Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1642, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388461

RESUMEN

Folate supplementation reduces the occurrence of neural tube defects (NTDs), birth defects consisting in the failure of the neural tube to form and close. The mechanisms underlying NTDs and their prevention by folate remain unclear. Here we show that folate receptor 1 (FOLR1) is necessary for the formation of neural tube-like structures in human-cell derived neural organoids. FOLR1 knockdown in neural organoids and in Xenopus laevis embryos leads to NTDs that are rescued by pteroate, a folate precursor that is unable to participate in metabolism. We demonstrate that FOLR1 interacts with and opposes the function of CD2-associated protein, molecule essential for apical endocytosis and turnover of C-cadherin in neural plate cells. In addition, folates increase Ca2+ transient frequency, suggesting that folate and FOLR1 signal intracellularly to regulate neural plate folding. This study identifies a mechanism of action of folate distinct from its vitamin function during neural tube formation.


Asunto(s)
Ácido Fólico , Defectos del Tubo Neural , Humanos , Ácido Fólico/metabolismo , Tubo Neural/metabolismo , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Placa Neural/metabolismo
2.
Zool Res ; 45(2): 233-241, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38287904

RESUMEN

Neural tube defects (NTDs) are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure. Although folate supplementation has been shown to mitigate the incidence of NTDs, some cases, often attributable to genetic factors, remain unpreventable. The SHROOM3 gene has been implicated in NTD cases that are unresponsive to folate supplementation; at present, however, the underlying mechanism remains unclear. Neural tube morphogenesis is a complex process involving the folding of the planar epithelium of the neural plate. To determine the role of SHROOM3 in early developmental morphogenesis, we established a neuroepithelial organoid culture system derived from cynomolgus monkeys to closely mimic the in vivo neural plate phase. Loss of SHROOM3 resulted in shorter neuroepithelial cells and smaller nuclei. These morphological changes were attributed to the insufficient recruitment of cytoskeletal proteins, namely fibrous actin (F-actin), myosin II, and phospho-myosin light chain (PMLC), to the apical side of the neuroepithelial cells. Notably, these defects were not rescued by folate supplementation. RNA sequencing revealed that differentially expressed genes were enriched in biological processes associated with cellular and organ morphogenesis. In summary, we established an authentic in vitro system to study NTDs and identified a novel mechanism for NTDs that are unresponsive to folate supplementation.


Asunto(s)
Proteínas del Citoesqueleto , Defectos del Tubo Neural , Animales , Proteínas del Citoesqueleto/metabolismo , Tubo Neural/metabolismo , Macaca fascicularis , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/veterinaria , Células Neuroepiteliales/metabolismo , Ácido Fólico/metabolismo , Organoides , Citoesqueleto
3.
Am J Obstet Gynecol ; 230(2): 254.e1-254.e13, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37531989

RESUMEN

BACKGROUND: Hyperglycemia from pregestational diabetes mellitus induces neural tube defects in the developing fetus. Folate supplementation is the only effective way to prevent neural tube defects; however, some cases of neural tube defects are resistant to folate. Excess folate has been linked to higher maternal cancer risk and infant allergy. Therefore, additional interventions are needed. Understanding the mechanisms underlying maternal diabetes mellitus-induced neural tube defects can identify potential targets for preventing such defects. Despite not yet being in clinical use, growing evidence suggests that microRNAs are important intermediates in embryonic development and can serve as both biomarkers and drug targets for disease intervention. Our previous studies showed that maternal diabetes mellitus in vivo activates the inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) in the developing embryo and that a high glucose condition in vitro reduces microRNA-322 (miR-322) levels. IRE1α is an RNA endonuclease; however, it is unknown whether IRE1α targets and degrades miR-322 specifically or whether miR-322 degradation leads to neural tube defects via apoptosis. We hypothesize that IRE1α can inhibit miR-322 in maternal diabetes mellitus-induced neural tube defects and that restoring miR-322 expression in developing neuroepithelium ameliorates neural tube defects. OBJECTIVE: This study aimed to identify potential targets for preventing maternal diabetes mellitus-induced neural tube defects and to investigate the roles and relationship of a microRNA and an RNA endonuclease in mouse embryos exposed to maternal diabetes mellitus. STUDY DESIGN: To determine whether miR-322 reduction is necessary for neural tube defect formation in pregnancies complicated by diabetes mellitus, male mice carrying a transgene expressing miR-322 were mated with nondiabetic or diabetic wide-type female mice to generate embryos with or without miR-322 overexpression. At embryonic day 8.5 when the neural tube is not yet closed, embryos were harvested for the assessment of 3 miR-322 transcripts (primary, precursor, and mature miR-322), tumor necrosis factor receptor-associated factor 3 (TRAF3), and neuroepithelium cell survival. Neural tube defect incidences were determined in embryonic day 10.5 embryos when the neural tube should be closed if there is no neural tube defect formation. To identify which miR-322 transcript is affected by maternal diabetes mellitus and high glucose conditions, 3 miR-322 transcripts were assessed in embryos from dams with or without diabetes mellitus and in C17.2 mouse neural stem cells treated with different concentrations of glucose and at different time points. To determine whether the endonuclease IRE1α targets miR-322, small interfering RNA knockdown of IRE1α or overexpression of inositol-requiring transmembrane kinase/endoribonuclease 1α by DNA plasmid transfection was used to determine the effect of IRE1α deficiency or overexpression on miR-322 expression. RNA immunoprecipitation was performed to reveal the direct targets of inositol-requiring transmembrane kinase/endoribonuclease 1α. RESULTS: Maternal diabetes mellitus suppressed miR-322 expression in the developing neuroepithelium. Restoring miR-322 expression in the neuroepithelium blocked maternal diabetes mellitus-induced caspase-3 and caspase-8 cleavage and cell apoptosis, leading to a neural tube defect reduction. Reversal of maternal diabetes mellitus-inhibited miR-322 via transgenic overexpression prevented TRAF3 up-regulation in embryos exposed to maternal diabetes mellitus. Activated IRE1α acted as an endonuclease and degraded precursor miR-322, resulting in mature miR-322 reduction. CONCLUSION: This study supports the crucial role of the IRE1α-microRNA-TRAF3 circuit in the induction of neuroepithelial cell apoptosis and neural tube defect formation in pregnancies complicated by diabetes mellitus and identifies IRE1α and miR-322 as potential targets for preventing maternal diabetes mellitus-induced neural tube defects.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Gestacional , MicroARNs , Defectos del Tubo Neural , Embarazo en Diabéticas , Humanos , Embarazo , Masculino , Femenino , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología , Embarazo en Diabéticas/genética , Embarazo en Diabéticas/metabolismo , Diabetes Gestacional/genética , Glucosa , Ácido Fólico , Inositol
4.
FASEB J ; 38(1): e23346, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095297

RESUMEN

Folate deficiency contribute to neural tube defects (NTDs) which could be rescued by folate supplementation. However, the underlying mechanisms are still not fully understood. Besides, there is considerable controversy concerning the forms of folate used for supplementation. To address this controversy, we prepared culture medium with different forms of folate, folic acid (FA), and 5-methyltetrahydrofolate (5mTHF), at concentrations of 5 µM, 500 nM, 50 nM, and folate free, respectively. Mouse embryonic fibroblasts (MEFs) were treated with different folates continuously for three passages, and cell proliferation and F-actin were monitored. We determined that compared to 5mTHF, FA showed stronger effects on promoting cell proliferation and F-actin formation. We also found that FOLR1 protein level was positively regulated by folate concentration and the non-canonical Wnt/planar cell polarity (PCP) pathway signaling was significantly enriched among different folate conditions in RNA-sequencing analyses. We demonstrated for the first time that FOLR1 could promote the transcription of Vangl2, one of PCP core genes. The transcription of Vangl2 was down-regulated under folate-deficient condition, which resulted in a decrease in PCP activity and F-actin formation. In summary, we identified a distinct advantage of FA in cell proliferation and F-actin formation over 5mTHF, as well as demonstrating that FOLR1 could promote transcription of Vangl2 and provide a new mechanism by which folate deficiency can contribute to the etiology of NTDs.


Asunto(s)
Deficiencia de Ácido Fólico , Defectos del Tubo Neural , Animales , Ratones , Ácido Fólico/metabolismo , Actinas/metabolismo , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Polaridad Celular/genética , Fibroblastos/metabolismo , Vía de Señalización Wnt , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Deficiencia de Ácido Fólico/metabolismo
5.
Dis Model Mech ; 16(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37589570

RESUMEN

Neural tube defects (NTDs) are the second most common cause of congenital malformations and are often studied in animal models. Loop-tail (Lp) mice carry a mutation in the Vangl2 gene, a member of the Wnt-planar cell polarity pathway. In Vangl2+/Lp embryos, the mutation induces a failure in the completion of caudal neural tube closure, but only a small percentage of embryos develop open spina bifida. Here, we show that the majority of Vangl2+/Lp embryos developed caudal closed NTDs and presented cellular aggregates that may facilitate the sealing of these defects. The cellular aggregates expressed neural crest cell markers and, using these as a readout, we describe a systematic method to assess the severity of the neural tube dorsal fusion failure. We observed that this defect worsened in combination with other NTD mutants, Daam1 and Grhl3. Besides, we found that in Vangl2+/Lp embryos, these NTDs were resistant to maternal folic acid and inositol supplementation. Loop-tail mice provide a useful model for research on the molecular interactions involved in the development of open and closed NTDs and for the design of prevention strategies for these diseases.


Asunto(s)
Defectos del Tubo Neural , Cola (estructura animal) , Animales , Ratones , Modelos Animales de Enfermedad , Ácido Fólico/farmacología , Mutación/genética , Defectos del Tubo Neural/genética , Proteínas de Unión al ADN , Factores de Transcripción , Proteínas de Microfilamentos , Proteínas de Unión al GTP rho
6.
J Agric Food Chem ; 70(36): 11281-11289, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36039894

RESUMEN

The present study aimed to investigate whether a combination of folic acid (FA) and n-3 polyunsaturated fatty acids (PUFA) has a better preventive effect on maternal diabetes-induced neural tube defects (NTD) than FA alone. The experiment included five groups of pregnant mice: healthy control (HC), diabetes mellitus control (DMC), diabetes + n-3 PUFA (DMn-3), diabetes + FA (DMFA), and diabetes + FA + n-3 PUFA (DMFA + n-3). The incidence of NTD in DMFA + n-3 (1.04%) was significantly lower than that in DMFA (8.57%) and DMn-3 (7.82%). The incidence of NTD in DMFA and DMn-3 was significantly lower than that in DMC (19.41%). DMFA + n-3 had a lower apoptosis of neuroepithelial cells, a lower expression of P53 and Bax, and a higher expression of Pax3 and Bcl-2, compared with DMFA and DMn-3. Combination of FA and n-3 PUFA attenuated diabetes-induced hypermethylation of Pax3, overexpression and overactivity of Dnmt3b, abnormal expression of genes involved in one-carbon metabolism and elevation of homocysteine, and these improving effects were better than FA or n-3 PUFA alone. In conclusion, the combination of FA and n-3 PUFA has a synergistic effect on preventing maternal diabetes-induced NTD.


Asunto(s)
Diabetes Mellitus Experimental , Ácidos Grasos Omega-3 , Defectos del Tubo Neural , Animales , Diabetes Mellitus Experimental/complicaciones , Femenino , Ácido Fólico , Ratones , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/prevención & control , Embarazo
7.
Dev Biol ; 489: 14-20, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35644250

RESUMEN

Planar cell polarity (PCP) signaling plays a fundamental role in shaping the development and ongoing function of the nervous system, beginning from early stages of neural tube closure and spanning the maintenance of functional synapses in adults. While mutations in core PCP signaling proteins have long been suspected to underlie neural tube closure defects in humans, recent findings also implicate their potential involvement in neurodevelopmental and neuropsychiatric disorders. Missense and loss-of-function mutations in CELSR3, a core component of PCP signaling complexes, are highly associated with Tourette Disorder. Although the functional significance of these mutations has yet to be elucidated in animal and cell models, the expression patterns of Celsr3 in mice point to alterations in cortico-striato-thalamo-cortical circuits. Here, we briefly review the known functions of Celsr3 for nervous system development. We also propose circuit models for Tourette Disorder by hypothesizing roles for Celsr3 in controlling striatal neuromodulation via effects on cholinergic interneurons, and thalamic inhibition through its functions in thalamic reticular nuclei. Testing these and related hypotheses in animal and cell models will move us closer to unraveling the neuropathogenesis of Tourette Disorder, with the ultimate goal of developing more efficacious treatments for both motor and cognitive symptoms.


Asunto(s)
Defectos del Tubo Neural , Síndrome de Tourette , Adulto , Animales , Cadherinas/genética , Polaridad Celular/genética , Humanos , Ratones , Defectos del Tubo Neural/genética , Neurulación , Receptores de Superficie Celular/genética , Tálamo , Síndrome de Tourette/genética
8.
Cell Mol Life Sci ; 79(7): 375, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35727412

RESUMEN

The SLC25A32 dysfunction is associated with neural tube defects (NTDs) and exercise intolerance, but very little is known about disease-specific mechanisms due to a paucity of animal models. Here, we generated homozygous (Slc25a32Y174C/Y174C and Slc25a32K235R/K235R) and compound heterozygous (Slc25a32Y174C/K235R) knock-in mice by mimicking the missense mutations identified from our patient. A homozygous knock-out (Slc25a32-/-) mouse was also generated. The Slc25a32K235R/K235R and Slc25a32Y174C/K235R mice presented with mild motor impairment and recapitulated the biochemical disturbances of the patient. While Slc25a32-/- mice die in utero with NTDs. None of the Slc25a32 mutations hindered the mitochondrial uptake of folate. Instead, the mitochondrial uptake of flavin adenine dinucleotide (FAD) was specifically blocked by Slc25a32Y174C/K235R, Slc25a32K235R/K235R, and Slc25a32-/- mutations. A positive correlation between SLC25A32 dysfunction and flavoenzyme deficiency was observed. Besides the flavoenzymes involved in fatty acid ß-oxidation and amino acid metabolism being impaired, Slc25a32-/- embryos also had a subunit of glycine cleavage system-dihydrolipoamide dehydrogenase damaged, resulting in glycine accumulation and glycine derived-formate reduction, which further disturbed folate-mediated one-carbon metabolism, leading to 5-methyltetrahydrofolate shortage and other folate intermediates accumulation. Maternal formate supplementation increased the 5-methyltetrahydrofolate levels and ameliorated the NTDs in Slc25a32-/- embryos. The Slc25a32K235R/K235R and Slc25a32Y174C/K235R mice had no glycine accumulation, but had another formate donor-dimethylglycine accumulated and formate deficiency. Meanwhile, they suffered from the absence of all folate intermediates in mitochondria. Formate supplementation increased the folate amounts, but this effect was not restricted to the Slc25a32 mutant mice only. In summary, we established novel animal models, which enabled us to understand the function of SLC25A32 better and to elucidate the role of SLC25A32 dysfunction in human disease development and progression.


Asunto(s)
Ácido Fólico , Defectos del Tubo Neural , Animales , Humanos , Ratones , Carbono/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Ácido Fólico/metabolismo , Formiatos/metabolismo , Glicina/metabolismo , Mitocondrias/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo
9.
Genesis ; 59(11): e23455, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34665506

RESUMEN

Neural tube defects (NTDs) are among the most common birth defects, with a prevalence of close to 19 per 10,000 births worldwide. The etiology of NTDs is complex involving the interplay of genetic and environmental factors. Since nutrient deficiency is a risk factor and dietary changes are the major preventative measure to reduce the risk of NTDs, a more detailed understanding of how common micronutrient imbalances contribute to NTDs is crucial. While folic acid has been the most discussed environmental factor due to the success that population-wide fortification has had on prevention of NTDs, folic acid supplementation does not prevent all NTDs. The imbalance of several other micronutrients has been implicated as risks for NTDs by epidemiological studies and in vivo studies in animal models. In this review, we highlight recent literature deciphering the multifactorial mechanisms underlying NTDs with an emphasis on mouse and human data. Specifically, we focus on advances in our understanding of how too much or too little retinoic acid, zinc, and iron alter gene expression and cellular processes contributing to the pathobiology of NTDs. Synthesis of the discussed literature reveals common cellular phenotypes found in embryos with NTDs resulting from several micronutrient imbalances. The goal is to combine knowledge of these common cellular phenotypes with mechanisms underlying micronutrient imbalances to provide insights into possible new targets for preventative measures against NTDs.


Asunto(s)
Micronutrientes/metabolismo , Defectos del Tubo Neural/metabolismo , Animales , Interacción Gen-Ambiente , Humanos , Defectos del Tubo Neural/genética
10.
Environ Health ; 20(1): 66, 2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090432

RESUMEN

BACKGROUND: Prenatal exposure to heavy metals is implicated in the etiology of birth defects. We investigated whether concentrations of cadmium (Cd) and lead (Pb) in umbilical cord tissue are associated with risk for neural tube defects (NTDs) and whether selected genetic variants of the fetus modify their associations. METHODS: This study included 166 cases of NTD fetuses/newborns and 166 newborns without congenital malformations. Umbilical cord tissue was collected at birth or elective pregnancy termination. Cd and Pb concentrations were assessed by inductively coupled plasma-mass spectrometry, and 20 single-nucleotide polymorphisms (SNPs) in 9 genes were genotyped. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to estimate the risk for NTDs in association with metal concentrations or genotype using logistic regression. Multiplicative-scale interactions between the metals and genotypes on NTD risk were assessed with logistic regression, and additive-scale interactions were estimated with a non-linear mixed effects model. RESULTS: Higher concentrations of Cd were observed in the NTD group than in the control group, but no difference was found for Pb. Concentrations of Cd above the median level showed a risk effect, while the association between Pb and NTD risk was not significant in univariate analyses. The association of Cd was attenuated after adjusting for periconceptional folic acid supplementation. Fetuses with the AG and GG genotypes of rs4880 in SOD2 (superoxide dismutase 2) tended to have a lower risk, but fetuses with the CT and TT genotypes of rs1801133 in MTHFR (5,10-methylenetetrahydrofolatereductase) have a higher risk for NTDs when compared to their respective wild-type. rs4880 and Cd exhibited a multiplicative-scale interaction on NTD risk: the association between higher Cd and the risk for NTDs was increased by over fourfold in fetuses carrying the G allele [OR 4.43 (1.30-15.07)] compared to fetuses with the wild-type genotype. rs1801133 and Cd exposure showed an additive interaction, with a significant relative excess risk of interaction [RERI 0.64 (0.02-1.25)]. CONCLUSIONS: Prenatal exposure to Cd may be a risk factor for NTDs, and the risk effect may be enhanced in fetuses who carry the G allele of rs4880 in SOD2 and T allele of rs1801133 in MTHFR.


Asunto(s)
Cadmio/efectos adversos , Contaminantes Ambientales/efectos adversos , Exposición Materna/efectos adversos , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Defectos del Tubo Neural/genética , Superóxido Dismutasa/genética , Adulto , Cadmio/análisis , Estudios de Casos y Controles , China/epidemiología , Contaminantes Ambientales/análisis , Femenino , Feto , Genotipo , Humanos , Recién Nacido , Plomo/análisis , Intercambio Materno-Fetal , Defectos del Tubo Neural/epidemiología , Polimorfismo de Nucleótido Simple , Embarazo
11.
Biol Reprod ; 105(4): 837-845, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34104947

RESUMEN

Although adequate periconceptional folic acid (FA) supplementation has reduced the occurrence of pregnancies affected by neural tube defects (NTDs), the mechanisms underlying FA-resistant NTDs are poorly understood, and thus NTDs still remain a global public health concern. A high level of Krüppel-like factor 12 (KLF12) exerts deleterious effects on heath in most cases, but evidence for its roles in development has not been published. We observed KLF12-overexpressing mice showed disturbed neural tube development. KLF12-overexpressing fetuses died in utero at approximately 10.5 days post-coitus, with 100% presenting cranial NTDs. Neither FA nor formate promoted normal neural tube closure in mutant fetuses. The RNA-seq results showed that a high level of KLF12 caused NTDs in mice via overactivating the sonic hedgehog (Shh) signaling pathway, leading to the upregulation of patched 1, GLI-Krüppel family member GLI1, hedgehog-interacting protein, etc., whereas FA metabolism-related enzymes did not express differently. PF-5274857, an antagonist of the Shh signaling pathway, significantly promoted dorsolateral hinge point formation and partially rescued the NTDs. The regulatory hierarchy between a high level of KLF12 and FA-resistant NTDs might provide new insights into the diagnosis and treatment of unexplained NTDs in the future.


Asunto(s)
Ácido Fólico/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Defectos del Tubo Neural/genética , Transducción de Señal/genética , Animales , Femenino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones
12.
Neurol India ; 68(5): 1144-1150, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33109865

RESUMEN

BACKGROUND: Folic acid and multivitamin supplements ((FAMVS) and genetics involvement is one of the major roles in the development of neural tube defects (NTDs). OBJECTIVE: Our prior aim and objective is to establish an unique guideline and helps the policy decision making for our country India and the World. MATERIALS AND METHODS: We have collected the data through the literature from the World for their necessary action, rehabilitation part all objectively in PubMed/Medline, Scopous, Embase, Cochrane Review, Hinari, and Google scholar. STATISTICAL ANALYSIS: Statistical analysis was performed with very simple and logistic statistics, percentage, mean, total as collection through the available software SPSS with new version 17.0. RESULTS: The overall (70-95%) we find out those infants with neural tube defects (NTDs) associated with genes involvement and maternal vitamin intake (MVI). Before pregnancy relative risk (PRR) prior to non intake noted as 90% significantly reduced their risk of the NTDs. Now (40-60%) of the women of child-bearing age (CBA) don't use the folic acid intake and supplements (FAISs) in proper way in villages, urban, industrial and sewage areas. We find out that the genetic variants of the fourteen special reported genes, had the major risk factor (MRF) for the (NTDs) and associated abnormalities rate (AAR) within the developmental process in the human brain. CONCLUSIONS: The (45-55%) people still having at ignorant zone, due to lack of education, genetic counseling, and awareness till date.


Asunto(s)
Medicina Molecular , Defectos del Tubo Neural , Suplementos Dietéticos , Femenino , Ácido Fólico , Humanos , India , Defectos del Tubo Neural/genética , Embarazo
13.
Biochimie ; 173: 27-32, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32061804

RESUMEN

Neural tube defects (NTDs) are a broad class of congenital birth defects that result from the failure of neural tube closure during neurulation. Folic acid supplementation has been shown to prevent the occurrence of NTDs by as much as 70% in some human populations, and folate deficiency in a pregnant woman is associated with increased risk for having an NTD affected infant. Thus, folate transport-related genes and genes involved in the subsequent folate-mediated one-carbon metabolic pathway have long been considered primary candidates to study the genetic etiology of human NTDs. Herein, we review the genes involved in folate transport and one-carbon metabolism thus far identified as contributing variants that influence human NTD risk, and place these findings in the context of our evolving understanding of the complex genetic architecture underlying these defects.


Asunto(s)
Transporte Biológico/genética , Deficiencia de Ácido Fólico/genética , Ácido Fólico/metabolismo , Redes y Vías Metabólicas/genética , Defectos del Tubo Neural/genética , Femenino , Humanos , Embarazo
14.
Birth Defects Res ; 111(19): 1520-1534, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31518072

RESUMEN

BACKGROUND: Periconceptional intake of supplemental folic acid can reduce the incidence of neural tube defects by as much as 70%, but the mechanisms by which folic acid supports cellular processes during neural tube closure are unknown. The mitochondrial 10-formyl-tetrahydrofolate synthetase MTHFD1L catalyzes production of formate, thus generating one-carbon units for cytoplasmic processes. Deletion of Mthfd1l causes embryonic lethality, developmental delay, and neural tube defects in mice. METHODS: To investigate the role of mitochondrial one-carbon metabolism during cranial neural tube closure, we have analyzed cellular morphology and function in neural tissues in Mthfd1l knockout embryos. RESULTS: The head mesenchyme showed significantly lower cellular density in Mthfd1l nullizygous embryos compared to wildtype embryos during the process of neural tube closure. Apoptosis and neural crest cell specification were not affected by deletion of Mthfd1l. Sections from the cranial region of Mthfd1l knockout embryos exhibited decreased cellular proliferation, but only after completion of neural tube closure. Supplementation of pregnant dams with formate improved mesenchymal density and corrected cell proliferation in the nullizygous embryos. CONCLUSIONS: Deletion of Mthfd1l causes decreased density in the cranial mesenchyme and this defect is improved with formate supplementation. This study reveals a mechanistic link between folate-dependent mitochondrially produced formate, head mesenchyme formation and neural tube defects.


Asunto(s)
Formiato-Tetrahidrofolato Ligasa/genética , Meteniltetrahidrofolato Ciclohidrolasa/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Enzimas Multifuncionales/genética , Defectos del Tubo Neural/genética , Animales , Embrión de Mamíferos/metabolismo , Femenino , Ácido Fólico/genética , Ácido Fólico/metabolismo , Formiato-Tetrahidrofolato Ligasa/metabolismo , Formiatos/metabolismo , Masculino , Mesodermo/metabolismo , Meteniltetrahidrofolato Ciclohidrolasa/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Enzimas Multifuncionales/metabolismo , Cresta Neural/metabolismo , Defectos del Tubo Neural/metabolismo , Neurulación , Eliminación de Secuencia
15.
Epigenetics ; 14(10): 1019-1029, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31179819

RESUMEN

5-Hydroxymethylcytosine (5hmC), a distinct epigenetic marker that plays a role in DNA active demethylation, has been reported to be important for embryonic development and may respond to environmental exposure. No studies have evaluated the association between DNA hydroxymethylation and the risk for fetal neural tube defects (NTDs), with consideration of prenatal exposure to polycyclic aromatic hydrocarbons (PAHs), a risk factor for NTDs. We measured the global levels of 5hmC% in neural tissue from 92 terminated NTD cases and 33 terminated non-malformed fetuses. A lower level of 5hmC% was found in the NTD cases (median [interquartile range]: 0.25 [0.12-0.39]) compared to the controls (0.45 [0.19-1.00]). After adjusting for periconceptional folate supplementation, risk for NTDs increased with decreasing tertiles of 5hmC% (odds ratio: 7.89, 95% confidence interval: 2.32, 26.86, for the lowest tertile relative to the top tertile; pfor trend = 0.002). Linear regression revealed that concentrations of high-molecular-weight PAHs (H_PAHs) in fetal liver tissue were negatively associated with log2-transformed 5hmC%. Superoxide dismutase activity and 5hmC% were positively correlated in fetal neural tissue (rs = 0.64; p < 0.05). A mouse whole-embryo culture model was used for further validation. Decreased levels of 5hmC% and increased levels of reactive oxygen species were found in mouse embryos treated with BaP, a well-studied PAH. Taken together, levels of 5hmC% in fetal neural tissue were inversely associated with the risk for NTDs, and this association may be related to oxidative stress induced by exposure to PAHs.


Asunto(s)
5-Metilcitosina/análogos & derivados , Exposición Materna/efectos adversos , Defectos del Tubo Neural/genética , Hidrocarburos Policíclicos Aromáticos/efectos adversos , 5-Metilcitosina/metabolismo , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Técnicas de Cultivo de Embriones , Femenino , Humanos , Modelos Lineales , Hígado/química , Hígado/embriología , Masculino , Ratones , Defectos del Tubo Neural/inducido químicamente , Defectos del Tubo Neural/metabolismo , Embarazo , Superóxido Dismutasa/metabolismo
16.
Am J Clin Nutr ; 109(3): 674-683, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30848279

RESUMEN

BACKGROUND: The risk of neural tube defects (NTDs) is influenced by nutritional factors and genetic determinants of one-carbon metabolism. A key pathway of this metabolism is the vitamin B-12- and folate-dependent remethylation of homocysteine, which depends on methionine synthase (MS, encoded by MTR), methionine synthase reductase, and methylenetetrahydrofolate reductase. Methionine, the product of this pathway, is the direct precursor of S-adenosylmethionine (SAM), the universal methyl donor needed for epigenetic mechanisms. OBJECTIVES: This study aimed to evaluate whether the availability of vitamin B-12 and folate and the expression or activity of the target enzymes of the remethylation pathway are involved in NTD risk. METHODS: We studied folate and vitamin B-12 concentrations and activity, expression, and gene variants of the 3 enzymes in liver from 14 NTD and 16 non-NTD fetuses. We replicated the main findings in cord blood from pregnancies of 41 NTD fetuses compared with 21 fetuses with polymalformations (metabolic and genetic findings) and 375 control pregnancies (genetic findings). RESULTS: The tissue concentration of vitamin B-12 (P = 0.003), but not folate, and the activity (P = 0.001), transcriptional level (P = 0.016), and protein expression (P = 0.003) of MS were decreased and the truncated inactive isoforms of MS were increased in NTD livers. SAM was significantly correlated with MS activity and vitamin B-12. A gene variant in exon 1 of GIF (Gastric Intrinsic Factor gene) was associated with a dramatic decrease of liver vitamin B-12 in 2 cases. We confirmed the decreased vitamin B-12 in cord blood from NTD pregnancies. A gene variant of GIF exon 3 was associated with NTD risk. CONCLUSIONS: The decreased vitamin B-12 in liver and cord blood and decreased expression and activity of MS in liver point out the impaired remethylation pathway as hallmarks associated with NTD risk. We suggest evaluating vitamin B-12 in the nutritional recommendations for prevention of NTD risk beside folate fortification or supplementation.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , Enfermedades Fetales/enzimología , Hígado/metabolismo , Defectos del Tubo Neural/enzimología , Vitamina B 12/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Estudios de Casos y Controles , Femenino , Ferredoxina-NADP Reductasa/genética , Ferredoxina-NADP Reductasa/metabolismo , Enfermedades Fetales/genética , Enfermedades Fetales/metabolismo , Ácido Fólico/análisis , Ácido Fólico/metabolismo , Edad Gestacional , Humanos , Hígado/química , Hígado/embriología , Hígado/enzimología , Masculino , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Defectos del Tubo Neural/embriología , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Embarazo , Vitamina B 12/análisis
17.
Rev. cuba. invest. bioméd ; 38(1): e146, Jan.-Mar. 2019. tab, graf
Artículo en Inglés | LILACS, CUMED | ID: biblio-1093380

RESUMEN

Background: Neural tube defects (NTDs) are important causes of infant mortality, which result from a complex interaction between genetics and environmental factors such as trace elements, which play and crucial role in the epigenetic regulation in the embryo fetal developmental program. Objectives: To measure the maternal serum levels of copper, zinc, calcium and magnesium in mothers with offspring affected by NTDs, and to examine a possible relationship between the serum concentrations of these micronutrients and occurrence of NTDs. Design: Case-controls study. Subjects and Methods: Maternal serum blood samples were obtained from 72 healthy pregnant women and 36 mothers who had NTDs affected offspring, including those alive, stillbirths and elective pregnancy' termination at Centro Provincial de Genetica in Villa Clara. Copper, zinc, calcium and magnesium levels in serum were measured by flame atomic absorption spectrometry and were compared between the two groups of mothers. Results: Serum zinc levels were determined to be significantly lower in the study group compared with the control group, while copper levels were significant elevated in the study group (all p values < .05). There was a negative correlation between serum zinc levels and serum copper levels. However, no association between calcium and magnesium serum levels and increased risk for the development of NTDs was observed. Conclusions: High maternal serum levels of copper and lower level of zinc during pregnancy were associated with NTDs in offspring. If folic acid supplementation is given, additional zinc supplementation should be considered for the further decrease in the recurrence risk of NTDs(AU)


Asunto(s)
Complicaciones del Embarazo/prevención & control , Mortalidad Infantil , Zinc/efectos adversos , Defectos del Tubo Neural/genética
18.
Clin Epigenetics ; 11(1): 13, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30665459

RESUMEN

BACKGROUND: Neural tube defects (NTDs) are common and severe congenital malformations. Pax3 is an essential gene for neural tube closure in mice but it is unknown whether altered expression or methylation of PAX3 contributes to human NTDs. We examined the potential role of hypermethylation of Pax3 in the development of NTDs by analyzing human NTD cases and a mouse model in which NTDs were induced by benzo[a]pyrene (BaP), a widely studied polycyclic aromatic hydrocarbon (PAH). METHODS: We extracted methylation information of PAX3 in neural tissues from array data of ten NTD cases and eight non-malformed controls. A validation study was then performed in a larger independent population comprising 73 NTD cases and 29 controls. Finally, we examined methylation patterns and expression of Pax3 in neural tissues from mouse embryos of dams exposed to BaP or BaP and vitamin E. RESULTS: Seven CpG sites in PAX3 were hypermethylated in NTD fetuses as compared to controls in the array data. In the validation phase, significantly higher methylation levels in the body region of PAX3 were observed in NTD cases than in controls (P = 0.003). And mean methylation intensity in the body region of PAX3 in fetal neural tissues was positively correlated with median concentrations of PAH in maternal serum. In the mouse model, BaP-induced NTDs were associated with hypermethylation of specific CpG sites within both the promoter and body region of Pax3. Supplementation with vitamin E via chow decreased the rate of NTDs, partly recovered the repressed total antioxidant capacity in mouse embryos exposed to BaP, and this was accompanied by the normalization of Pax3 methylation level and gene expression. CONCLUSION: Hypermethylation of Pax3 may play a role in the development of NTDs; DNA methylation aberration may be caused by exposure to BaP, with possible involvement of oxidative stress.


Asunto(s)
Metilación de ADN , Exposición Materna/efectos adversos , Defectos del Tubo Neural/genética , Factor de Transcripción PAX3/genética , Hidrocarburos Policíclicos Aromáticos/efectos adversos , Animales , Estudios de Casos y Controles , Islas de CpG , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Edad Materna , Ratones , Defectos del Tubo Neural/inducido químicamente , Defectos del Tubo Neural/tratamiento farmacológico , Embarazo , Regiones Promotoras Genéticas , Vitamina E/administración & dosificación , Vitamina E/farmacología
19.
J Nutr ; 149(2): 295-303, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30689919

RESUMEN

BACKGROUND: The risk of neural tube defect (NTD)-affected pregnancies is reduced with adequate folic acid intake during early pregnancy. However, NTDs have been observed among offspring of women with adequate folic acid intake. Some of these women are possibly not absorbing enough folic acid. Because lactase deficiency can lead to poor nutrient absorption, we hypothesized that lactase-deficient women will be at increased risk of having offspring with NTDs. OBJECTIVE: We examined the association between maternal rs4988235 (a lactase deficiency genetic marker) and NTDs in offspring. METHODS: We conducted a case-control study using data from the National Birth Defects Prevention Study, United States, 1997-2009, restricting to non-Hispanic white (NHW) and Hispanic women. Cases were women with an offspring with an NTD (n = 378 NHW, 207 Hispanic), and controls were women with an offspring without a birth defect (n = 461 NHW, 165 Hispanic). Analyses were conducted separately by race/ethnicity, using logistic regression. Women with the CC genotype were categorized as being lactase deficient. To assess potential effect modification, analyses were stratified by lactose intake, folic acid supplementation, dietary folate, and diet quality. RESULTS: Among NHW women, the odds of being lactase deficient were greater among cases compared with controls (OR: 1.37; 95% CI: 1.02, 1.82). Among Hispanic women, the odds of being lactase deficient were significantly lower among cases compared with controls (OR: 0.50, 95% CI: 0.33, 0.77). The association differed when stratified by lactose intake in NHW women (higher odds among women who consumed ≥12 g lactose/1000 kcal) and by dietary folate in Hispanic women (opposite direction of associations). The association did not differ when stratified by folic acid supplementation or diet quality. CONCLUSIONS: Our findings suggest that maternal lactase deficiency is associated with NTDs in offspring. However, we observed opposite directions of effect by race/ethnicity that could not be definitively explained.


Asunto(s)
Predisposición Genética a la Enfermedad , Lactasa/genética , Defectos del Tubo Neural/genética , Polimorfismo de Nucleótido Simple , Adulto , Estudios de Casos y Controles , Ácido Fólico/administración & dosificación , Ácido Fólico/metabolismo , Deficiencia de Ácido Fólico/complicaciones , Marcadores Genéticos , Genotipo , Hispánicos o Latinos , Humanos , Lactasa/deficiencia , Madres , Defectos del Tubo Neural/enzimología , Oportunidad Relativa , Estados Unidos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA