibitor acetazolamide (Az) to promote localization in MDA-MB-231 CSCs, a dimethylnitrothiophene subunit as a hypoxia trigger, and a 3,4-difluorobenzylidene curcumin (CDF) as a readily released therapeutic payload. This allows AzCDF to serve as a hypoxia-liable molecular platform that targets BCSCs selectively which decreases CSC migration, retards tumor growth, and lowers tumorigenesis rates as evidenced by a combination of in vitro and in vivo studies. To the best of our knowledge, this is the first time a CSC-targeting small molecule has been shown to prevent tumorigenesis in an animal model.


Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Carcinogénesis/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Acetazolamida/análogos & derivados , Acetazolamida/uso terapéutico , Animales , Antineoplásicos/síntesis química , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/síntesis química , Curcumina/uso terapéutico , Diarilheptanoides/síntesis química , Diarilheptanoides/uso terapéutico , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/uso terapéutico , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/diagnóstico por imagen , Esferoides Celulares/efectos de los fármacos , Tiofenos/síntesis química , Tiofenos/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Eur J Pharmacol ; 906: 174266, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34146588

RESUMEN

Curcumin, a pure compound extracted from the flowering plant, turmeric (Curcuma longa. Zingiberaceae), is a common dietary ingredient found in curry powder. It has been studied extensively for its anti-inflammatory, antioxidant, antimicrobial and anti-tumour activities. Evidence is accumulating demonstrating its potential in chemoprevention and as an anti-tumour agent for the treatment of cancer. Despite demonstrated safety and tolerability, the clinical application of curcumin is frustrated by its poor solubility, metabolic instability and low oral bioavailability. Consequently researchers have tried novel techniques of formulation and delivery as well as synthesis of analogues with enhanced properties to overcome these barriers. This review presents the synthetic analogues of curcumin that have proven their anticancer potential from different studies. It also highlights studies that combined these analogues with approved chemotherapies and delivered them via novel techniques. Currently, there are no reports of clinical studies on any of the synthetic congeners of curcumin and this presents an opportunity for future research. This review presents the synthetic analogues of curcumin and makes a compelling argument for their potential application in the management of cancerous disease.


Asunto(s)
Curcumina/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Animales , Línea Celular Tumoral , Curcumina/análogos & derivados , Curcumina/síntesis química , Humanos , Estructura Molecular , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Brain Res ; 1766: 147517, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33991495

RESUMEN

Alzheimer's disease (AD) is one of the greatest geriatric medicinal challenges of our century and is the main disease leading to dementia. Despite extensive scientific research advances, available disease-modifying treatment strategies remained limited; thus, increasing demand for new drugs. In recent years, medicinal plants attracted attention due to their potential role in dementia. In the present study, α and ß anomers of curcumin glucosides (CGs) were synthesized and evaluated for Alzheimer's treatment. CGs were synthesized by fusion reaction as a novel and easy method with more advantages (high yield, short reaction time, and low chemicals), and the products were characterized using HNMR. Wistar male rats were used to administer different treatments. They divided into control, sham, Alzheimer, and test groups (Alzheimer + α anomer and Alzheimer + ß anomer). Animals received normal saline, Scopolamine (1 mg/kg), high dose anomers, scopolamine, and two doses (12.5 and 25 mg/kg) of anomers, respectively, for 10 days. Then the Morris Water Maze (MWM) test was performed on all animals. Finally, the animals' brains were extracted and homogenized for glutathione, acetylcholine esterase activity, protein carbonyl, and lipid peroxide level detection. The escape latency and the distance towards the hidden platform in Morris water maze in the Alzheimer group were significantly higher than both the control and test groups. Besides, there were no significant differences between sham and control groups in all tests. Both anomers led to a significant increase in glutathione, and acetylcholine levels while they caused a decrease in lipid peroxidation and protein carbonyl levels in brain tissue. It seems that intranasal administration of both anomers positively influenced maze learning in scopolamine receiving subjects. Although both anomers resulted in similar biochemistry tests, a higher dose of ß anomer indicated better results than α anomer not only in behavioral tests but also in biochemical tests.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Curcumina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Glucósidos/administración & dosificación , Administración Intranasal , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Curcumina/síntesis química , Combinación de Medicamentos , Glucósidos/síntesis química , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratas , Ratas Wistar
4.
Pharmacol Res ; 166: 105489, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33588007

RESUMEN

Curcumin, a potent phytochemical, has been a significant lead compound and has been extensively investigated for its multiple bioactivities. Owing to its natural origin, non-toxic, safe, and pleiotropic behavior, it has been extensively explored. However, several limitations such as its poor stability, bioavailability, and fast metabolism prove to be a constraint to achieve its full therapeutic potential. Many approaches have been adopted to improve its profile, amongst which, structural modifications have indicated promising results. Its symmetric structure and simple chemistry have prompted organic and medicinal chemists to manipulate its arrangement and study its implications on the corresponding activity. One such recurring and favorable modification is at the diketo moiety with the aim to achieve isoxazole and pyrazole analogues of curcumin. A modification at this site is not only simple to achieve, but also has indicated a superior activity consistently. This review is a comprehensive and wide-ranged report of the different methods adopted to achieve several cyclized curcumin analogues along with the improvement in the efficacy of the corresponding activities observed.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/uso terapéutico , Curcumina/análogos & derivados , Curcumina/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Técnicas de Química Sintética , Curcumina/síntesis química , Curcumina/farmacología , Ciclización , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico
5.
Anticancer Agents Med Chem ; 21(5): 587-596, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32767956

RESUMEN

Bladder cancer, a life-threatening serious disease, is responsible for thousands of cancer-associated deaths worldwide. Similar to other malignancies, standard treatments of bladder cancer, such as Chemoradiotherapy, are not efficient enough in the affected patients. It means that, according to recent reports in the case of life quality as well as the survival time of bladder cancer patients, there is a critical requirement for exploring effective treatments. Recently, numerous investigations have been carried out to search for appropriate complementary treatments or adjuvants for bladder cancer therapy. Curcumin, a phenolic component with a wide spectrum of biological activities, has recently been introduced as a potential anti-cancer agent. It has been shown that this agent exerts its therapeutic effects via targeting a wide range of cellular and molecular pathways involved in bladder cancer. Herein, the current data on curcumin therapy for bladder cancer are summarized.


Asunto(s)
Antineoplásicos/farmacología , Curcumina/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Curcumina/síntesis química , Curcumina/química , Composición de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/metabolismo
6.
ACS Nano ; 14(2): 1533-1549, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32027482

RESUMEN

Although emerging evidence suggests that the pathogenesis of Parkinson's disease (PD) is closely related to the aggregation of alpha-synuclein (α-syn) in the midbrain, the clearance of α-syn remains an unmet clinical need. Here, we develop a simple and efficient strategy for fabricating the α-syn nanoscavenger for PD via a reprecipitation self-assembly procedure. The curcumin analogue-based nanoscavenger (NanoCA) is engineered to be capable of a controlled-release property to stimulate nuclear translocation of the major autophagy regulator, transcription factor EB (TFEB), triggering both autophagy and calcium-dependent exosome secretion for the clearance of α-syn. Pretreatment of NanoCA protects cell lines and primary neurons from MPP+-induced neurotoxicity. More importantly, a rapid arousal intranasal delivery system (RA-IDDS) was designed and applied for the brain-targeted delivery of NanoCA, which affords robust neuroprotection against behavioral deficits and promotes clearance of monomer, oligomer, and aggregates of α-syn in the midbrain of an MPTP mouse model of PD. Our findings provide a clinically translatable therapeutic strategy aimed at neuroprotection and disease modification in PD.


Asunto(s)
Curcumina/uso terapéutico , Nanoestructuras/química , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/antagonistas & inhibidores , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Curcumina/síntesis química , Curcumina/química , Liberación de Fármacos , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Células PC12 , Enfermedad de Parkinson/patología , Tamaño de la Partícula , Agregado de Proteínas/efectos de los fármacos , Ratas , Propiedades de Superficie , alfa-Sinucleína/metabolismo
7.
Sci Rep ; 9(1): 19011, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831807

RESUMEN

The pathological aggregation and accumulation of tau, a microtubule-associated protein, is a common feature amongst more than 18 different neurodegenerative diseases that are collectively known as tauopathies. Recently, it has been demonstrated that the soluble and hydrophobic tau oligomers are highly toxic in vitro due to their capacity towards seeding tau misfolding, thereby propagating the tau pathology seen across different neurodegenerative diseases. Modulating the aggregation state of tau oligomers through the use of small molecules could be a useful therapeutic strategy to target their toxicity, regardless of other factors involved in their formation. In this study, we screened and tested a small library of newly synthesized curcumin derivatives against preformed recombinant tau oligomers. Our results show that the curcumin derivatives affect and modulate the tau oligomer aggregation pathways, converting to a more aggregated non-toxic state as assessed in the human neuroblastoma SH-SY5Y cell line and primary cortical neuron cultures. These results provide insight into tau aggregation and may become a basis for the discovery of new therapeutic agents, as well as advance the diagnostic field for the detection of toxic tau oligomers.


Asunto(s)
Curcumina/farmacología , Multimerización de Proteína , Proteínas tau/toxicidad , Animales , Fenómenos Biofísicos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/síntesis química , Curcumina/química , Evaluación Preclínica de Medicamentos , Humanos , Ratones , Neuronas/efectos de los fármacos , Neurotoxinas/toxicidad , Agregado de Proteínas
8.
Bioorg Med Chem Lett ; 29(23): 126683, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31627991

RESUMEN

Histone lysine-specific demethylase 1 (LSD1) was the first discovered histone demethylase. Inactivating LSD1 or downregulating its expression inhibits cancer-cell development, and thus, it is an attractive molecular target for the development of novel cancer therapeutics. In this study, we worked on the structural optimization of natural products and identified 30 novel LSD1 inhibitors. Utilizing a structure-based drug design strategy, we designed and synthesized a series of curcumin analogues that were shown to be potent LSD1 inhibitors in the enzyme assay. Compound WB07 displayed the most potent LSD1 inhibitory activity, with an IC50 value of 0.8 µM. Moreover, WA20 showed an anticlonogenic effect on A549 cells with an IC50 value of 4.4 µM. Molecular docking simulations were also carried out, and the results indicated that the inhibitors bound to the protein active site located around the key residues of Asp555 and Asp556. These findings suggested that compounds WA20 and WB07 are the first curcumin analogue-based LSD1 inhibitors with remarkable A549 suppressive activity, providing a novel scaffold for the development of LSD1 inhibitors.


Asunto(s)
Productos Biológicos/uso terapéutico , Curcumina/síntesis química , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/uso terapéutico , Simulación del Acoplamiento Molecular/métodos , Productos Biológicos/farmacología , Curcumina/análogos & derivados , Histona Demetilasas/farmacología , Humanos , Estructura Molecular , Relación Estructura-Actividad
9.
Acta Crystallogr C Struct Chem ; 75(Pt 3): 271-276, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30833521

RESUMEN

The molecular structure of the anti-aging agent J147 [systematic name: (E)-N-(2,4-dimethylphenyl)-2,2,2-trifluoro-N'-(3-methoxybenzylidene)acetohydrazide], C18H17F3N2O2, has been determined at 150 K. The crystal structure corresponds to the minimum-energy conformation in the gas phase calculated by density functional theory (DFT). 15 other conformations have been calculated and compared with the minimum, denoted 1111. NMR spectroscopic data have been obtained and compared with those from Gauge Independent Atomic Orbital (GIAO) calculations. DFT calculations allow the reduction of the 16 possible rotamers to the four most stable (i.e. 1111, 1112, 1121 and 1222); in addition, the calculated barriers connecting these minima are low enough to permit their interconversion. Comparison of the NMR spectroscopic results, both experimental and calculated, point to the 1121 isomer being present in chloroform solution.


Asunto(s)
Curcumina/análogos & derivados , Fármacos Neuroprotectores/química , Curcumina/síntesis química , Curcumina/química , Teoría Funcional de la Densidad , Modelos Químicos , Conformación Molecular , Fármacos Neuroprotectores/síntesis química
10.
Biomed Pharmacother ; 112: 108614, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30798129

RESUMEN

Lung cancer is the leading cause of cancer death worldwide. To overcome the toxic side effects and multidrug resistance (MDR) during doxorubicin (DOX) chemotherapy, a urokinase plasminogen activator receptor (uPAR) targeting U11 peptide decorated, pH-sensitive, dual drugs co-encapsulated nanoparticles (NPs) system is employed in this study. A U11 peptide conjugated, pH-sensitive DOX prodrug (U11-DOX) was synthesized and used as materials to produce NPs. A curcumin (CUR) and U11-DOX co-encapsulated NPs system (U11-DOX/CUR NPs) was constructed to treat lung cancer. After the characterization of biophysical properties of this NPs system, synergistic chemotherapeutic efficacy was evaluated in both cultured cancer cells and tumor-bearing animal model. U11-DOX/CUR NPs had a uniformly spherical shape with a core-shell structure. The mean particle size and zeta potential of the U11-DOX/CUR NPs was 121.3 nm and -33.5 mV, with a DOX and CUR EE of 81.7 and 90.5%, respectively. The DOX release from U11-DOX/CUR NPs was 83.5, 55.2, and 32.8% correspondence to the pH of 5.0, 6.0 and 7.4. Cellular uptake efficiency of U11-DOX/CUR NPs was significantly higher than non U11 peptide decorated DOX/CUR NPs. U11-DOX/CUR NPs displayed a pronounced synergy effects in vitro and an obvious tumor tissue accumulation efficiency in vivo. In vivo antitumor experiment showed that U11-DOX/CUR NPs could inhibit the tumor growth to a level of 85%.In vitro and in vivo studies demonstrated that U11-DOX/CUR NPs is a sustained released, pH responsive, synergistic antitumor system. This study suggests that the U11-DOX/CUR NPs have promising potential for combination treatment of lung cancer.


Asunto(s)
Curcumina/administración & dosificación , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Nanomedicina/métodos , Profármacos/administración & dosificación , Células A549 , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Curcumina/síntesis química , Doxorrubicina/síntesis química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/síntesis química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/administración & dosificación , Nanopartículas/química , Profármacos/síntesis química , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
11.
Eur J Pharm Sci ; 130: 234-246, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30711688

RESUMEN

Designing novel drug delivery systems to improve drug efficiencies have gained great interests in recent years. In this study, a new vesicular system has been prepared using thin film hydration method with slight modifications, hydrophobic drugs have been used in both lipophilic and hydrophilic phases and dry film was hydrated by hyaluronan polymeric solution, to overcome curcumin and quercetin formulation drawbacks. Briefly, different formulations were prepared according to Box-Behnken design to assess the effect of HLB value, cholesterol and hyaluronan contents on the properties of niosomes. Then, the best formulation was selected for further studies and compared with conventional niosomes. The results showed that both niosomes had spherical shapes according to Transmission Electron and Atomic Force Microscopic images. Results also showed that hyaluronan containing niosomes had smaller size and higher values of zeta potential and entrapment than conventional niosomes. The average size of hyaluronan containing niosomes was 260.37 ±â€¯6.58 nm, the zeta potential was -34.97 ±â€¯1.50 mv and the entrapment for curcumin and quercetin were 98.85 ±â€¯0.55% and 93.13 ±â€¯1.22%, respectively. The release kinetic of quercetin was best fitted to Peppas model for both conventional niosome and hyaluronan containing niosomes; while, the release kinetic of curcumin was best fitted with non-conventional order 2 and three second roots of mass for hyaluronan containing niosomes and conventional niosomes, respectively. Hyaluronan containing niosomes showed higher antioxidant and anti-inflammatory effects in comparison with conventional niosomes.


Asunto(s)
Curcumina/síntesis química , Portadores de Fármacos/síntesis química , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Ácido Hialurónico/síntesis química , Quercetina/síntesis química , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/síntesis química , Curcumina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Edema/tratamiento farmacológico , Edema/patología , Femenino , Ácido Hialurónico/administración & dosificación , Liposomas , Quercetina/administración & dosificación , Ratas
12.
Int J Nanomedicine ; 13: 8309-8323, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30584302

RESUMEN

BACKGROUND: The main objective of this study was to develop novel BSA nanoparticles (BSA NPs) for improving the bioavailability of curcumin as an anticancer drug, and those BSA NPs were galactosylated for forming the curcumin-loaded galactosylated BSA nanoparticles (Gal-BSA-Cur NPs), thus enhancing their ability to target asialoglycoprotein receptor (ASGPR) overexpressed on hepatocellular carcinoma (HCC) cells. MATERIALS AND METHODS: Gal-BSA-Cur NPs were prepared by the desolvation method and showed a spherical shape and well distribution with the average particle size of 116.24 nm. RESULTS: In vitro drug release assay exhibited that Gal-BSA-Cur NPs had higher release rates and improved the curcumin solubility. Cell uptake studies confirmed that Gal-BSA-Cur NPs could selectively recognize receptors on the surface of HCC (HepG2) cells and improve internalization ability of drug compared with BSA NPs-loaded curcumin (BSA-Cur NPs), which might be due to high affinity to galactose. Further, the effects of Gal-BSA-Cur NPs were evaluated by cytotoxicity assay, crystal violet assay, cell apoptosis assay, and wound healing assay, respectively, which revealed that Gal-BSA-Cur NPs could inhibit HepG2 cells proliferation, induce cell apoptosis, and inhibit cell migration. CONCLUSION: Immunofluorescence staining has proved that the effects of Gal-BSA-Cur NPs related to the suppression of the nuclear factor κB-p65 (NF-κB-p65) expression in HepG2 cell nucleus. Therefore, these results indicate that novel Gal-BSA-Cur NPs are potential candidates for targeted curcumin delivery to HCC cells.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Movimiento Celular , Curcumina/uso terapéutico , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Galactosa/química , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/química , Albúmina Sérica Bovina/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Unión Competitiva , Carcinoma Hepatocelular/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Curcumina/síntesis química , Curcumina/química , Curcumina/farmacología , Portadores de Fármacos/síntesis química , Liberación de Fármacos , Endocitosis , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología , Nanopartículas/ultraestructura , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Factor de Transcripción ReIA/metabolismo
13.
Molecules ; 23(8)2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30072621

RESUMEN

Tumor suppressor p53-directed apoptosis triggers loss of normal cells, which contributes to the side-effects from anticancer therapies. Thus, small molecules with potential to downregulate the activation of p53 could minimize pathology emerging from anticancer therapies. Acetylation of p53 by the histone acetyltransferase (HAT) domain is the hallmark of coactivator CREB-binding protein (CBP) epigenetic function. During genotoxic stress, CBP HAT-mediated acetylation is essential for the activation of p53 to transcriptionally govern target genes, which control cellular responses. Here, we present a small molecule, NiCur, which blocks CBP HAT activity and downregulates p53 activation upon genotoxic stress. Computational modeling reveals that NiCur docks into the active site of CBP HAT. On CDKN1A promoter, the recruitment of p53 as well as RNA Polymerase II and levels of acetylation on histone H3 were diminished by NiCur. Specifically, NiCur reduces the levels of acetylation at lysine 27 on histone H3, which concomitantly increases the levels of trimethylation at lysine 27. Finally, NiCur attenuates p53-directed apoptosis by inhibiting the Caspase 3 activity and cleavage of Poly (ADP-ribose) polymerase (PARP) in normal gastrointestinal epithelial cells. Collectively, NiCur demonstrates the potential to reprogram the chromatin landscape and modulate biological outcomes of CBP-mediated acetylation under normal and disease conditions.


Asunto(s)
Proteína de Unión a CREB/antagonistas & inhibidores , Regulación hacia Abajo , Histonas/metabolismo , Lisina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Animales , Apoptosis/efectos de los fármacos , Proteína de Unión a CREB/química , Proteína de Unión a CREB/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromatina/metabolismo , Curcumina/análogos & derivados , Curcumina/síntesis química , Curcumina/química , Curcumina/farmacología , Daño del ADN , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Enterocitos/efectos de los fármacos , Enterocitos/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Metilación , Dominios Proteicos , Ratas , Relación Estructura-Actividad
14.
Pharmacology ; 102(3-4): 169-179, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30099452

RESUMEN

In this study, rat and human 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) have been cloned by lentiviral transduction and expressed by CHO-K1 cells. The results showed that recombinant plasmids contained R11bhsd1 or H11bhsd1 have been constructed, which is consistent with the gene bank respectively. A clone cell was selected with G418 and cultivated to express 11ß-HSD1. 11ß-HSD1 catalytic activity of rat and human were 99.5 and 98.7%, respectively, determined by scanning radiometer. And the cloned CHO-K1 cells expressed the protein of 11ß-HSD1 in a long-term and stable manner, which makes it suitable for screening 11ß-HSD1 inhibitor. The three-dimensional structure of 11ß-HSD1 was used for studying the interaction between inhibitor and enzyme by the binding poses predicted by AutoDock and LeDock software. The docking results revealed that compound 8 forms 2 hydrogen bonds with the residues of Gly-216 and Ile-218 in 11ß-HSD1, that is to say compound 8 maybe a good 11ß-HSD1 inhibitor. Moreover, C57BL/6 mice with R11bHsd1 overexpression had a higher body weight, glucose, total cholesterol, and triglyceride levels compared to the mice treated with an empty viral vector. The results might provide a beneficial foundation for selecting inhibitors of 11ß-HSD1 or for researching drug candidate mechanisms.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/antagonistas & inhibidores , Curcumina/análogos & derivados , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/química , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Animales , Células CHO , Clonación Molecular , Cricetinae , Cricetulus , Curcumina/síntesis química , Curcumina/farmacología , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/síntesis química , Lentivirus/genética , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Transducción Genética
15.
Int J Biol Macromol ; 120(Pt A): 859-864, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30165144

RESUMEN

Alginate hydrogel beads have been extensively investigated as drug delivery systems due to promising gastric environment stability. In the present study, alginate hydrogel beads were prepared with Ca2+ or Fe3+ to serve as the loading vehicles for egg yolk low density lipoprotein (LDL)/pectin nanogels. Scanning electron microscope was carried out to confirm the successful incorporation of nanogels into the beads. The FT-IR spectra and swelling ratio analyses proved that incorporation of nanogels did not affect the physicochemical properties of the hydrogel beads. The developed hydrogel beads exhibited pH dependent release of curcumin pre-encapsulated in nanogels, with significant retention of curcumin in gastric condition compared to curcumin encapsulated in nanogels or alginate beads alone. Hydrogel beads prepared with low viscous alginate and Ca2+ showed limited swelling property and more sustained release of curcumin in simulated gastrointestinal conditions, compared to the beads prepared with high viscous alginate and Fe3+. Gradual dissociation of nanogels from the beads during incubation in simulated intestinal fluid was studied with transmission electron microscope. Our study demonstrated the promising potential of alginate beads as a carrier to protect LDL-based nanogels from destabilization in gastric condition, thus expanding their applications as oral delivery system.


Asunto(s)
Alginatos/química , Curcumina/química , Sistemas de Liberación de Medicamentos , Polietilenglicoles/química , Polietileneimina/química , Administración Oral , Alginatos/uso terapéutico , Curcumina/síntesis química , Curcumina/uso terapéutico , Yema de Huevo/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapéutico , Concentración de Iones de Hidrógeno , Lipoproteínas LDL/química , Microscopía Electrónica de Rastreo , Nanogeles , Pectinas/química , Pectinas/uso terapéutico , Polietilenglicoles/uso terapéutico , Polietileneimina/uso terapéutico , Espectroscopía Infrarroja por Transformada de Fourier
16.
Bioorg Med Chem ; 26(14): 4288-4300, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30031653

RESUMEN

Several neurodegenerative diseases, like Alzheimer's (AD), are characterized by amyloid fibrillar deposition of misfolded proteins, and this feature can be exploited for both diagnosis and therapy design. In this paper, structural modifications of curcumin scaffold were examined in order to improve its bioavailability and stability in physiological conditions, as well as its ability to interfere with ß-amyloid fibrils and aggregates. The acid-base behaviour of curcumin derivatives, their pharmacokinetic stability in physiological conditions, and in vitro ability to interfere with Aß fibrils at different incubation time were investigated. The mechanisms governing these phenomena have been studied at atomic level by means of molecular docking and dynamic simulations. Finally, biological activity of selected curcuminoids has been investigated in vitro to evaluate their safety and efficiency in oxidative stress protection on hippocampal HT-22 mouse cells. Two aromatic rings, π-conjugated structure and H-donor/acceptor substituents on the aromatic rings showed to be the sine qua non structural features to provide interaction and disaggregation activity even at very low incubation time (2h). Computational simulations proved that upon binding the ligands modify the conformational dynamics and/or interact with the amyloidogenic region of the protofibril facilitating disaggregation. Significantly, in vitro results on hippocampal cells pointed out protection against glutamate toxicity and safety when administered at low concentrations (1 µM). On the overall, in view of its higher stability in physiological conditions with respect to curcumin, of his rapid binding to fibrillar aggregates and strong depolymerizing activity, phtalimmide derivative K2F21 appeared a good candidate for both AD diagnostic and therapeutic purposes.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Curcumina/farmacología , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Curcumina/síntesis química , Curcumina/química , Relación Dosis-Respuesta a Droga , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad
17.
Food Funct ; 9(4): 2005-2014, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29616245

RESUMEN

The biological activity of curcumin (CUR), a promising naturally occurring dietary compound for the treatment of hepatocellular carcinoma (HCC), was closely associated with its metabolite. Octahydrocurcumin (OHC) is the final hydrogenated metabolite of CUR and has been reported to have potential biological activities. However, difficulties in access have hampered its biological studies. In the current investigation, we designed an efficient synthesis method to produce OHC, and comparatively explored the anti-cancer effect and potential mechanism of OHC and CUR in an H22 ascites tumor-bearing mice model. The results indicated that OHC had a relatively wide margin of safety, and exhibited superior effects to CUR in suppressing the tumor growth, including ascending weight, abdominal circumference, ascites volume and cancer cell viability. OHC significantly induced H22 cell apoptosis by upregulating the p53 expression and downregulating the MDM2 expression. OHC also remarkably decreased the Bcl-2 and Bcl-xl protein expressions, and increased the Bax and Bad expressions in ascitic cells. Furthermore, THC substantially induced the release of cytochrome C, caspase-3, caspase-9 and the cleavage of PARP to induce H22 cell apoptosis. Taken together, OHC was more effective than CUR in suppressing H22-induced HCC through the activation of the mitochondrial apoptosis pathway. OHC may thus be a promising anti-HCC agent.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis , Carcinoma Hepatocelular/dietoterapia , Curcumina/análogos & derivados , Neoplasias Hepáticas Experimentales/dietoterapia , Animales , Animales no Consanguíneos , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/metabolismo , Proteínas Reguladoras de la Apoptosis/agonistas , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Biomarcadores/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Supervivencia Celular , Curcumina/síntesis química , Curcumina/metabolismo , Curcumina/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Hidrogenación , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Distribución Aleatoria , Análisis de Supervivencia , Carga Tumoral , Proteína p53 Supresora de Tumor/agonistas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
Curr Pharm Des ; 24(16): 1821-1826, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29623828

RESUMEN

Curcumin, as the main ingredient of the curcuma spice, has increasingly become the target of scientific research. The turmeric root where the spice is obtained from has been widely used in the traditional medicine. Moreover, scientific studies have found that curcumin has anti-inflammatory, anti-cancer, anti-angiogenic effects as well as antibacterial properties. Recently, curcumin has gathered interest as a potential therapeutic agent in the research on Alzheimer's disease. A consistent problem in the investigative and therapeutic applications of curcumin is its poor solubility in aqueous solutions. In the present study, we synthesized a conjugate of curcumin, the amino acid lysine and the fluorescent dye fluorescein. This conjugate was soluble in cell culture medium and facilitated the examination of curcumin with fluorescence imaging methods. We studied the cell growth impact of unmodified curcumin on seven different human cell lines and then analyzed the uptake and cellular localization of our curcumin conjugate with confocal laser scanning imaging and flow cytometry on the seven cell lines. We found that unbound curcumin inhibited cell growth in vitro and was not taken up into the cells. The curcumin conjugate was internalized into the cell cytoplasm in a dot-like pattern and cellular uptake correlated with the cell membrane damage which was measured using propidium iodide. The CAL-72 osteosarcoma cell exhibited 3-4fold increased conjugate uptake and a strong uniform fluorescein staining in addition to the dot-like pattern observed in all cell lines. In conclusion, we successfully synthesized a novel water-soluble fluorescent curcumin conjugate which showed a strong preference for CAL-72 osteosarcoma cells in vitro.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Curcumina/química , Curcumina/farmacología , Fluorescencia , Imagen Óptica , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Curcumina/síntesis química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Solubilidad , Relación Estructura-Actividad
19.
Int J Nanomedicine ; 13: 1831-1840, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29606874

RESUMEN

INTRODUCTION: Nanoparticles (NPs) modified with bio-ligands represent a promising strategy for active targeted drug delivery to tumour. However, many targeted ligands, such as trastuzumab (TMAB), have high molecular weight, limiting their application for targeting. In this study, we prepared Fab' (antigen-binding fragments cut from TMAB)-modified NPs (Fab'-NPs) with curcumin (Cur) as a model drug for more effective targeting of human epidermal growth factor receptor 2 (HER2/ErbB2/Neu), which is overexpressed on breast cancer cells. MATERIAL AND METHODS: The release kinetics was conducted by dialysis bags. The ability to kill HER2-overexpressing BT-474 cells of Fab'-Cur-NPs compared with TMAB-Cur-NPs was conducted by cytotoxicity experiments. Qualitative and quantitative cell uptake studies using coumarin-6 (fluorescent probe)-loaded NPs were performed by fluorescence microscopy and flow cytometry. Pharmacokinetics and biodistribution experiments in vivo were assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: The release kinetics showed that both Fab'-Cur-NPs and TMAB-Cur-NPs provided continuous, slow release of curcumin for 72 h, with no significant difference. In vitro cytotoxicity experiments showed that Fab'-Cur-NPs manifested prominent ability to kill HER2-overexpressing BT-474 cells compared with TMAB-Cur-NPs. Qualitative and quantitative cell uptake studies indicated that the accumulation of Fab'-NPs was greater than that of TMAB-NPs in BT-474 (HER2+) cells; However, there was no significant difference in MDA-MB-231 (HER2-) cells. Pharmacokinetics and biodistribution experiments in vivo demonstrated that the half-life (t1/2) and area under the blood concentration-time curve (AUC0-t) of Fab'-Cur-NPs increased 5.30-fold and 1.76-fold relative to those of TMAB-Cur-NPs, respectively. Furthermore, the tumor accumulation of Fab'-Cur-NPs was higher than that of TMAB-Cur-NPs. CONCLUSION: Fab' fragment has greater capacity than the intact antibody to achieve tumor targeting through NP-based delivery.


Asunto(s)
Curcumina/síntesis química , Curcumina/uso terapéutico , Fragmentos Fab de Inmunoglobulinas/química , Nanopartículas/química , Poliésteres/química , Polietilenglicoles/química , Trastuzumab/uso terapéutico , Animales , Muerte Celular , Línea Celular Tumoral , Cumarinas/química , Curcumina/farmacocinética , Endocitosis , Femenino , Citometría de Flujo , Humanos , Inyecciones Intravenosas , Ratones Endogámicos BALB C , Microscopía Fluorescente , Nanopartículas/ultraestructura , Ratas Sprague-Dawley , Tiazoles/química , Distribución Tisular , Trastuzumab/farmacocinética
20.
Drug Des Devel Ther ; 11: 1439-1451, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28553074

RESUMEN

Given the important role that inhibitory kappa B (IκB) kinase ß (IKKß) plays in pancreatic cancer (PC) development and progression, inhibitors targeting IKKß are believed to be increasingly popular as novel anti-PC therapies. Two synthetic molecules, named EF24 and EF31, exhibited favorable potential in terms of inhibition of both IKKß activity and PC cell proliferation. Aiming to enhance their cellular efficacy and to analyze their structure-activity relationship, four series of EF24 and EF31 analogs were designed and synthesized. Through kinase activity and vitality screening of cancer cells, D6 displayed excellent inhibition of both IKKß activity and PC cell proliferation. Additionally, multiple biological evaluations showed that D6 was directly bound to IKKß and significantly suppressed the activation of the IKKß/nuclear factor κB pathway induced by tumor necrosis factor-α, as well as effectively inducing cancer cell apoptosis. Moreover, molecular docking and molecular dynamics simulation analysis indicated that the dominant force between D6 and IKKß comprised hydrophobic interactions. In conclusion, D6 may be a promising therapeutic agent for PC treatment and it also provides a structural lead for the design of novel IKKß inhibitors.


Asunto(s)
Compuestos de Bencilideno/farmacología , Curcumina/análogos & derivados , Quinasa I-kappa B/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Piperidonas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Compuestos de Bencilideno/síntesis química , Compuestos de Bencilideno/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Curcumina/síntesis química , Curcumina/química , Curcumina/farmacología , Humanos , Quinasa I-kappa B/metabolismo , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Neoplasias Pancreáticas/enzimología , Fosforilación , Piperidonas/síntesis química , Piperidonas/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA