Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Clin Nutr ; 119(1): 117-126, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38176775

RESUMEN

BACKGROUND: Choline is essential for healthy cognitive development. Single nucleotide polymorphisms (SNPs; rs3199966(G), rs2771040(G)) within the choline transporter SLC44A1 increase risk for choline deficiency. In a choline intervention trial of children who experienced prenatal alcohol exposure (PAE), these alleles are associated with improved cognition. OBJECTIVE: This study aimed to determine if SNPs within SLC44A1 are differentially associated with cognition in children with PAE compared with normotypic controls (genotype × exposure). A secondary objective tested for an association of these SNPs and cognition in controls (genotype-only). DESIGN: This is a secondary analysis of data from the Collaborative Initiative on Fetal Alcohol Spectrum Disorders. Participants (163 normotypic controls, 162 PAE) underwent psychological assessments and were genotyped within SLC44A1. Choline status was not assessed. Association analysis between genotype × exposure was performed using an additive genetic model and linear regression to identify the allelic effect. The primary outcome was the interaction between SLC44A1 genotype × exposure status with respect to cognition. The secondary outcome was the cognitive-genotype association in normotypic controls. RESULTS: Genotype × exposure analysis identified 7 SNPs in SLC44A1, including rs3199966(G) and rs2771040(G), and in strong linkage (D' ≥ 0.87), that were associated (adjusted P ≤ 0.05) with reduced performance in measures of general cognition, nonverbal and quantitative reasoning, memory, and executive function (ß, 1.92-3.91). In controls, carriers of rs3199966(GT or GG) had worsened cognitive performance than rs3199966(TT) carriers (ß, 0.46-0.83; P < 0.0001), whereas cognitive performance did not differ by rs3199966 genotype in those with PAE. CONCLUSIONS: Two functional alleles that increase vulnerability to choline deficiency, rs3199966(G) (Ser644Ala) and rs2771040(G) (3' untranslated region), are associated with worsened cognition in otherwise normotypic children. These alleles were previously associated with greater cognitive improvement in children with PAE who received supplemental choline. The findings endorse that choline benefits cognitive development in normotypic children and those with PAE.


Asunto(s)
Deficiencia de Colina , Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Niño , Humanos , Embarazo , Femenino , Efectos Tardíos de la Exposición Prenatal/genética , Colina , Cognición , Antígenos CD , Proteínas de Transporte de Catión Orgánico
2.
Nat Commun ; 14(1): 6763, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990006

RESUMEN

Choline is an essential nutrient, and its deficiency causes steatohepatitis. Dietary phosphatidylcholine (PC) is digested into lysoPC (LPC), glycerophosphocholine, and choline in the intestinal lumen and is the primary source of systemic choline. However, the major PC metabolites absorbed in the intestinal tract remain unidentified. ATP8B1 is a P4-ATPase phospholipid flippase expressed in the apical membrane of the epithelium. Here, we use intestinal epithelial cell (IEC)-specific Atp8b1-knockout (Atp8b1IEC-KO) mice. These mice progress to steatohepatitis by 4 weeks. Metabolomic analysis and cell-based assays show that loss of Atp8b1 in IEC causes LPC malabsorption and thereby hepatic choline deficiency. Feeding choline-supplemented diets to lactating mice achieves complete recovery from steatohepatitis in Atp8b1IEC-KO mice. Analysis of samples from pediatric patients with ATP8B1 deficiency suggests its translational potential. This study indicates that Atp8b1 regulates hepatic choline levels through intestinal LPC absorption, encouraging the evaluation of choline supplementation therapy for steatohepatitis caused by ATP8B1 dysfunction.


Asunto(s)
Deficiencia de Colina , Hígado Graso , Enfermedades Gastrointestinales , Enfermedades Intestinales , Femenino , Humanos , Ratones , Animales , Niño , Deficiencia de Colina/complicaciones , Lactancia , Hígado Graso/metabolismo , Colina , Fosfatidilcolinas/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo
3.
J Dairy Sci ; 106(12): 9868-9878, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37678795

RESUMEN

Rumen-protected choline (RPC) supplementation in the periparturient period has in some instances prevented and alleviated fatty liver disease in dairy cows. Mechanistically, however, it is unclear how choline prevents the accumulation of lipid droplets (LD) in liver cells. In this study, primary liver cells isolated from liver tissue obtained via puncture biopsy from 3 nonpregnant mid-lactation multiparous Holstein cows (∼160 d postpartum) were used. Analyses of LD via oil red O staining, protein abundance via Western blotting, and phospholipid content and composition measured by thin-layer chromatography and HPLC/mass spectrometry were performed in liver cells cultured in choline-deficient medium containing 150 µmol/L linoleic acid for 24 h. In a subsequent experiment, lipophagy was assessed in liver cells cultured with 30, 60, or 90 µmol/L choline-chloride. All data were analyzed statistically using SPSS 20.0 via t-tests or one-way ANOVA. Compared with liver cells cultured in Dulbecco's Modified Eagle Medium alone, choline deficiency increased the average diameter of LD (1.59 vs. 2.10 µm), decreased the proportion of small LD (<2 µm) from 75.3% to 56.6%, and increased the proportion of large LD (>4 µm) from 5.6% to 15.0%. In addition, the speed of LD fusion was enhanced by the absence of choline. Among phospholipid species, the phosphatidylcholine (PC) content of liver cells decreased by 34.5%. Seventeen species of PC (PC [18:2_22:6], PC [15:0_16:1], PC [14:0_20:4], and so on) and 6 species of lysophosphatidylcholine (LPC; LPC [15:0/0:0]), PC (22:2/0:0), LPC (20:2/0:0), and so on] were decreased, while PC (14:1_16:1) and LPC (0:0/20:1) were increased. Choline deficiency increased the triglyceride (TAG) content (0.57 vs. 0.39 µmol/mg) in liver cells and increased the protein abundance of sterol regulatory element binding protein 1, sterol regulatory element binding protein cleavage activation protein, and fatty acid synthase by 23.5%, 17%, and 36.1%, respectively. Upon re-supplementation with choline, the phenotype of LD (TAG content, size, proportion, and phospholipid profile) was reversed, and the ratio of autophagy marker LC3II/LC3I protein was significantly upregulated in a dose-dependent manner. Overall, at least in vitro in mid-lactation cows, these data demonstrated that PC synthesis is necessary for normal LD formation, and both rely on choline availability. According to the limitation of the source of liver cells used, further work should be conducted to ascertain that these effects are applicable to liver cells from postpartum cows, the physiological stage where the use of RPC has been implemented for the prevention and treatment of fatty liver.


Asunto(s)
Enfermedades de los Bovinos , Deficiencia de Colina , Femenino , Bovinos , Animales , Deficiencia de Colina/metabolismo , Deficiencia de Colina/veterinaria , Gotas Lipídicas/metabolismo , Colina/farmacología , Colina/metabolismo , Lactancia/fisiología , Hígado/metabolismo , Fosfolípidos/análisis , Suplementos Dietéticos/análisis , Dieta/veterinaria , Rumen/metabolismo , Leche/química , Enfermedades de los Bovinos/metabolismo
4.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37569885

RESUMEN

Icariin, a flavonoid abundant in the herb Epimedium, exhibits anti-ferroptotic activity. However, its impact on nonalcoholic steatohepatitis (NASH) development remains unclear. This study aimed to investigate the potential role of icariin in mitigating methionine choline-deficient (MCD) diet-induced NASH in C57BL/6J mice. The results showed that icariin treatment significantly reduced serum alanine aminotrasferase and aspartate aminotransferase activities while improving steatosis, inflammation, ballooning, and fibrosis in the liver tissues of mice fed the MCD diet. These improvements were accompanied by a substantial reduction in the hepatic iron contents and levels of malondialdehyde and 4-hydroxynonenal, as well as an increase in the activities of catalase and superoxide dismutase. Notably, icariin treatment suppressed the hepatic protein levels of ferroptosis markers such as acyl-CoA synthetase long-chain family member 4 and arachidonate 12-lipoxygenase, which were induced by the MCD diet. Furthermore, transmission electron microscopy confirmed the restoration of morphological changes in the mitochondria, a hallmark characteristic of ferroptosis, by icariin. Additionally, icariin treatment significantly increased the protein levels of Nrf2, a cystine/glutamate transporter (xCT), and glutathione peroxidase 4 (GPX4). In conclusion, our study suggests that icariin has the potential to attenuate NASH, possibly by suppressing ferroptosis via the Nrf2-xCT/GPX4 pathway.


Asunto(s)
Deficiencia de Colina , Ferroptosis , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Colina/metabolismo , Metionina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Racemetionina/metabolismo , Dieta , Suplementos Dietéticos
5.
Front Endocrinol (Lausanne) ; 14: 1118925, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36742397

RESUMEN

Introduction: Nonalcoholic steatohepatitis (NASH), also known as metabolic steatohepatitis, is a clinical syndrome with pathological changes like alcoholic hepatitis but without a history of excessive alcohol consumption. NASH is closely related to metabolic disorders such as obesity, insulin resistance, type 2 diabetes mellitus, and hyperlipidemia. Its main characteristics are hepatocyte steatosis with hepatocyte injury and inflammation. In severe cases, it can develop into liver cirrhosis. At present, there is no special treatment for NASH. Theabrownin (TB) is the main pigment substance in fermented tea. Theabrownin has beneficial effects on lipid metabolism and intestinal flora. However, the effect of theabrownin on NASH has not been studied. Methods: This study was aimed at exploring the effects of theabrownin from Fuzhuan brick tea on NASH. 8-week-old mice were randomly assigned to three groups and fed with chow diet (CD), methionine and choline sufficient (MCS) diet (MCS Ctrl), which is a Methionine/choline deficient (MCD) control diet, and MCD diet. After 5 weeks of feeding, the MCD group mice were randomly divided into two groups and were gavaged with double distilled water (MCD Ctrl) or theabrownin (MCD TB) (200mg/kg body weight, dissolved in double distilled water) every day for another 4 weeks respectively, while continuing MCD diet feeding. Results: We found that theabrownin treatment could not improve liver mass loss and steatosis. However, theabrownin ameliorated liver injury and decreased liver inflammatory response. Theabrownin also alleviated liver oxidative stress and fibrosis. Furthermore, our results showed that theabrownin increased hepatic level of fibroblast growth factor 21 (FGF21) and reduced the phosphorylation of mitogen-activated protein kinase p38 in MCD diet-fed mice.


Asunto(s)
Deficiencia de Colina , Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Colina/metabolismo , Colina/farmacología , Dieta , Fibrosis , Inflamación/tratamiento farmacológico , Inflamación/patología , Metionina/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Estrés Oxidativo , Racemetionina/metabolismo , Racemetionina/farmacología ,
6.
Food Funct ; 14(4): 2096-2111, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36734470

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a chronic liver disease with few therapeutic options available currently. Hemp seed oil extracted from the seeds of hemp (Cannabis sativa L.) has significant nutritional and biological properties due to the unique composition of polyunsaturated fatty acids and various antioxidant compounds. However, little is known about the beneficial effects and molecular mechanisms of hemp seed oil on NASH. Here, the hepatoprotective effects of hemp seed oil on methionine-choline-deficient (MCD) diet-induced NASH in C57BL/6 mice were explored via integration of transcriptomics and metabolomics. Hemp seed oil could improve hepatic steatosis, inflammation and fibrosis in mice with MCD diet-induced NASH. In a nuclear magnetic resonance (NMR)-based metabonomic study, the hepatic and urinary metabolic profiles of mice supplemented with hemp seed oil showed a tendency to recover to healthy controls compared to those of NASH mice. Eight potential biomarkers associated with NASH in both liver tissue and urine were restored to near normal levels by administration of hemp seed oil. The proposed pathways were mainly involved in pyrimidine metabolism, one-carbon metabolism, amino acid metabolism, glycolysis and the tricarboxylic acid (TCA) cycle. Hepatic transcriptomics based on Illumina RNA-Seq sequencing showed that hemp seed oil exerted anti-NASH activities by regulating multiple signaling pathways, e.g., downregulation of the TNF signaling pathway, the IL-17 signaling pathway, the MAPK signaling pathway and the NF-κB signaling pathway, which played a pivotal role in the pathogenesis of NASH. In particular, integration of metabonomic and transcriptomic results suggested that hemp seed oil could attenuate NASH-related liver fibrosis by inhibition of glutaminolysis. These results provided new insights into the hepatoprotective effects of hemp seed oil against MCD diet-induced NASH and hemp seed oil might have potential as an effective therapy for NASH.


Asunto(s)
Cannabis , Deficiencia de Colina , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Cannabis/metabolismo , Metionina/metabolismo , Colina/metabolismo , Transcriptoma , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Dieta , Racemetionina/metabolismo , Racemetionina/farmacología , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Deficiencia de Colina/patología
7.
Chem Biodivers ; 19(10): e202200719, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36040357

RESUMEN

This study aimed to investigate the therapeutic effect of black ginseng (BG) on non-alcoholic fatty liver disease (NAFLD) using network pharmacology combined with the molecular docking strategy. The saponin composition of BG was analyzed by liquid chromatography-mass spectrometry (LC/MS) instrument. Then the network pharmacology was applied to explore the potential targets and related mechanisms of BG in the treatment of NAFLD. After screening out key targets, molecular docking was used to predict the binding modes between ginsenoside and target. Finally, a methionine and choline deficiency (MCD) diet-induced NAFLD mice model was established to further confirm the therapeutic effect of BG on NAFLD. Twenty-four ginsenosides were annotated based on the MS and tandem MS information. Ten proteins were screened out as key targets closely related to BG treatment of NAFLD. The molecular docking showed that most of the ginsenosides had good binding affinities with AKT1. The validation experiment revealed that BG administration could reduce serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and improve the MCD diet-induced histological changes in liver tissue. Moreover, BG could upregulate the phosphorylation level of AKT in the liver of NAFLD mice, thereby exerting the therapeutic effect on NAFLD. Further studies on the active ginsenosides as well as their synergistic action on NAFLD will be required to reveal the underlying mechanisms in-depth. This study demonstrates that network pharmacological prediction in conjunction with molecular docking is a viable technique for screening the active chemicals and related targets of BG, which can be applied to other herbal medicines.


Asunto(s)
Deficiencia de Colina , Ginsenósidos , Enfermedad del Hígado Graso no Alcohólico , Panax , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Alanina Transaminasa , Panax/metabolismo , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Farmacología en Red , Deficiencia de Colina/metabolismo , Deficiencia de Colina/patología , Aspartato Aminotransferasas , Hígado , Metionina/metabolismo , Metionina/farmacología
8.
J Nutr Biochem ; 107: 109041, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35568098

RESUMEN

Indole is a microbiota metabolite that functions to protect against obesity-associated non-alcoholic fatty liver disease. The present study examined the extent to which indole supplementation alleviates the severity of non-alcoholic steatohepatitis (NASH), which is the advanced form of non-alcoholic fatty liver disease. In C57BL/6J mice, feeding a methionine- and choline-deficient diet (MCD) resulted in significant weight loss, overt hepatic steatosis, and massive aggregations of macrophages in the liver compared with control diet-fed mice. Upon indole supplementation, the severity of MCD-induced hepatic steatosis and inflammation, as well as liver fibrosis, was significantly decreased compared with that of MCD-fed and control-treated mice. In vitro, indole treatment caused significant decreases in lipopolysaccharide-induced proinflammatory responses in hepatocytes incubated with either basal or MCD-mimicking media. However, indole treatment only significantly decreased lipopolysaccharide-induced proinflammatory responses in bone marrow-derived macrophages incubated with basal, but not MCD-mimicking media. These differential effects suggest that, relative to the responses of macrophages to indole, the responses of hepatocytes to indole appeared to make a greater contribution to indole alleviation of NASH, in particular liver inflammation. While indole supplementation decreased liver expression of desmin in MCD-fed mice, treatment of LX2 cells (a line of hepatic stellate cells) with indole also decreased the expression of various markers of hepatic stellate cell fibrogenic activation. Lastly, indole supplementation decreased intestinal inflammation in MCD-fed mice, suggesting that decreased intestinal inflammation also was involved in indole alleviation of NASH. Collectively, these results demonstrate that indole supplementation alleviates MCD-induced NASH, which is attributable to, in large part, indole suppression of hepatocyte proinflammatory responses and hepatic stellate cell fibrogenic activation, as well as intestinal proinflammatory responses.


Asunto(s)
Deficiencia de Colina , Enfermedad del Hígado Graso no Alcohólico , Animales , Colina/metabolismo , Colina/farmacología , Deficiencia de Colina/metabolismo , Dieta , Suplementos Dietéticos , Modelos Animales de Enfermedad , Indoles/farmacología , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Hígado/metabolismo , Metionina/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo
9.
Pharmacol Res ; 178: 106155, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35248699

RESUMEN

The XELOX chemotherapy protocol that includes capecitabine and oxaliplatin is the routine treatment for colorectal cancer (CRC), but it can cause chemotherapy-related adverse events such as thrombocytopenia (TCP). To identify predictive biomarkers and clarify the mechanism of TCP susceptibility, we conducted integrative analysis using normal colorectal tissue (CRT), plasma, and urine samples collected before CRC patients received adjuvant XELOX chemotherapy. RNA-sequencing and DNA methylation arrays were performed on CRT samples, while liquid chromatography-mass spectrometry was performed on CRT, plasma, and urine samples. Differentially expressed features (DEFs) from each uni-omics analysis were then subjected to integrative analysis using Multi-Omics Factor Analysis (MOFA). Choline-deficiency in plasma and CRT was found as the most critical TCP-related feature. Based on bioinformatic analysis and literature research, we further concluded that choline-deficiency was the possible reason for most of the other TCP-related multi-omics DEFs, including metabolites representing reduced sphingolipid de novo synthesis and elevated solute carrier-mediated transmembrane transportation in CRT and plasma, DNA hypermethylation and elevated expression of genes involved in neuronal system genes. In terms of thrombocytopoiesis, these TCP-related DEFs may cause atypical maintenance and differentiation of megakaryocyte, resulting a suppressed ability of thrombocytopoiesis, making patients more susceptible to chemotherapy-induced TCP. At last, prediction models were developed and validated with reasonably good discrimination. The area under curves (AUCs) of training sets were all > 0.9, while validation sets had AUCs between 0.778 and 0.926. In conclusion, our results produced reliable marker systems for predicting TCP and promising target for developing precision treatment to prevent TCP.


Asunto(s)
Antineoplásicos , Deficiencia de Colina , Neoplasias Colorrectales , Leucopenia , Trombocitopenia , Antineoplásicos/efectos adversos , Colina , Deficiencia de Colina/inducido químicamente , Deficiencia de Colina/tratamiento farmacológico , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Fluorouracilo/uso terapéutico , Humanos , Leucopenia/inducido químicamente , Trombocitopenia/inducido químicamente
10.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166290, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34662704

RESUMEN

Hepatic fibrosis is characterized by excessive extracellular matrix deposition and ductular reactions, manifested as the expansion of hepatic progenitor cells (HPCs). We previously reported that the Y-box binding protein 1 (YB-1) in HPCs is involved in chronic liver injury. In this study, we constructed YB-1f/f Foxl1-Cre mice and investigated the role of YB-1 in HPC expansion in murine choline-deficient, ethionine-supplemented (CDE), and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) models. Liver injury and fibrosis were measured using hematoxylin and eosin (HE), Masson, and Sirius Red staining. HPC proliferation was detected using EdU and immunofluorescence (IF). Autophagic flow was measured by mCherry-GFP-LC3B staining and transmission electron microscopy (TEM). YB-1 expression was measured by immunofluorescence and western blotting. CUT & Tag analysis, chromatin immunoprecipitation, and RT-PCR were performed to explore the regulation of autophagy-related protein 7 (Atg7) transcription by YB-1. Our results indicated that liver injury was accompanied by high expression of YB-1, proliferative HPCs, and activated autophagy in the CDE and DDC models. YB-1f/f Cre+/- mice displayed less liver injury and fibrosis than YB-1f/f Cre-/- mice in the CDE and DDC models. YB-1 promoted proliferation and autophagy of HPCs in vitro and in vivo. Transforming growth factor-ß (TGF-ß) induced YB-1 nuclear translocation and facilitated the proliferation and autophagy of HPCs. YB-1 nuclear translocation promoted the transcription of Atg7, which is essential for TGF-ß/YB-1 mediated HPCs expansion in vitro and in vivo. In summary, YB-1 nuclear translocation induced by TGF-ß in HPCs promotes the proliferation and autophagy of HPCs and Atg7 participates in YB-1-mediated HPC-expansion and liver fibrosis.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Cirrosis Hepática/genética , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/genética , Animales , Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Deficiencia de Colina/inducido químicamente , Deficiencia de Colina/genética , Deficiencia de Colina/patología , Modelos Animales de Enfermedad , Etionina/toxicidad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/patología , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Ratones Noqueados , Microscopía Electrónica de Transmisión , Piridinas/toxicidad , Células Madre/efectos de los fármacos , Células Madre/patología
11.
Nutrients ; 15(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36615835

RESUMEN

Non-Alcoholic Steatohepatitis (NASH) is the progressive form of Non-Alcoholic Fatty Liver Disease (NAFLD). NASH is distinguished by severe hepatic fibrosis and inflammation. The plant-derived, non-psychotropic compound cannabigerol (CBG) has potential anti-inflammatory effects similar to other cannabinoids. However, the impact of CBG on NASH pathology is still unknown. This study demonstrated the therapeutic potential of CBG in reducing hepatic steatosis, fibrosis, and inflammation. METHODS: 8-week-old C57BL/6 male mice were fed with methionine/choline deficient (MCD) diet or control (CTR) diets for five weeks. At the beginning of week 4, mice were divided into three sub-groups and injected with either a vehicle, a low or high dose of CBG for two weeks. Overall health of the mice, Hepatic steatosis, fibrosis, and inflammation were evaluated. RESULTS: Increased liver-to-body weight ratio was observed in mice fed with MCD diet, while a low dose of CBG treatment rescued the liver-to-body weight ratio. Hepatic ballooning and leukocyte infiltration were decreased in MCD mice with a low dose of CBG treatment, whereas the CBG treatment did not change the hepatic steatosis. The high dose CBG administration increased inflammation and fibrosis. Similarly, the expression of cannabinoid receptor (CB)1 and CB2 showed decreased expression with the low CBG dose but not with the high CBG dose intervention in the MCD group and were co-localized with mast cells. Additionally, the decreased mast cells were accompanied by decreased expression of transforming growth factor (TGF)-ß1. CONCLUSIONS: Collectively, the low dose of CBG alleviated hepatic fibrosis and inflammation in MCD-induced NASH, however, the high dose of CBG treatment showed enhanced liver damage when compared to MCD only group. These results will provide pre-clinical data to guide future intervention studies in humans addressing the potential uses of CBG for inflammatory liver pathologies, as well as open the door for further investigation into systemic inflammatory pathologies.


Asunto(s)
Deficiencia de Colina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metionina/metabolismo , Colina/metabolismo , Receptores de Cannabinoides/metabolismo , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Fibrosis , Cirrosis Hepática/complicaciones , Inflamación/metabolismo , Racemetionina/metabolismo , Dieta , Peso Corporal
12.
Pharm Biol ; 59(1): 922-932, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34243681

RESUMEN

CONTEXT: Esculin, an active coumarin compound, has been demonstrated to exert anti-inflammatory effects. However, its potential role in non-alcoholic steatohepatitis (NASH) remains unclear. OBJECTIVE: This study explored the hepatoprotective effect and the molecular mechanism of esculin in methionine choline-deficient (MCD) diet-induced NASH. MATERIALS AND METHODS: Fifty C57BL/6J mice were divided into five groups: control, model, low dosage esculin (oral, 20 mg/kg), high dosage esculin (oral, 40 mg/kg), and silybin (oral, 105 mg/kg). All animals were fed a MCD diet, except those in the control group (control diet), for 6 weeks. RESULTS: Esculin (20 and 40 mg/kg) inhibited MCD diet-induced hepatic lipid content (triglyceride: 16.95 ± 0.67 and 14.85 ± 0.78 vs. 21.21 ± 1.13 mg/g; total cholesterol: 5.10 ± 0.34 and 4.08 ± 0.47 vs. 7.31 ± 0.58 mg/g), fibrosis, and inflammation (ALT: 379.61 ± 40.30 and 312.72 ± 21.45 vs. 559.51 ± 37.01 U/L; AST: 428.22 ± 34.29 and 328.23 ± 23.21 vs. 579.36 ± 31.93 U/L). In vitro, esculin reduced tumour necrosis factor-α, interleukin-6, fibronectin, and collagen 4A1 levels, but had no effect on lipid levels in HepG2 cells induced by free fatty acid. Esculin increased Sirt1 expression levels and decreased NF-κB acetylation levels in vivo and in vitro. Interfering with Sirt1 expression attenuated the beneficial effect of esculin on inflammatory and fibrotic factor production in HepG2 cells. CONCLUSIONS: These findings demonstrate that esculin ameliorates MCD diet-induced NASH by regulating the Sirt1/ac-NF-κB signalling pathway. Esculin could thus be employed as a therapy for NASH.


Asunto(s)
Esculina/farmacología , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Sirtuina 1/metabolismo , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Supervivencia Celular/efectos de los fármacos , Deficiencia de Colina , Citocinas/efectos de los fármacos , Ácidos Grasos no Esterificados , Fibrosis/tratamiento farmacológico , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Lípidos/sangre , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , ARN Interferente Pequeño , Transducción de Señal , Silibina/farmacología , Sirtuina 1/genética
13.
Nutrition ; 89: 111348, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34217074

RESUMEN

In cystic fibrosis (CF), 85% to 90% of patients develop exocrine pancreatic insufficiency. Despite enzyme substitution, low pancreatic phospholipase A2 (sPLaseA2-IB) activity causes fecal loss of bile phosphatidylcholine and choline deficiency. We report on a female patient who has CF and progressive hepatosteatosis from 4.5 y onward. At 22.3 y, the liver comprised 27% fat (2385 mL volume) and transaminases were strongly increased. Plasma choline was 1.9 µmol/L (normal: 8-12 mol/L). Supplementation with 3 ×  1g/d choline chloride decreased liver fat and volume (3 mo: 8.2%; 1912 mL) and normalized transaminases. Plasma choline increased to only 5.6 µmol/L upon supplementation, with high trimethylamine oxide levels (12-35 µmol/L; normal: 3 ± 1 mol/L) proving intestinal microbial choline degradation. The patient was homozygous for rs12325817, a frequent single-nucleotide polymorphism in the PEMT gene, associated with severe hepatosteatosis in response to choline deficiency. Resolution of steatosis required 2 y (4.5% fat). Discontinuation/resumption of choline supplementation resulted in rapid relapse/resolution of steatosis, increased transaminases, and abdominal pain.


Asunto(s)
Deficiencia de Colina , Fibrosis Quística , Hígado Graso , Preescolar , Colina , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Femenino , Humanos , Adulto Joven
14.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946979

RESUMEN

Choline is essential for maintaining the structure and function of cells in humans. Choline plays an important role in eye health and disease. It is a precursor of acetylcholine, a neurotransmitter of the parasympathetic nervous system, and it is involved in the production and secretion of tears by the lacrimal glands. It also contributes to the stability of the cells and tears on the ocular surface and is involved in retinal development and differentiation. Choline deficiency is associated with retinal hemorrhage, glaucoma, and dry eye syndrome. Choline supplementation may be effective for treating these diseases.


Asunto(s)
Colina/fisiología , Oftalmopatías/metabolismo , Acetilcolina/biosíntesis , Acetilcolina/fisiología , Animales , Deficiencia de Colina/complicaciones , Deficiencia de Colina/fisiopatología , Retinopatía Diabética/fisiopatología , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Síndromes de Ojo Seco/fisiopatología , Oftalmopatías/etiología , Oftalmopatías/fisiopatología , Dolor Ocular/fisiopatología , Glaucoma/fisiopatología , Glicerilfosforilcolina/uso terapéutico , Humanos , Aparato Lagrimal/inervación , Aparato Lagrimal/metabolismo , Cristalino/metabolismo , Nocicepción/fisiología , Nervio Óptico/metabolismo , Sistema Nervioso Parasimpático/fisiopatología , Fosfatidilcolinas/biosíntesis , Fosfolípidos/metabolismo , Receptores Nicotínicos/fisiología , Retina/crecimiento & desarrollo , Retina/metabolismo , Vasos Retinianos/metabolismo , Lágrimas/metabolismo
15.
Food Chem Toxicol ; 154: 112245, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33940107

RESUMEN

Dietary pattern and cooking methods are important factors to determine the nutrients supplementation for male reproduction. Methionine and choline are two methyl donors in daily diet, which could mediate the lipid metabolism, but their effects on the sperms are not clear. In this study, we fed the mice with methionine-choline deficient (MCD) diet or the baked MCD diet for 6 weeks to evaluate this dietary pattern and the appended high temperature cooking on the spermatogenesis. The results have shown that MCD diet induced testis degradation and the damage of spermatocytes, reduced sperm vitality, motility, but elevated sperm deformity. Additionally, baking of MCD diet aggravated the testis injury, further reduced sperm density, sperm motility, and decreased normal sperm morphology dramatically. These changes were not related to the blood-testis barrier nor the Leydig cells dysfunction, but related to spermatocytes lost and apoptosis. The spermatocyte apoptosis was mediated by reticulum stress, including GRP78, XBP-1 and CHOP gene expression. Our study has shown the importance of methionine and choline in diet, and emphasized the crucial role of cooking condition, which are dietary factors to influence the quality of sperms.


Asunto(s)
Deficiencia de Colina/metabolismo , Culinaria , Dieta , Metionina/deficiencia , Testículo/citología , Animales , Apoptosis , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Masculino , Ratones , Ratones Endogámicos C57BL , Recuento de Espermatozoides , Motilidad Espermática , Espermatocitos/citología
16.
Biomed Pharmacother ; 139: 111587, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33865013

RESUMEN

Salvia-Nelumbinis naturalis (SNN) formula is a traditional Chinese medicine prescription, and has been confirmed to be effective in treating non-alcoholic steatohepatitis (NASH), but the underlying mechanisms are still unknown. Here we showed that 4-week SNN administration alleviated methionine-choline-deficiency (MCD) diet-induced hepatic steatosis and inflammation as well as serum levels of alanine transaminase (ALT) increase in C57BL/6 mice. Fecal 16S rDNA sequencing indicated that SNN altered the structure of gut microbiota and partially reversed the gut dysbiosis. Simultaneously, we analyzed the fecal BA profile using liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-TQMS) -based metabolomics, and found that SNN modulated fecal BA profile, predominantly increased the microbiomes related BA species (e.g. nordeoxycholic acid) which in turn, activated farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) signaling pathway in the colon but not the ileum. The activation of intestinal FXR-FGF15 signaling was accompanied by increase of liver protein kinase B (PKB/Akt) phosphorylation, and decrease of p-65 subunit of NF-κB phosphorylation, resulting in less liver CD68 positive macrophages, and inflammatory cytokine IL-1ß and TNF-α expression. Our results established the link between SNN treatment, gut microbiota, BA profile and NASH, which might shed light into the mechanisms behind the beneficial effects of SNN on NASH, thus provide evidence for the clinical application of SNN.


Asunto(s)
Deficiencia de Colina/complicaciones , Medicamentos Herbarios Chinos/uso terapéutico , Metionina/deficiencia , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Sustancias Protectoras/uso terapéutico , Animales , Deficiencia de Colina/genética , Deficiencia de Colina/metabolismo , Deficiencia de Colina/patología , Colon/efectos de los fármacos , Colon/metabolismo , Dieta , Medicamentos Herbarios Chinos/farmacología , Disbiosis/tratamiento farmacológico , Disbiosis/genética , Disbiosis/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Sustancias Protectoras/farmacología , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Food Funct ; 12(2): 696-705, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33410857

RESUMEN

Aloin, a naturally occurring anthraquinone glycoside derived from the Aloe species, has antioxidant and anti-inflammatory activities, but its role in non-alcoholic steatohepatitis (NASH) remains unknown. This study was designed to investigate the anti-inflammatory, antioxidant, and anti-apoptotic effects of aloin and the underlying mechanisms during NASH. Wild-type or nuclear erythroid 2-related factor 2 (Nrf2) knock-out (KO) mice were fed a choline-deficient, l-amino acid-defined, high-fat (CDAAH) diet and treated with aloin (10, 20 or 40 mg per kg bw per day) by gavage for twelve weeks. Liver and blood samples were collected to evaluate liver function, protein abundance, and histopathological status. Supplementing aloin at 20 mg kg-1 was optimal for mitigating liver damage during NASH, as evidenced by reduced alanine transaminase and aspartate aminotransferase activity in serum. Supplementation with aloin significantly reduced serum concentration or liver protein abundance of malondialdehyde, tumor necrosis factor alpha, Interleukin (IL)-1ß and IL-6. Aloin treatment enhanced hepatic superoxide dismutase activity, glutathione and serum IL-10 levels in mice with NASH. Furthermore, supplementation with aloin inhibited hepatocyte apoptosis caused by Bcl-2 up-regulation and cleaved caspase-3 and Bax down-regulation. Mechanistically, by using Nrf2 KO mice, the protective effects of aloin were associated with enhanced antioxidant, anti-inflammatory and anti-apoptotic activity, all of which were mediated by Nrf2/heme oxygenase-1 (HO-1) signaling activation. Data suggested that aloin activates the Nrf2/HO-1 pathway and has protective potential against liver injury during NASH. Therefore, aloin supplementation might contribute to the prevention and treatment of NASH via activation of the Nrf2/HO-1 pathway.


Asunto(s)
Dieta/efectos adversos , Emodina/análogos & derivados , Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Aminoácidos/administración & dosificación , Animales , Apoptosis , Biomarcadores/sangre , Deficiencia de Colina , Grasas de la Dieta , Emodina/química , Emodina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Inflamación/genética , Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética
18.
Nutrients ; 12(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353230

RESUMEN

Several recent experimental studies have investigated the effects of caffeine and chlorogenic acid (CGA), representative ingredients of coffee, on nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). However, the results are conflicting, and their effects are yet to be clarified. In the present study, we examined the effects of caffeine and CGA on choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-fed mice, relatively new model mice of NASH. Seven-week-old male C57BL/6J mice were divided into the following groups: Control diet (control), CDAHFD (CDAHFD), CDAHFD supplemented with 0.05% (w/w) caffeine (caffeine), and CDAHFD supplemented with 0.1% (w/w) CGA (CGA). After seven weeks, the mice were killed and serum biochemical, histopathological, and molecular analyses were performed. Serum alanine aminotransferase (ALT) levels were significantly higher in the caffeine and CGA groups than in the CDAHFD group. On image analysis, the prevalence of Oil red O-positive areas (reflecting steatosis) was significantly higher in the caffeine group than in the CDAHFD group, and that of CD45R-positive areas (reflecting lymphocytic infiltration) in the hepatic lobule was significantly higher in the caffeine and CGA groups than in the CDAHFD group. Hepatic expression of interleukin (IL)-6 mRNA was higher in the caffeine and CGA groups than in the CDAHFD group, and the difference was statistically significant for the caffeine group. In conclusion, in the present study, caffeine and CGA significantly worsened the markers of liver cell injury, inflammation, and/or steatosis in NASH lesions in mice.


Asunto(s)
Cafeína/farmacología , Ácido Clorogénico/farmacología , Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Alanina Transaminasa/sangre , Aminoácidos , Animales , Deficiencia de Colina , Ingestión de Alimentos , Ingestión de Energía , Interleucina-6/genética , Interleucina-6/metabolismo , Antígenos Comunes de Leucocito/análisis , Hígado/diagnóstico por imagen , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , ARN Mensajero/metabolismo
19.
Lipids Health Dis ; 19(1): 251, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317575

RESUMEN

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a form of liver disease characterized by steatosis, necroinflammation, and fibrosis, resulting in cirrhosis and cancer. Efforts have focused on reducing the intake of trans fatty acids (TFAs) because of potential hazards to human health and the increased risk for NASH. However, the health benefits of reducing dietary TFAs have not been fully elucidated. Here, the effects of TFAs vs. a substitute on NASH induced in mice by feeding a choline-deficient, methionine-lowered, L-amino acid-defined, high-fat diet (CDAA-HF) were investigated. METHODS: Mice were fed CDAA-HF containing shortening with TFAs (CDAA-HF-T(+)), CDAA-HF containing shortening without TFAs (CDAA-HF-T(-)), or a control chow for 13 or 26 weeks. RESULTS: At week 13, NASH was induced in mice by feeding CDAA-HF-T(+) containing TFAs or CDAA-HF-T(-) containing no TFAs, but rather mostly saturated fatty acids (FAs), as evidenced by elevated serum transaminase activity and liver changes, including steatosis, inflammation, and fibrosis. CDAA-HF-T(-) induced a greater extent of hepatocellular apoptosis at week 13. At week 26, proliferative (preneoplastic and non-neoplastic) nodular lesions were more pronounced in mice fed CDAA-HF-T(-) than CDAA-HF-T(+). CONCLUSIONS: Replacement of dietary TFAs with a substitute promoted the development of proliferation lesions in the liver of a mouse NASH model, at least under the present conditions. Attention should be paid regarding use of TFA substitutes in foods for human consumption, and a balance of FAs is likely more important than the particular types of FAs.


Asunto(s)
Aminoácidos/metabolismo , Alimentación Animal , Colina/metabolismo , Hígado/metabolismo , Metionina/metabolismo , Ácidos Grasos trans/metabolismo , Animales , Apoptosis , Peso Corporal , Deficiencia de Colina , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hígado Graso , Perfilación de la Expresión Génica , Humanos , Inflamación , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Tamaño de los Órganos , Fosforilación , ARN/metabolismo , Aceite de Soja , Sulfotransferasas/metabolismo
20.
J Cell Physiol ; 235(12): 9524-9537, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32495363

RESUMEN

FoxA2 is an essential transcription factor for liver organogenesis and homeostasis. Although reduced expression of FoxA2 has been associated with chronic liver diseases, hepatic progenitor cells (HPCs) that are activated in these circumstances express FoxA2. However, the functional effects and underlying mechanism of FoxA2 in HPCs are still unknown. As revealed by immunostaining, HPCs expressed FoxA2 in human cirrhotic livers and in the livers of choline-deficient diet supplemented with ethionine (CDE) rats. Knocking down FoxA2 in HPCs isolated from CDE rats significantly increased cell proliferation and aerobic glycolysis. Moreover, gene transcription, protein expression, and the enzyme activities of hexokinase 2 (HK2) were upregulated, and blocking HK2 activities via 2-deoxyglucose markedly reduced cell proliferation and aerobic glycolysis. Kyoto Encyclopedia of Genes and Genomes analysis revealed that FoxA2 knockdown enhanced the transcription of genes involved in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway and triggered downstream Akt phosphorylation. Blocking the PI3K/Akt pathway by Ly294002 inhibited HK2 activities, aerobic glycolysis, and cell proliferation in FoxA2-knockdown cells. Therefore, FoxA2 plays an important role in the proliferation and inhibition of HPCs by suppressing PI3K/Akt/HK2-regulated aerobic glycolysis.


Asunto(s)
Glucólisis/genética , Factor Nuclear 3-beta del Hepatocito/genética , Hexoquinasa/genética , Hígado/metabolismo , Organogénesis/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Colina/farmacología , Deficiencia de Colina/genética , Deficiencia de Colina/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/crecimiento & desarrollo , Fosfatidilinositol 3-Quinasa/genética , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA