Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cancer Res Clin Oncol ; 149(11): 8467-8481, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37087696

RESUMEN

PURPOSE: Esophageal squamous cell carcinoma (ESCC), is a frequent digestive tract malignant carcinoma with a high fatality rate. Daphne altaica (D. altaica), a medicinal plant that is frequently employed in Kazakh traditional medicine, and which has traditionally been used to cure cancer and respiratory conditions, but research on the mechanism is lacking. Therefore, we examined and verified the hub genes and mechanism of D. altaica treating ESCC. METHODS: Active compounds and targets of D. altaica were screened by databases such as TCMSP, and ESCC targets were screened by databases such as GeneCards and constructed the compound-target network and PPI network. Meantime, data sets between tissues and adjacent non-cancerous tissues from GEO database (GSE100942, GPL570) were analyzed to obtain DEGs using the limma package in R. Hub genes were validated using data from the Kaplan-Meier plotter database, TIMER2.0 and GEPIA2 databases. Finally, AutoDock software was used to predict the binding sites through molecular docking. RESULTS: In total, 830 compound targets were obtained from TCMSP and other databases. In addition, 17,710 disease targets were acquired based on GeneCards and other databases. In addition, we constructed the compound-target network and PPI network. Then, 127 DEGs were observed (82 up-regulated and 45 down-regulated genes). Hub genes were screened including TOP2A, NUF2, CDKN2A, BCHE, and NEK2, and had been validated with the help of several publicly available databases. Finally, molecular docking results showed more stable binding between five hub genes and active compounds. CONCLUSIONS: In the present study, five hub genes were screened and validated, and potential mechanisms of action were predicted, which could provide a theoretical understanding of the treatment of ESCC with D. altaica.


Asunto(s)
Carcinoma , Daphne , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Daphne/genética , Farmacología en Red , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Simulación del Acoplamiento Molecular , Biología Computacional , Quinasas Relacionadas con NIMA
2.
Plant Biol (Stuttg) ; 18(5): 859-67, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27090773

RESUMEN

Gynodioecy, a state where female and hermaphrodite plants coexist in populations, has been widely proposed an intermediate stage in the evolutionary pathway from hermaphroditism to dioecy. In the gynodioecy-dioecy pathway, hermaphrodites may gain most of their fitness through male function once females invade populations. To test this prediction, comprehensive studies on sex ratio variation across populations and reproductive characteristics of hermaphrodite and female phenotypes are necessary. This study examined the variation in sex ratio, sex expression, flower and fruit production and sexual dimorphism of morphological traits in a gynodioecious shrub, Daphne jezoensis, over multiple populations and years. Population sex ratio (hermaphrodite:female) was close to 1:1 or slightly hermaphrodite-biased. Sex type of individual plants was largely fixed, but 15% of plants changed their sex during a 6-year census. Hermaphrodite plants produced larger flowers and invested 2.5 times more resources in flower production than female plants, but they exhibited remarkably low fruit set (proportion of flowers setting fruits). Female plants produced six times more fruits than hermaphrodite plants. Low fruiting ability of hermaphrodite plants was retained even when hand-pollination was performed. Fruit production of female plants was restricted by pollen limitation under natural conditions, irrespective of high potential fecundity, and this minimised the difference in resources allocated to reproduction between the sexes. Negative effects of previous flower and fruit production on current reproduction were not apparent in both sexes. This study suggests that gynodioecy in this species is functionally close to a dioecious mating system: smaller flower production with larger fruiting ability in female plants, and larger flower production with little fruiting ability in hermaphrodite plants.


Asunto(s)
Daphne/fisiología , Organismos Hermafroditas/fisiología , Evolución Biológica , Daphne/anatomía & histología , Daphne/genética , Fertilidad , Flores/anatomía & histología , Flores/genética , Flores/fisiología , Frutas/anatomía & histología , Frutas/genética , Frutas/fisiología , Geografía , Japón , Fenotipo , Polen/anatomía & histología , Polen/genética , Polen/fisiología , Polinización , Reproducción , Semillas/anatomía & histología , Semillas/genética , Semillas/fisiología , Razón de Masculinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA