Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
eNeuro ; 10(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36894321

RESUMEN

Wallerian degeneration (WD) occurs in the early stages of numerous neurologic disorders, and clarifying WD pathology is crucial for the advancement of neurologic therapies. ATP is acknowledged as one of the key pathologic substances in WD. The ATP-related pathologic pathways that regulate WD have been defined. The elevation of ATP levels in axon contributes to delay WD and protects axons. However, ATP is necessary for the active processes to proceed WD, given that WD is stringently managed by auto-destruction programs. But little is known about the bioenergetics during WD. In this study, we made sciatic nerve transection models for GO-ATeam2 knock-in rats and mice. We presented the spatiotemporal ATP distribution in the injured axons with in vivo ATP imaging systems, and investigated the metabolic source of ATP in the distal nerve stump. A gradual decrease in ATP levels was observed before the progression of WD. In addition, the glycolytic system and monocarboxylate transporters (MCTs) were activated in Schwann cells following axotomy. Interestingly, in axons, we found the activation of glycolytic system and the inactivation of the tricarboxylic acid (TCA) cycle. Glycolytic inhibitors, 2-deoxyglucose (2-DG) and MCT inhibitors, a-cyano-4-hydroxycinnamic acid (4-CIN) decreased ATP and enhanced WD progression, whereas mitochondrial pyruvate carrier (MPC) inhibitors (MSDC-0160) did not change. Finally, ethyl pyruvate (EP) increased ATP levels and delayed WD. Together, our findings suggest that glycolytic system, both in Schwann cells and axons, is the main source of maintaining ATP levels in the distal nerve stump.


Asunto(s)
Axones , Degeneración Walleriana , Animales , Ratas , Ratones , Axotomía , Axones/metabolismo , Degeneración Walleriana/metabolismo , Nervio Ciático/metabolismo , Adenosina Trifosfato/metabolismo , Regeneración Nerviosa/fisiología
2.
Neurobiol Dis ; 171: 105808, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779777

RESUMEN

Wallerian degeneration (WD) is a conserved axonal self-destruction program implicated in several neurological diseases. WD is driven by the degradation of the NAD+ synthesizing enzyme NMNAT2, the buildup of its substrate NMN, and the activation of the NAD+ degrading SARM1, eventually leading to axonal fragmentation. The regulation and amenability of these events to therapeutic interventions remain unclear. Here we explored pharmacological strategies that modulate NMN and NAD+ metabolism, namely the inhibition of the NMN-synthesizing enzyme NAMPT, activation of the nicotinic acid riboside (NaR) salvage pathway and inhibition of the NMNAT2-degrading DLK MAPK pathway in an axotomy model in vitro. Results show that NAMPT and DLK inhibition cause a significant but time-dependent delay of WD. These time-dependent effects are related to NMNAT2 degradation and changes in NMN and NAD+ levels. Supplementation of NAMPT inhibition with NaR has an enhanced effect that does not depend on timing of intervention and leads to robust protection up to 4 days. Additional DLK inhibition extends this even further to 6 days. Metabolite analyses reveal complex effects indicating that NAMPT and MAPK inhibition act by reducing NMN levels, ameliorating NAD+ loss and suppressing SARM1 activity. Finally, the axonal NAD+/NMN ratio is highly predictive of cADPR levels, extending previous cell-free evidence on the allosteric regulation of SARM1. Our findings establish a window of axon protection extending several hours following injury. Moreover, we show prolonged protection by mixed treatments combining MAPK and NAMPT inhibition that proceed via complex effects on NAD+ metabolism and inhibition of SARM1.


Asunto(s)
Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida-Nucleótido Adenililtransferasa , Degeneración Walleriana , Animales , Proteínas del Dominio Armadillo/metabolismo , Axones/patología , Proteínas del Citoesqueleto/metabolismo , Humanos , Mamíferos/metabolismo , NAD/metabolismo , Degeneración Nerviosa/patología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Inhibidores de Proteínas Quinasas , Degeneración Walleriana/metabolismo
3.
Toxicol Lett ; 363: 77-84, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35643292

RESUMEN

Wallerian degeneration (WD) is a well-known process by which degenerating axons and myelin are cleared after nerve injury. Although organophosphate-induced delayed neuropathy (OPIDN) is characterized by Wallerian-like degeneration of long axons in human and sensitive animals, the precise pathological mechanism remains unclear. In this study, we cultured embryonic chicken dorsal root ganglia (DRG) neurons, the model of OPIDN in vitro, to investigate the underlying mechanism of axon degeneration induced by tri-ortho-cresyl phosphate (TOCP), an OPIDN inducer. The results showed that TOCP exposure time- and concentration-dependently induced a serious degeneration and fragmentation of the axons from the DRG neurons. A collapse of mitochondrial membrane potential and a dramatic depletion of ATP levels were found in the DRG neurons after TOCP treatment. In addition, nicotinamide nucleotide adenylyl transferase 2 (NMNAT2) expression and nicotinamide adenine dinucleotide (NAD+) level was also found to be decreased in the DRG neurons exposed to TOCP. However, the TOCP-induced Wallerian degeneration in the DRG neurons could be inhibited by ATP supplementation. And exogenous NAD+ or NAD+ processor nicotinamide riboside can rescue TOCP-induced ATP deficiency and prevent TOCP-induced axon degeneration of the DRG neurons. These findings may shed light on the pathophysiological mechanism of TOCP-induced axonal damages, and implicate the potential application of NAD+ to treat OPIDN.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Tritolilfosfatos , Adenosina Trifosfato/metabolismo , Animales , Axones , Pollos , Ganglios Espinales , NAD/metabolismo , Neuronas , Organofosfatos/metabolismo , Fosfatos , Tritolilfosfatos/metabolismo , Tritolilfosfatos/toxicidad , Degeneración Walleriana/inducido químicamente , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología
4.
Biochim Biophys Acta Bioenerg ; 1863(5): 148545, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35339437

RESUMEN

Axons are the long, fragile, and energy-hungry projections of neurons that are challenging to sustain. Together with their associated glia, they form the bulk of the neuronal network. Pathological axon degeneration (pAxD) is a driver of irreversible neurological disability in a host of neurodegenerative conditions. Halting pAxD is therefore an attractive therapeutic strategy. Here we review recent work demonstrating that pAxD is regulated by an auto-destruction program that revolves around axonal bioenergetics. We then focus on the emerging concept that axonal and glial energy metabolism are intertwined. We anticipate that these discoveries will encourage the pursuit of new treatment strategies for neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Degeneración Walleriana , Axones/metabolismo , Axones/patología , Metabolismo Energético , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología
5.
Biochem Soc Trans ; 47(1): 119-130, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30626706

RESUMEN

Research over the last few decades has extended our understanding of nicotinamide adenine dinucleotide (NAD) from a vital redox carrier to an important signalling molecule that is involved in the regulation of a multitude of fundamental cellular processes. This includes DNA repair, cell cycle regulation, gene expression and calcium signalling, in which NAD is a substrate for several families of regulatory proteins, such as sirtuins and ADP-ribosyltransferases. At the molecular level, NAD-dependent signalling events differ from hydride transfer by cleavage of the dinucleotide into an ADP-ribosyl moiety and nicotinamide. Therefore, non-redox functions of NAD require continuous biosynthesis of the dinucleotide. Maintenance of cellular NAD levels is mainly achieved by nicotinamide salvage, yet a variety of other precursors can be used to sustain cellular NAD levels via different biosynthetic routes. Biosynthesis and consumption of NAD are compartmentalised at the subcellular level, and currently little is known about the generation and role of some of these subcellular NAD pools. Impaired biosynthesis or increased NAD consumption is deleterious and associated with ageing and several pathologies. Insults to neurons lead to depletion of axonal NAD and rapid degeneration, partial rescue can be achieved pharmacologically by administration of specific NAD precursors. Restoring NAD levels by stimulating biosynthesis or through supplementation with precursors also produces beneficial therapeutic effects in several disease models. In this review, we will briefly discuss the most recent achievements and the challenges ahead in this diverse research field.


Asunto(s)
NAD/metabolismo , ADP-Ribosilación/fisiología , Animales , Humanos , Transducción de Señal/fisiología , Sirtuinas/metabolismo , Degeneración Walleriana/metabolismo
6.
J Neurotrauma ; 27(3): 483-96, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20201668

RESUMEN

Changes in the distribution of the magnetic resonance (MR)-observable brain metabolites N-acetyl aspartate (NAA), total choline (Cho), and total creatine (Cre), following mild-to-moderate closed-head traumatic brain injury (mTBI) were evaluated using volumetric proton MR spectroscopic imaging (MRSI). Studies were carried out during the subacute time period following injury, and associations of metabolite indices with neuropsychological test (NPT) results were evaluated. Twenty-nine subjects with mTBI and Glasgow Coma Scale (GCS) scores of 10-15 were included. Differences in individual metabolite and metabolite ratio distributions relative to those of age-matched control subjects were evaluated, as well as analyses by hemispheric lobes and tissue types. Primary findings included a widespread decrease of NAA and NAA/Cre, and increases of Cho and Cho/NAA, within all lobes of the TBI subject group, and with the largest differences seen in white matter. Examination of the association between all of the metabolite measures and the NPT scores found the strongest negative correlations to occur in the frontal lobe and for Cho/NAA. No significant correlations were found between any of the MRSI or NPT measures and the GCS. These results demonstrate that significant and widespread alterations of brain metabolites occur as a result of mild-to-moderate TBI, and that these measures correlate with measures of cognitive performance.


Asunto(s)
Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo , Trastornos del Conocimiento/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Adolescente , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análisis , Ácido Aspártico/metabolismo , Biomarcadores/análisis , Biomarcadores/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Colina/análisis , Colina/metabolismo , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/fisiopatología , Creatina/análisis , Creatina/metabolismo , Lesión Axonal Difusa/metabolismo , Lesión Axonal Difusa/patología , Lesión Axonal Difusa/fisiopatología , Evaluación de la Discapacidad , Femenino , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Lóbulo Frontal/fisiopatología , Escala de Coma de Glasgow , Humanos , Masculino , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/patología , Pruebas Neuropsicológicas , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología , Degeneración Walleriana/fisiopatología , Adulto Joven
7.
Neurosci Lett ; 417(3): 255-60, 2007 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-17382469

RESUMEN

We investigate whether Nogo-A is involved in the secondary axonal degeneration in the thalamus after distal middle cerebral artery occlusion (MCAO) in stroke-prone renovascular hypertensive rats (RHRSP). The expression of Nogo-A in ipsilateral ventroposterior nucleus (VPN) of the thalamus in RHRSP was observed at 1, 2 and 4 weeks after distal MCAO. In addition, intracerebroventricular infusion of NEP1-40, a Nogo-66 receptor (NgR) antagonist peptide, was administered starting 24 h after MCAO and continued for 1, 2 and 4 weeks, respectively. Axonal damage and regeneration were evaluated by analysis of the immunoreactivity (IR) of amyloid betaA4 precursor protein (APP), growth associated protein 43 (GAP-43) and microtubule associated protein 2 (MAP-2) in ipsilateral VPN of the thalamus at 1, 2 and 4 weeks after distal MCAO. Following ischemia, the expression of Nogo-A in oligodendrocytes increased persistently and its localization became redistributed around damaged axons and dendrites. Administration of NEP1-40 downregulated the expression of Nogo-A, reduced axonal injury and enhanced axonal regeneration. Our data suggest that Nogo-A is involved in secondary axonal degeneration and that inhibition of Nogo-A can reduce neuronal damage in the thalamus after distal MCAO.


Asunto(s)
Infarto Cerebral/metabolismo , Hipertensión/complicaciones , Proteínas de la Mielina/metabolismo , Degeneración Retrógrada/metabolismo , Tálamo/metabolismo , Degeneración Walleriana/metabolismo , Animales , Axones/metabolismo , Axones/patología , Biomarcadores/metabolismo , Infarto Cerebral/patología , Infarto Cerebral/fisiopatología , Hipertensión/fisiopatología , Inmunohistoquímica , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Masculino , Proteínas de la Mielina/farmacología , Proteínas de la Mielina/uso terapéutico , Factores de Crecimiento Nervioso/farmacología , Factores de Crecimiento Nervioso/uso terapéutico , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nogo , Oligodendroglía/metabolismo , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/uso terapéutico , Ratas , Ratas Sprague-Dawley , Degeneración Retrógrada/patología , Degeneración Retrógrada/fisiopatología , Tálamo/patología , Tálamo/fisiopatología , Regulación hacia Arriba/fisiología , Núcleos Talámicos Ventrales/metabolismo , Núcleos Talámicos Ventrales/patología , Núcleos Talámicos Ventrales/fisiopatología , Degeneración Walleriana/patología , Degeneración Walleriana/fisiopatología
8.
Exp Biol Med (Maywood) ; 226(6): 612-7, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11395934

RESUMEN

The effects of Wallerian degeneration of the peripheral sympathetic neurons projecting to the hypothalamus on the mechanism of interaction between prolactin and substance P (SP) were examined. The effects of superior cervical ganglionectomy (SCGx) on SP content in various hypothalamic regions and in the hypophysis were evaluated in control and hyperprolactinemic rats. Male rats that received pituitary transplants at the age of 5 days and age-matched sham-operated controls were used. Pituitary grafting significantly increased circulating values of prolactin, as did SCGx. In hyperprolactinemic rats, SCGx partially decreased plasma prolactin levels. Neonatal hyperprolactinemia decreased SP content in the anterior (AH) and posterior (PH) hypothalamus and in the median eminence (ME), but increased it in the mediobasal hypothalamus (MBH). Acute SCGx significantly increased SP in the MBH, PH, and ME. SCGx in hyperprolactinemic animals further increased SP content in MBH. In the ME and Ah, SCGx in pituitary grafted rats decreased SP content as compared with the controls. In the pituitary gland (PG), SCGx only decreased SP content in hyperprolactinemic, but not in control rats. An interaction between peripheral nor-adrenergic neurons and prolactin to regulate SP within the hypothalamus was positive in the MBH, AH, ME, and PG, but not in the PH. These data indicate the existence of interactive mechanisms between prolactin and the peripheral sympathetic neurons to regulate SP content at the hypothalamic-pituitary axis. Interrelationships between prolactin and SP were also observed.


Asunto(s)
Hiperprolactinemia/metabolismo , Hipotálamo/metabolismo , Hipófisis/metabolismo , Sustancia P/metabolismo , Sistema Nervioso Simpático/metabolismo , Degeneración Walleriana/metabolismo , Animales , Ganglionectomía , Hipotálamo Anterior/metabolismo , Hipotálamo Posterior/metabolismo , Masculino , Neuronas/metabolismo , Prolactina/sangre , Ratas , Ratas Wistar , Ganglio Cervical Superior
9.
Pain ; 77(2): 173-179, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9766835

RESUMEN

Experimental inflammatory compression injury to the sciatic nerve (chronic constriction injury, CCI) induces Wallerian degeneration of axons and damages non-neuronal cells at the injury site in association with the development of exaggerated pain-like behavior, or hyperalgesia, to noxious thermal stimuli in the affected anatomical area. We examined whether glutathione, one of whose many functions is an important endogenous antioxidant, influenced resulting neuropathology and hyperalgesia following CCI. Dietary supplementation of the amino acid N-acetyl-cysteine (NAC), a rate-limiting component of glutathione production, beginning 1 day prior to CCI significantly diminished both Wallerian degeneration, measured by quantitative morphometry of myelinated fibers, and thermal hyperalgesia. NAC treatment raised nerve glutathione levels compared to untreated nerves, as indicated using hemeoxygenase-1 (hsp32) immunoreactivity as a marker of glutathione depletion. Because NAC is also known to have antioxidant abilities, studies simultaneously inhibited glutathione synthesis, and results demonstrated no significant reduction in resulting neuropathology or hyperalgesia. Delaying NAC administration to post-injury times consistently decreased hyperalgesia, although not significantly. This study identifies glutathione levels, and presumably oxidative stress, as important determinants of the neuropathological and behavioral consequences of nerve injury, and suggests that dietary supplementation of NAC constitutes an effective pre-emptive therapeutic strategy for situations involving painful nerve injury, such as occurs during surgery.


Asunto(s)
Glutatión/metabolismo , Hiperalgesia/fisiopatología , Nervio Ciático/lesiones , Degeneración Walleriana/fisiopatología , Acetilcisteína/farmacología , Animales , Anticuerpos , Femenino , Hemo Oxigenasa (Desciclizante)/análisis , Hemo Oxigenasa (Desciclizante)/inmunología , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1 , Calor , Hiperalgesia/metabolismo , Fibras Nerviosas Mielínicas/química , Fibras Nerviosas Mielínicas/metabolismo , Nociceptores/efectos de los fármacos , Nociceptores/fisiología , Estrés Oxidativo/fisiología , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/fisiología , Nervio Ciático/metabolismo , Nervio Ciático/fisiopatología , Degeneración Walleriana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA